The status of open charm measurements in NA61/SHINE experiment

Mateusz Ludwik Bajda

63. Cracow School of Theoretical Physics 17.09-23.09.2023 Zakopane

Jagiellonian University, VD group

- 2 The charm production
- 3 SAVD Small Acceptance Vertex Detector
- Upgraded Vertex Detector
 - Data reconstruction

Experiment NA61/SHINE (the experimental setup and physics program)

Jagiellonian University, VD group

SHINE (SPS Heavy Ion and Neutrino Experiment) is a fixed-target experiment located on the H2 beamline of the CERN SPS (Super Proton Synchrotron) accelerator.

It was optimized to study hadron production in hadron-proton, hadron-nucleus, and nucleus-nucleus collisions. This experiment is a successor to the NA49¹ experiment from which several components are used.

The main goal of the experiment is to study the diagram of strongly interacting matter, including i.a.:

- charm hadron production,
- quark-gluon plasma signature,
- location of the critical point.

¹S. Afanasiev et all., *The NA49 large acceptance hadron detector*, volume 430, pages 210-244, 1999, Nuclear Instruments and Methods in Physics Research Section A

Beam detectors - a set of scintillators, Cherenkov counters, and beam position detectors (BPD) that provide information about the charge, transverse position, and flight time of beam particles.

Time Projection Chambers (TPC) - four large and four small TPCs used as particle tracking detectors. They also provide information about momentum and allow particle identification.

Time of Flight - identification of hadron.

Projectile Spectator Detector (PSD) - the hadronic calorimeter provides information about the centrality of the reaction from the measurement of the spectator's energy.

Vertex Detector (VD) - precise reconstruction of particle tracks close to the target.

A. Bajda Jagiellonian University, VD group	5 / 29
--	--------

The charm production

Jagiellonian University, VD group

The mechanism of charm production is one of the crucial topics in the relativistic collision of heavy ions. **This study will allow us to discriminate between models** that contain different mechanics of charm production like statistical and dynamical models.

The mechanism of charm production is one of the crucial topics in the relativistic collision of heavy ions. **This study will allow us to discriminate between models** that contain different mechanics of charm production like statistical and dynamical models.

The goal¹

- What is the mechanism of charm production?
- How does the onset of deconfinement in the nucleus-nucleus collision impact charm production?

¹A. Aduszkiewicz et all., *Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans*, CERN, Geneva, 2018, SPS and PS Experiments Committee

The mechanism of charm production is one of the crucial topics in the relativistic collision of heavy ions. **This study will allow us to discriminate between models** that contain different mechanics of charm production like statistical and dynamical models.

The goal¹

- What is the mechanism of charm production?
- How does the onset of deconfinement in the nucleus-nucleus collision impact charm production?

Strategy

The answers to the above questions can be obtained by measuring the average multiplicity of charm quarks $\langle c\bar{c} \rangle$, created in collisions of heavy ions.

¹A. Aduszkiewicz et all., *Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans*, CERN, Geneva, 2018, SPS and PS Experiments Committee

The mechanism of charm production is one of the crucial topics in the relativistic collision of heavy ions. **This study will allow us to discriminate between models** that contain different mechanics of charm production like statistical and dynamical models.

The goal¹

- What is the mechanism of charm production?
- How does the onset of deconfinement in the nucleus-nucleus collision impact charm production?

Strategy

The answers to the above questions can be obtained by measuring the average multiplicity of charm quarks $\langle c\bar{c} \rangle$, created in collisions of heavy ions. For this purpose, we must be able to reconstruct hadrons made of charm quarks.

¹A. Aduszkiewicz et all., Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans, CERN, Geneva, 2018, SPS and PS Experiments Committee

Hadron String Dynamics (HSD) [O. Linnyk, E. Bratkovskaya, W. Cassing, Int. J. Mod. Phys. E 17 (2008), 1367-1439]

perturbative QCD (pQCD) [P. Braun-Munzinger, J. Stachel, Phys. Lett. B 490 (2000), 196-202]

Hadron Resonance Gas (HRG) [A. Kostyuk, M. I. Gorenstein, H. Stoecker, W. Greiner, Phys. Lett. B 531 (2002), 195-202]

Statistical Quark Coalescence [A. Kostyuk, M. I. Gorenstein, H. Stoecker, W. Greiner, Phys. Lett. B 531 (2002), 195-202]

Dynamical Quark Coalescence [P. Levai, T. Biro, P. Csizmadia, T. Csorgo, J. Zimanyi, J. Phys. G 27 (2001), 703-706]

Statistical Model of the Early Stage (SMES) [M. Gazdzicki, M. I. Gorenstein, Acta Phys. Polon. B 30 (1999), 2705

Jagiellonian University, VD group

Two ways

The $c\bar{c}$ pairs can hadronize in two ways:

- open charm charm hadrons (usually mesons) will be formed, i.e. charm quark (antiquark) and a light antiquark (quark).
- hidden charm a bound $c\overline{c}$ system (charmonium).

Helmut Satz, Calibrating the In-Medium Behavior of Quarkonia, Advances in High Energy Physics, vol. 2013, Article ID 242918, 6 pages, 2013.

Jagiellonian University, VD group

Two ways

The $c\overline{c}$ pairs can hadronize in two ways:

- open charm charm hadrons (usually mesons) will be formed, i.e. a charm quark (antiquark) and a light antiquark (quark).
- hidden charm a bound $c\overline{c}$ system (charmonium).

Helmut Satz, Calibrating the In-Medium Behavior of Quarkonia, Advances in High Energy Physics, vol. 2013, Article ID 242918, 6 pages, 2013.

J/ψ suppression (as a signal of deconfinement)

In A+A color screening reduces charmonia production \rightarrow reduction of fraction of $c\bar{c}$ pairs going into charmonia with respect to p+p at the same collision energy.

M. Bajda

Jagiellonian University, VD group

The medium effect on $c\bar{c}$ pairs binding can be determined by comparing the ratio:

$$P(c\bar{c} \rightarrow J/\psi) \equiv rac{\langle J/\psi
angle}{\langle c\bar{c}
angle} \equiv rac{\sigma_{J/\psi}}{\sigma_{c\bar{c}}}$$

in A+A to that in p+p collisions.

The medium effect on $c\bar{c}$ pairs binding can be determined by comparing the ratio:

$$P(c\bar{c} \to J/\psi) \equiv \frac{\langle J/\psi \rangle}{\langle c\bar{c} \rangle} \equiv \frac{\sigma_{J/\psi}}{\sigma_{c\bar{c}}}$$

in A+A to that in p+p collisions. For this purpose, the measurement of open charm in A+A is needed(!).

Hadron	Mass [MeV]	Channel decay	$c\tau$ [μ m]	Branching ratios [%]
D^0	1864.83 ± 0.05	$\pi^+ + K^-$	122.9	3.950 ± 0.031
\bar{D}^0	1864.83 ± 0.05	$\pi^- + K^+$	122.9	3.950 ± 0.031
D+	1869.65 ± 0.05	$\pi^{+} + \pi^{+} + K^{-}$	311.8	9.38 ± 0.16
D-	1869.65 ± 0.05	$\pi^{-} + \pi^{-} + K^{+}$	311.8	8.22 ± 0.28
D_S^+	1968.34 ± 0.07	$\pi^{+} + K^{-} + K^{+}$	151.2	5.39 ± 0.15
Λ_c	2286.46 ± 0.14	$p + \pi^+ + K^-$	60.7	6.28 ± 0.32

The medium effect on $c\bar{c}$ pairs binding can be determined by comparing the ratio:

$$P(c\bar{c} \to J/\psi) \equiv \frac{\langle J/\psi \rangle}{\langle c\bar{c} \rangle} \equiv \frac{\sigma_{J/\psi}}{\sigma_{c\bar{c}}}$$

in A+A to that in p+p collisions. For this purpose, the measurement of open charm in A+A is needed(!).

Hadron	Mass [MeV]	Channel decay	$c\tau$ [μ m]	Branching ratios [%]
D^0	1864.83 ± 0.05	$\pi^+ + K^-$	122.9	3.950 ± 0.031
\bar{D}^0	1864.83 ± 0.05	$\pi^- + K^+$	122.9	3.950 ± 0.031
D ⁺	1869.65 ± 0.05	$\pi^{+} + \pi^{+} + K^{-}$	311.8	9.38 ± 0.16
D-	1869.65 ± 0.05	$\pi^{-} + \pi^{-} + K^{+}$	311.8	8.22 ± 0.28
D_S^+	1968.34 ± 0.07	$\pi^{+} + K^{-} + K^{+}$	151.2	5.39 ± 0.15
Λ_c	2286.46 ± 0.14	$p + \pi^+ + K^-$	60.7	6.28 ± 0.32

SAVD - Small Acceptance Vertex Detector

Jagiellonian University, VD group

The concept of measuring the charm hadron (D^0) using a Vertex Detector

- The D⁰ lifetime \sim 410 fs in CM ($c\tau \approx 123 \ \mu$ m).
- The reconstruction of the D^0 meson is possible based on the decay particles. The most interesting is the two-body decay:

$$D^0 \rightarrow K^+ + \pi^-, \qquad \overline{D}^0 \rightarrow K^- + \pi^+$$

In experiments with a fixed target, thanks to Lorentz time dilation (typical value $\gamma \approx 10$), the average • distance traveled by the D⁰ meson will be:

$$c\tau \cdot \gamma > 1 \text{ mm}$$

• The reconstruction of D^0 mesons is achieved by reconstructing its decay point (secondary vertex) relative to the point of primary interaction (primary vertex). For this, the Vertex Detector is needed $\bigcirc \bigcirc \bigcirc \bigcirc$

M. Bajda

Jagiellonian University, VD group

SAVD - Small Acceptance Vertex Detector

The detector configuration

The SAVD consists of two arms (Jura and Saleve). Each of the arms has 4 stations located respectively 5, 10, 15, and 20 cm downstream of the target. On each arm are located MIMOSA-26AHR Monolithic Active Pixel Sensors (MAPS) pixel detectors based on CMOS (Complementary Metal-Oxide-Semiconductors) technology.

M. Bajda

Jagiellonian University, VD group

Data (Xe+La 150A GeV/c)¹

 0.11 ± 0.04 AMPT(b) + PHSD(s) 0.12 ± 0.05 EPOS(b) + PHSD(s)

Predictions (Xe+La 150A GeV/c)¹ 0.042 (PHSD) 0.19 (NA60, dynamical scaling) 0.25 (NA60, statistical scaling) 3.9 (SMES)

The measurement result of the D meson (SAVD)

Invariant mass distribution² for all combinations of particles with opposite charge, assuming that one of these particles is K and the other π . Data collected for the Xe+La collision with a beam momentum of 150 GeV/c performed in 2017 and refer to 1.86 million collisions with a centrality of 0-20%.

 $^{^1{\}rm A.}$ Merzlaya, I. C. Arsene, Status of the K 0s and D 0 analysis using SAVD, NA61/SHINE Collaboration Meeting at CERN, 12-16.09.2023

²A. Aduszkiewicz, M. Bajda, M. Baszczyk, et all. A high-resolution pixel silicon Vertex Detector for open charm measurements with the NA61/SHINE spectrometer at the CERN SPS. Eur. Phys. J. C 83, 471 (2023), ~

Upgraded Vertex Detector

Jagiellonian University, VD group

포⊁ 포

The main improvements

During the Long Shutdown 2 (LS2) at CERN the detection system of the NA61/SHINE experiment was significantly $upgraded^{1}$.

- Replacement of TPC (Time Projection Chamber) readout electronics to increase the speed of data readout and reduce the noise.
- Exchange of the Vertex Detector (VD) configuration by employing ALPIDE silicon sensors to i.a. increase geometrical acceptance.

¹A. Rybicki and A. D. Marino, *Report from the NA61/SHINE experiment at the CERN SPS*, SPS and PS Experiments Committee, Technical report, CERN, Geneva, 2022,

Jagiellonian University, VD group

Working on upgrade

Data reconstruction

Jagiellonian University, VD group

æ

¹P. Podlaski, P. Staszel, *Hunting for charm with lead and SHINE*, Newsletter of the EP department, https://ep-news.web.cern.ch/content/hunting-charm-lead-and-shine

Jagiellonian University, VD group

Reconstruction of the primary vertex

Jagiellonian University, VD group

26 / 29

æ

M. Bajda

Jagiellonian University, VD group

Jagiellonian University, VD group

28 / 29

æ

Thank you for attention!

< 注→ 注