Perturbations of Hydrodynamic Attractors

Based on work with M. Spalinski
Sep 21 2023, Zakopane, Tatra Mountains, Poland

Motivation

QGP evolution starts far from equilibrium

- Characteristics of heavy-ion collisions:
Speed $\sim 1 \quad$ fast
Energy $\sim 10-10^{4} \mathrm{GeV} \quad$ high
Collision time $\sim 0.01-1 \mathrm{fm} \quad$ short
Size $\sim 10 \mathrm{fm} \quad$ small
Particles $\sim 10^{2}-10^{4} \quad$ few

History of the little bang

QGP is well described by hydrodynamics

- Flow collectivity manifests QGP as a nearly perfect fluid.

Hydrodynamics is believed to be applicable near equilibrium

Gale et al, 1301.5893

- And even more:

5-particle
hydrodynamics
Brandstetter et al, 2308.09699

Density distribution in position space

Hydrodynamic attractor

- Attractor plays an important role to explain the success of hydrodynamics even far from equilibrium.

The onset of hydrodynamization starts at very early time

Boltzmann
AdS/CFT

Initial information largely suppressed at later time

Florkowski et al, 1707.02282, Romatschke, 1712.05815

- Does attractor wash out everything? Does attractor exist with less symmetries? Can we understand it better analytically?

Attractors

Fluids in equilibrium: Euler equation

- Stress tensor is homogeneous in LRF.

$$
T_{(0) \mathrm{LRF}}^{\mu \nu}=\left(\begin{array}{llll}
\varepsilon & & & \\
& p & & \\
& & p & \\
& & & p
\end{array}\right) \stackrel{\text { boost }}{ } \quad T_{(0)}^{\mu \nu}=\varepsilon u^{\mu} u^{\nu}+p \Delta^{\mu \nu}
$$

- Euler equation:

$$
\partial_{\mu} T_{(0)}^{\mu \nu}=0 \quad \Longrightarrow \quad \partial_{t} \psi=\nabla \cdot J_{(0)}[\psi] \quad \text { where } \quad \psi=(\mathrm{n}, \varepsilon, \pi, \ldots)
$$

Conserved quantities evolve via advection \& expansion.

Fluids near equilibrium: NS-like equations

- Stress tensor approximated by gradient expansion.

$$
\begin{gathered}
T^{\mu \nu}=T_{(0)}^{\mu \nu}+T_{(1)}^{\mu \nu}+\ldots \\
T_{(1)}^{\mu \nu}=-2 \eta \sigma^{\mu \nu}, \quad \sigma^{\mu \nu}=\frac{1}{2} \Delta^{\mu \alpha} \Delta^{\nu \beta}\left(\partial_{\alpha} u_{\beta}+\partial_{\beta} u_{\alpha}\right)-\frac{1}{3} \partial \cdot u \Delta^{\mu \nu}
\end{gathered}
$$

NB: there are infinite many equilibrium proxies for a non-equilibrium state.

- Navier-Stokes(NS)-like (e.g., Burnett, BRSss, etc.) equations:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad \Longrightarrow \quad \partial_{t} \psi=\nabla \cdot J[\psi, \nabla \psi, \ldots] \quad \text { where } \quad \psi=(\mathrm{n}, \varepsilon, \pi, \ldots)
$$

Conserved quantities evolve via advection \& expansion, as well as dissipation \& diffusion.

Fluids far from equilibrium: MIS-like equations

- Stress tensor involves non-hydrodynamic DOFs for UV completion. E.g., 0+1D boost-invariant conformal fluids:

$$
T^{\mu \nu}=T_{(0)}^{\mu \nu}+\pi^{\mu \nu}+\ldots=\left(\begin{array}{llll}
\varepsilon & & & \\
& p_{T} & & \\
& & p_{T} & \\
& & p_{L}
\end{array}\right) \quad \begin{aligned}
& p_{T}=p+\pi_{T}=p-\pi_{\eta}^{\eta} / 2 \\
& \\
& \\
& \\
& p_{L}=p+\pi_{\eta}^{\eta} \\
& \\
& \text { NB: } \pi_{\eta}^{\eta} \text { vanishes in equilibrium }
\end{aligned}
$$

- Muller-Israel-Stewart(MIS)-like (e.g., Maxwell-Cattaneo, DNMR, BDNK etc.) equations:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad \Longrightarrow \quad\left(\tau \partial_{\tau}+1\right) \varepsilon+p+\pi_{\eta}^{\eta}=0 \quad \text { coupled 1st order ODEs }
$$

MIS

$$
\left(\tau_{\pi} \partial_{\tau}+1+\frac{4 \tau_{\pi}}{3 \tau}\right) \pi_{\eta}^{\eta}+\frac{4 \eta}{3 \tau}=0
$$

where $\varepsilon=3 p=C_{e} T^{4}, \eta=\frac{4}{3} C_{e} C_{\eta} T^{3}, \tau_{\pi}=C_{\tau} T^{-1}$.

Hydrodynamic attractors

- In terms of $w=\tau T$, equation for pressure anisotropy $A(w) \equiv\left(P_{T}-P_{L}\right) / P$ decouples:

$$
C_{\tau}\left(1+\frac{A(w)}{12}\right) w A^{\prime}(w)+\frac{1}{3} C_{\tau} A(w)^{2}+\frac{3}{2} w A(w)-12 C_{\eta}=0
$$

decoupled 1st order ODE
with asymptotic solutions

$$
A(w)=\frac{C_{0}}{w^{4}}(1+\mathscr{O}(w))+6 \sqrt{C_{\eta} / C_{\tau}}+\mathcal{O}(w), \quad w \rightarrow 0
$$

longitudinal expansion dominates + early time attractor

Heller et al, 1503.07514; Jankowski et al, 2303.09414

$$
A(w)=\frac{8 C_{\eta}}{w}\left(1+\frac{2 C_{\tau}}{3 w}+\mathcal{O}\left(w^{-2}\right)\right)+C_{\infty} e^{\left.-\frac{3 w}{2 C_{\tau}} w^{\frac{C_{\eta}}{C_{\tau}}}\left(1+\mathcal{O}\left(w^{-1}\right)\right)+\ldots, \quad w \rightarrow \infty, \infty\right) .}
$$

hydrodynamic attractor + non-hydrodynamic (transseries) modes.

Alternative formulation of attractors

- In the presence of additional scales other than T, τ is more convenient as dynamic variable than $w=\tau T$.
two coupled 1st order ODEs

$$
\tau T^{\prime}(\tau)+T(\tau)\left(\frac{1}{3}-\frac{A(\tau)}{18}\right)=0
$$

(one 2nd order ODE)

$$
C_{\tau} \tau A^{\prime}(\tau)+\frac{2}{9} C_{\tau} A(\tau)^{2}+\tau T(\tau) A(\tau)-8 C_{\eta}=0
$$

- System of n coupled linear ODEs \longrightarrow one nth order ODE:

$$
\tau T^{\prime \prime}(\tau)+\frac{3 \tau T^{\prime}(\tau)^{2}}{T(\tau)}+\left(\frac{11}{3}+\frac{\tau T(\tau)}{C_{\tau}}\right) T^{\prime}(\tau)+\frac{T(\tau)^{2}}{3 C_{\tau}}+\frac{4}{9 \tau}\left(1-\frac{C_{\eta}}{C_{\tau}}\right) T(\tau)=0
$$

Early-time attractor

- Early-time attractor solutions: μ : integration constant; $\alpha=\sqrt{C_{\eta} / C_{\tau}}$

$$
T(\tau) \sim \mu(\mu \tau)^{-\frac{1-\alpha}{3}}\left(1+\sum_{n=1}^{\infty} t_{n}(\mu \tau)^{\frac{n}{3}(2+\alpha)}\right), \quad A(\tau) \sim 6 \alpha\left(1+\sum_{n=1}^{\infty} a_{n}(\mu \tau)^{\frac{n}{3}(2+\alpha)}\right)
$$

- Generic solutions rapidly approach the attractor surface in phase space $\left(\tau T^{\prime}, T, \tau\right)$ at early time.

snapshot of $\left(\tau T^{\prime}, T\right)$ plane at different τ

Later-time attractor

- Later-time asymptotic solutions

$$
\begin{aligned}
& T(\tau) \sim \Lambda(\Lambda \tau)^{-\frac{1}{3}}\left(1+\sum_{n=1}^{\infty} t_{n}(\Lambda \tau)^{-\frac{2}{3} n}\right)+C_{\infty}(\Lambda \tau)^{-\frac{2}{3}\left(1-\alpha^{2}\right)} e^{-\frac{3}{2 C_{\tau}}(\Lambda \tau)^{2 / 3}}\left(1+\circlearrowleft\left((\Lambda \tau)^{-2 / 3}\right)\right)+\ldots \\
& A(\tau) \sim 8 C_{\eta}(\Lambda \tau)^{-\frac{2}{3}}\left(1+\sum_{n=1}^{\infty} a_{n}(\Lambda \tau)^{-\frac{2}{3} n}\right)+C_{\infty}^{\prime}(\Lambda \tau)^{-\frac{1}{3}+\alpha^{2}} e^{-\frac{3}{2 C_{\tau}}(\Lambda \tau)^{2 / 3}}\left(1+\circlearrowleft\left((\Lambda \tau)^{-2 / 3}\right)\right)+\ldots
\end{aligned}
$$

hydrodynamic attractor + non-hydrodynamic (transseries) modes.
Λ, C_{∞} : independent integration constant
The suppression is mild since the typical $\tau \sim 10 \mathrm{fm}$ in HIC is not large.

Perturbations

Linearized modes

- Linearization of MIS theory around the attractor for 6 independent fields:

$$
\left(\delta T, \delta \theta, \delta \omega, \delta \pi_{11}, \delta \pi_{22}, \delta \pi_{12}\right)(\tau, \mathbf{x})
$$

where $\delta \theta \equiv \partial_{i} \delta u_{i}$ and $\delta \omega \equiv \epsilon_{i j} \partial_{i} \delta u_{j}, i=1,2$.
The translation invariance symmetry in transverse plane is broken.

- The dynamic system is reduced to a set of linear 2nd order ODEs for $\phi(\tau, \mathbf{x})=(\delta T, \delta \theta, \delta \omega)(\tau, \mathbf{x}) \longrightarrow \hat{\phi}(\tau, \mathbf{k})=(\delta \hat{T}, \delta \hat{\theta}, \delta \hat{\omega}) \equiv(\delta T / T, \delta \theta / k, \delta \omega / k)(\tau, \mathbf{k}):$

$$
\hat{\phi}^{\prime \prime}(\tau, \mathbf{k})+P_{1}(\tau, \mathbf{k}) \hat{\phi}^{\prime}(\tau, \mathbf{k})+P_{0}(\tau, \mathbf{k}) \hat{\phi}(\tau, \mathbf{k})=0
$$

where P_{1}, P_{0} are block-diagonal-matrix coefficients.

> NB: the 2nd order ODE for $\delta \hat{\omega}$ decouples from that for $\delta \hat{T}$ and $\delta \hat{\theta}$, the latter can also be converted to a single 4th order ODE.

The transverse structure of initial states can be encoded in finite set of Fourier modes.

Transverse scale dependence

- Tomography in 2D transverse plane.

- Strong damping of large k modes and off-attractor perturbations.

Observables

Late-time asymptotics

- Late-time asymptotic solutions perturbed around attractor:

$$
\begin{aligned}
& \delta \hat{T}=C_{1}(\Lambda \tau)^{a_{1}} e^{-\frac{3}{2 C_{\tau}}(\Lambda \tau)^{2 / 3}}+C_{2}(\Lambda \tau)^{a_{2}} e^{-\frac{3}{2 \gamma^{2} c_{\tau}}(\Lambda \tau)^{2 / 3}}+e^{-\frac{3 \alpha^{2}}{\gamma^{2} C_{\tau}}(\Lambda \tau)^{2 / 3}}\left(C_{3} e^{i \sqrt{3} \gamma k \tau}+C_{4} e^{-i \sqrt{3} \gamma k \tau}\right) \\
& \delta \hat{\theta}=C_{1}^{\prime}(\Lambda \tau)^{a_{1}-1} e^{-\frac{3}{2 C_{\tau}}(\Lambda \tau)^{2 / 3}}+C_{2}^{\prime}(\Lambda \tau)^{a_{2}-\frac{1}{3}} e^{-\frac{3}{2 \gamma^{2} C_{\tau}}(\Lambda \tau)^{2 / 3}}+e^{-\frac{3 \alpha^{2}}{r^{2} C_{\tau}}(\Lambda \tau)^{2 / 3}}\left(C_{3}^{\prime} e^{i \sqrt{3} \gamma k \tau}+C_{4}^{\prime} e^{-i \sqrt{3} \gamma k \tau}\right) \\
& \delta \hat{\omega}=e^{-\frac{3}{4 C_{\tau}}(\Lambda \tau)^{2 / 3}}\left(C_{5} e^{i \alpha k \tau}+C_{6} e^{-i \alpha k \tau}\right) \quad \text { NB: the solutions for } \delta \hat{\pi}_{i j} \equiv \delta \pi_{i j} / T^{4} \text { can be } \\
& \gamma=\sqrt{1+\alpha^{2}} ; \quad \Lambda, C_{1}, \ldots, C_{6}: \text { independent integration constants }
\end{aligned}
$$

- The attractor is stable against transverse dynamics, and note again that the suppression is mild since the typical $\tau \sim 10 \mathrm{fm}$ in HIC is not large.

Observables

- Physical observables can be extracted from the asymptotic data of $\left(\delta \hat{T}, \delta \hat{\theta}, \delta \hat{\omega}, \delta \hat{\pi}_{i j}\right)$ determined by (C_{1}, \ldots, C_{6}).
- Linearized Cooper-Frye freezeout formula:

$$
\begin{aligned}
& \frac{d \Delta N / d^{2} \mathbf{p}_{\perp}}{d N / d^{2} \mathbf{p}_{\perp}}=\left(1+\hat{m}_{\perp} \frac{K_{0}\left(\hat{m}_{\perp}\right)}{K_{1}\left(\hat{m}_{\perp}\right)}\right)\langle\delta \hat{T}\rangle_{\perp}+\hat{\mathbf{p}}_{\perp} \cdot \underset{\|}{\langle\delta \mathbf{u}\rangle_{\perp}} \\
& \delta \mathbf{u}(\delta \hat{\theta}, \delta \hat{\omega}) \\
& \hat{m}_{\perp}=\frac{\sqrt{m^{2}+\mathbf{p}_{\perp}^{2}}}{T}, \quad \hat{\mathbf{p}}_{\perp}=\frac{\mathbf{p}_{\perp}}{T}, \quad K_{n}: \text { Bessel function }
\end{aligned}
$$

- Other observables (such as momentum anisotropy $A_{T} \sim v_{2}$)...

$$
A_{T} \equiv \frac{\left\langle T_{11}-T_{22}\right\rangle_{\perp}}{\left\langle T_{11}+T_{22}\right\rangle_{\perp}}=\frac{9\left\langle\delta \hat{\pi}_{11}-\delta \hat{\pi}_{22}\right\rangle_{\perp}}{2 C_{e}(3+A)}
$$

Conclusion

Recap

- Transverse dynamics can be described by perturbations around the attractor background.
- The problem reduces to a set of linear ODEs which can be analyzed semianalytically.
- Physics is captured by finite asymptotic data, mostly exponentially suppressed.

Outlook

- Systems with lesser symmetries.
- Implementation with jets or noises.
- More...

