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Motivation



QGP evolution starts far from equilibrium

* Characteristics of heavy-ion collisions:

Speed ~ 1| fast

initial stage QGP hadronic freezeout

Energy ~ 10 — 10* GeV high

Collision time ~ 0.01 — 1 fm short | '

Size ~ 10 fm small

Particles ~ 10 — 10* few History of the little bang



QGP is well described by hydrodynamics

* Flow collectivity manifests QGP as a nearly perfect fluid.
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e And even more:
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Hydrodynamics is believed to be
applicable near equilibrium
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Hydrodynamic attractor

o Attractor plays an important role to explain the success of hydrodynamics
even far from equilibrium.

rBRSSS Boltzmann AdS/CFT

Td.In€

The onset of Initial information

0" order hydro = =

hydrodynamization g Order hydro - = - - numerical largely suppressed

order hydro

starts at very early time at later time

 Does attractor wash out everything”? Does attractor exist with less symmetries”?
Can we understand it better analytically?
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Attractors



Fluids In equilibrium: Euler equation

» Stress tensor is homogeneous in LRF.
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* Euler equation:

%T(’“(‘)’;:O — O,y =V-Jolyl where w=(nen,..)

Conserved quantities evolve via advection & expansion.



Fluids near equilibrium: NS-like equations

e Stress tensor approximated by gradient expansion.
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NB: there are infinite many equilibrium proxies
for a non-equilibrium state.

 Navier-Stokes(NS)-like (e.g., Burnett, BRSSS, etc.) equations:
,I" =0 = Jdywy=V-Jly, Vy, ...] where y=(nen,...)

Conserved quantities evolve via advection & expansion, as well as dissipation & diffusion.



Fluids far from equilibrium: MIS-like equations

» Stress tensor involves non-hydrodynamic DOFs for UV completion.
E.g., 0+1D boost-invariant conformal fluids:

€ ) pr=p+ap=p—mnl2,
T
T 7}”6’5 + a4+ ... = D7 pL:p+JZ':77
PL NB: z, vanishes in equilibrium

 Muller-Israel-Stewart(MIS)-like (e.g., Maxwell-Cattaneo, DNMR, BDNK etc.) equations:

0,I"=0 = (10, +De+p+n = coupled 1st order ODEs
4t
MIS 70 +1+—
37
h =3p=C,T" —4CCT3 =CT .
where e = 3p = C, N =7CGT .,
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Hydrodynamic attractors

* |n terms of w = 7T, equation for pressure anisotropy A(w) = (P, — P,)/P decouples:

A(w) 1 , 3
C.|1+ > wA'(w) + ECTA(W) + EWA(W) —12C, =0

decoupled 1st order ODE

with asymptotic solutions

A(w)=%(l+@(w)) + 6\/C,7/CT+@(W), w— 0

longitudinal expansion dominates + early time attractor

w="TT

Heller et al, 1503.07514; Jankowski et al, 2303.09414
C

8C;7 2CT 3w N
A(w) = (1 + + @(W_Z)) +Ce Cws (1 + @(w_l)) + ..., W—> 00

W 3w

hydrodynamic attractor + non-hydrodynamic (transseries) modes.
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Alternative formulation of attractors

* In the presence of additional scales other than 7, ris more convenient as

dynamic variable than w = =T.
A(7)

t1T'(7) + T(T)(% ~ g ) =0

two coupled 1st order ODEs
(one 2nd order ODE)

2
C.tA'(t) + ECTA(T)z + 7T(1)A(z) — 8C, = 0

o System of n coupled linear ODEs — one nth order ODE:

1f N2 2 C'
Ty 4 oD (2 + TTC(T) ) Py 4 07 4 (1 _ —”) T(r) = 0

1(7) 3 3C., 97 C,

T

similar equation can be obtained for A(7)
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Early-time attractor

° Early-time attractor solutions: u: integration constant; a = \/Cﬂ/CT

T(@) ~ p(ur) 5 [ 1+ ) 6,0 |, A@) ~6a| 1+ ) a,(ur)i

Generic solutions rapidly approach the attractor surface in phase space
(zT", T, r) at early time.
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Later-time attractor

o Later-time asymptotic solutions

T(t) ~ A(Af)é(l + ) tn(Af)%n> + Co(Ar) 30 73097 (1 4 O((Ar)23)) + ...

n=1

A(7) ~ 8C,7(AT)§(1 + ) an(Af)%n> + CL (A TN (14 0((A)23)) + ...

n=1

hydrodynamic attractor + non-hydrodynamic (transseries) modes.

A, C_: independent integration constant

The suppression is mild since the typical r ~ 10 fm in HIC is not large.
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Perturbations



Linearized modes

* Linearization of MIS theory around the attractor for 6 independent fields:
(5T, 59, 560, 57[11, 571'22, 57[12)(7, X)

The translation invariance symmetry

where 660 = 0,6u; and éw = Gijaiéuj’ L= 1,2, In fransverse plane is broken.

* The dynamic system Is reduced to a set of linear 2nd order ODEs for
d(t,x) = (0T, 00, bw)(t,X) —> (1, K) = (6T, 60, 6aw) = (6T/T, 60/k, dw/!k) (7, K):
$"(,K) + Py(z, K)§'(z, K) + Py(7, K)h(z, k) = 0
where P,, P, are block-diagonal-matrix coefficients.

NB: the 2nd order ODE for 6& decouples from that for 57 and 56,
the latter can also be converted to a single 4th order ODE.

The transverse structure of initial states can be
encoded In finite set of Fourier modes.
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Transverse scale dependence

 Tomography in 2D transverse plane.
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o Strong damping of large k modes and off-attractor perturbations.

§T(r, k) for different k = ky (fm‘l), start on attractor 6T (r, k) for different ky=k, (fm™1), start off attractor
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Observables



Late-time asymptotics

o Late-time asymptotic solutions perturbed around attractor:

A _ 3 (A2 3 (A7) 3a% (A )23 | |
5T = C(A0y e T 4 CyAgyae a4 TR €y e 4 ¢y eV

A 3 2/3 302 2/3 , ,
50 = C/(AD)" L e &M 4 CAD) =T e G 4 e RGN (Cg V31 4 e—%m)

. - A 4
P (s (Cs piake | C. e—iakf) NB: the solutions for o7;; = om;;/T™ can be
determined accordingly from &7, 560 and 6.

y = \/1 +a’; A, Ci, ..., Cs: iIndependent integration constants

* The attractor Is stable against transverse dynamics, and note again that
the suppression is mild since the typical r ~ 10 fm in HIC is not large.
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Observables

. Physical observables can be extracted from the asymptotic data of
(8T, 80, 50, or;;) determined by (Cy, ..., Gy).

e Linearized Cooper-Frye freezeout formula:

particle distribution with different 6T peak(Tz)
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Other observables (such as momentum anisotropy A, ~ v, )...

<T11 o T22>J_ 9<57%11 _ 57%22>J_

— See XA and Spalinski, to appear for more details

(T11 + Ty) . 2C,(3+A)

T =
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Conclusion



Recap

* [ransverse dynamics can be described by perturbations around the attractor
background.

 The problem reduces to a set of linear ODEs which can be analyzed semi-
analytically.

 Physics is captured by finite asymptotic data, mostly exponentially suppressed.

Outlook

o Systems with lesser symmetries.
* Implementation with jets or noises.

e More...
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