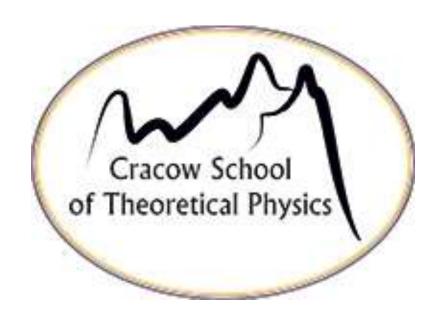
Perturbations of Hydrodynamic Attractors

Xin An



Based on work with M. Spalinski

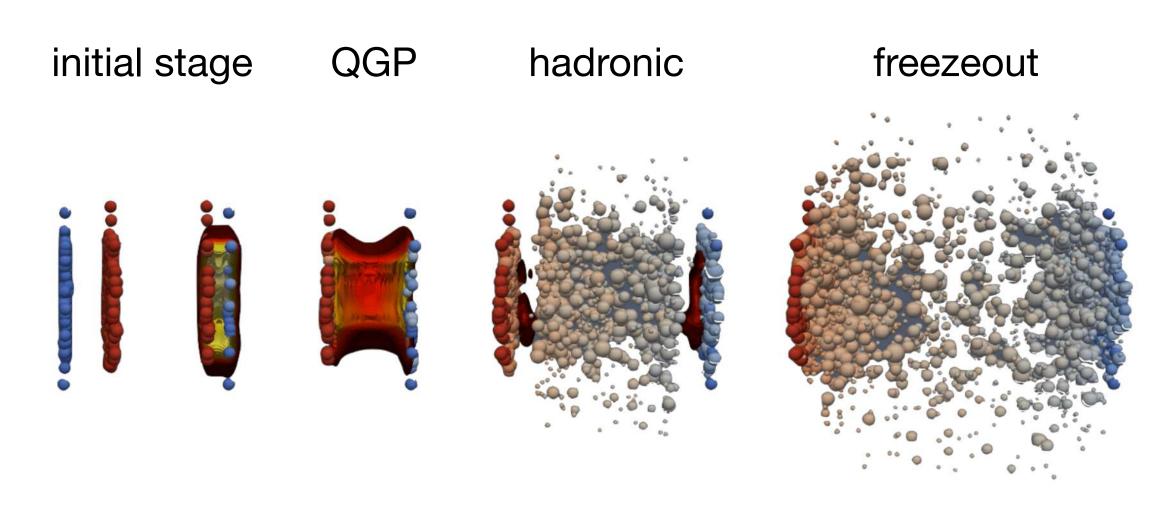
Sep 21 2023, Zakopane, Tatra Mountains, Poland

Motivation

QGP evolution starts far from equilibrium

Characteristics of heavy-ion collisions:

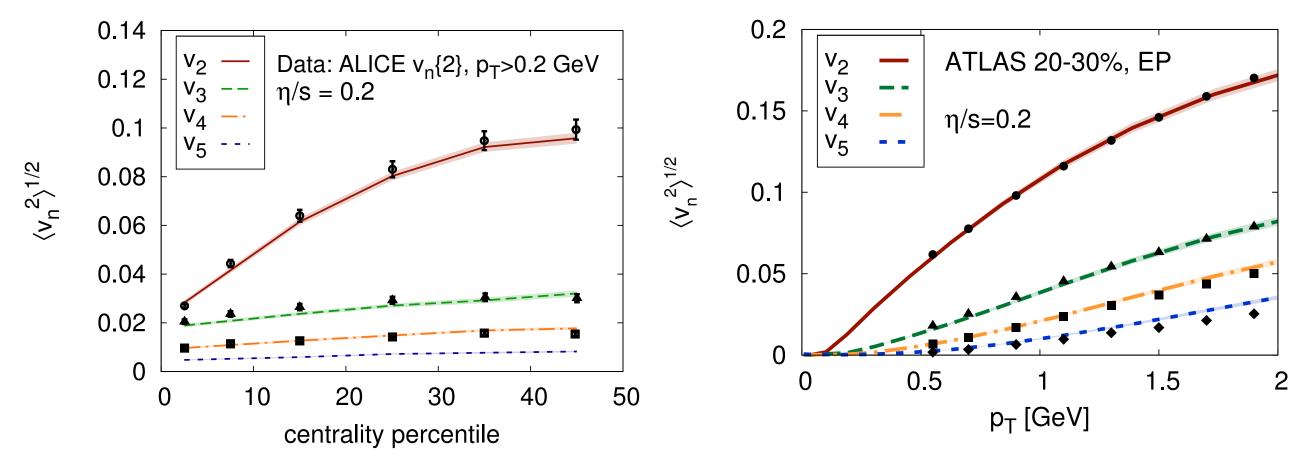
Speed
$$\sim 1$$
 fast
Energy $\sim 10-10^4\,\mathrm{GeV}$ high
Collision time $\sim 0.01-1\,\mathrm{fm}$ short
Size $\sim 10\,\mathrm{fm}$ small
Particles $\sim 10^2-10^4$ few



QGP is well described by hydrodynamics

• Flow collectivity manifests QGP as a nearly perfect fluid.

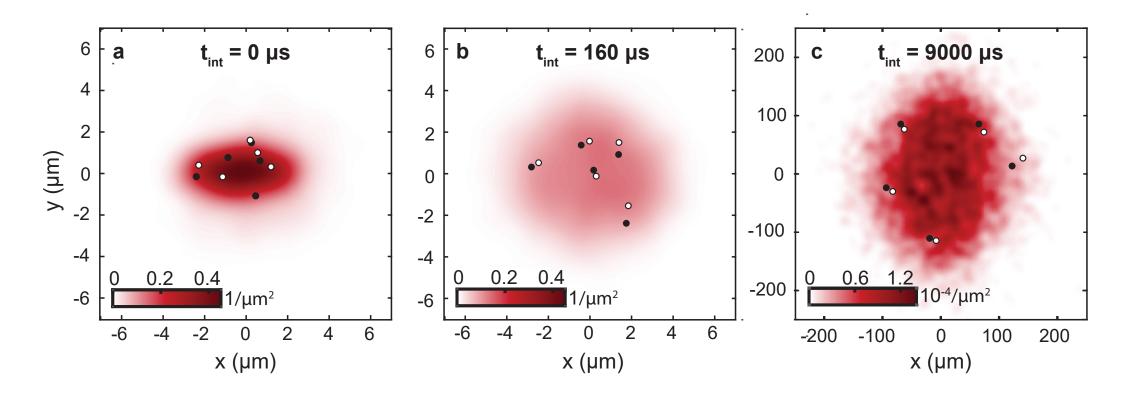
Static fluid & static



Hydrodynamics is believed to be applicable near equilibrium

Gale et al, 1301.5893

And even more:



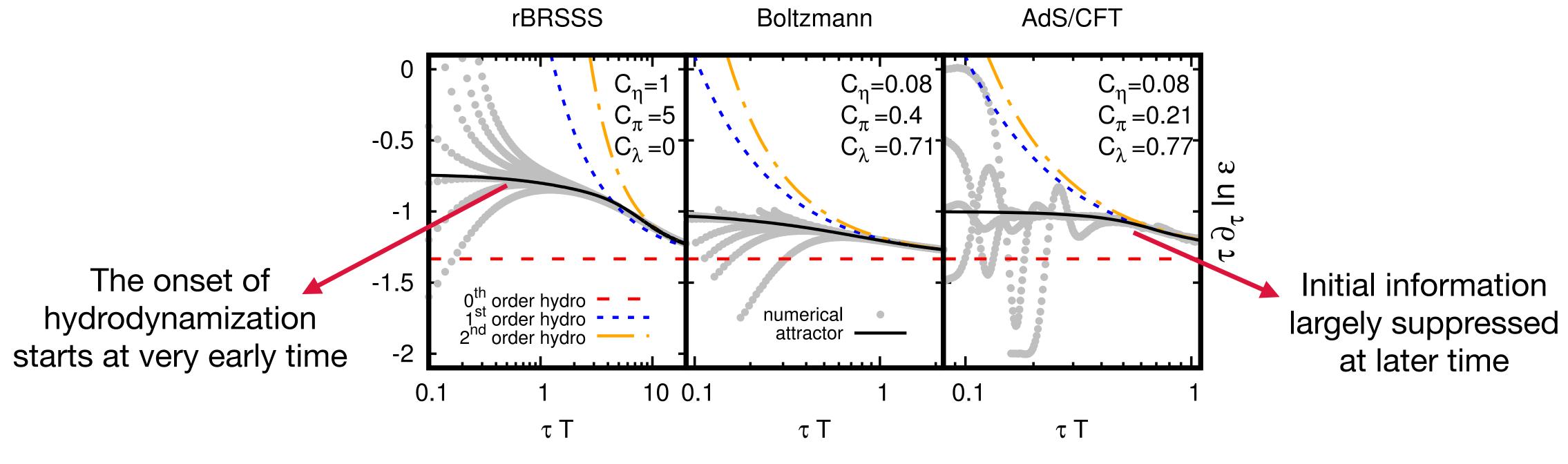
Density distribution in position space

5-particle hydrodynamics

Brandstetter et al, 2308.09699

Hydrodynamic attractor

• Attractor plays an important role to explain the success of hydrodynamics even far from equilibrium.



Florkowski et al, 1707.02282, Romatschke, 1712.05815

Does attractor wash out everything? Does attractor exist with less symmetries?
 Can we understand it better analytically?

Attractors

Fluids in equilibrium: Euler equation

Stress tensor is homogeneous in LRF.

$$T^{\mu\nu}_{(0)\text{LRF}} = \begin{pmatrix} \varepsilon & & \\ & p & \\ & & p \end{pmatrix} \quad \xrightarrow{\text{boost}} \quad T^{\mu\nu}_{(0)} = \varepsilon u^{\mu} u^{\nu} + p \Delta^{\mu\nu}$$

Euler equation:

$$\partial_{\mu} T^{\mu\nu}_{(0)} = 0 \implies \partial_{t} \psi = \nabla \cdot J_{(0)} [\psi] \text{ where } \psi = (n, \varepsilon, \pi, ...)$$

Conserved quantities evolve via advection & expansion.

Fluids near equilibrium: NS-like equations

• Stress tensor approximated by gradient expansion.

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + \dots$$

$$T^{\mu\nu}_{(1)} = -2\eta\sigma^{\mu\nu}, \quad \sigma^{\mu\nu} = \frac{1}{2}\Delta^{\mu\alpha}\Delta^{\nu\beta}(\partial_{\alpha}u_{\beta} + \partial_{\beta}u_{\alpha}) - \frac{1}{3}\partial \cdot u\Delta^{\mu\nu}$$
 NB: there are infinite many equilibrium proxies for a non-equilibrium state.

• Navier-Stokes(NS)-like (e.g., Burnett, BRSSS, etc.) equations:

$$\partial_{\mu}T^{\mu\nu} = 0 \implies \partial_{t}\psi = \nabla \cdot J[\psi, \nabla \psi, \ldots] \text{ where } \psi = (n, \varepsilon, \pi, \ldots)$$

Conserved quantities evolve via advection & expansion, as well as dissipation & diffusion.

Fluids far from equilibrium: MIS-like equations

 Stress tensor involves non-hydrodynamic DOFs for UV completion. E.g., 0+1D boost-invariant conformal fluids:

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + \pi^{\mu\nu} + \ldots = \begin{pmatrix} \varepsilon & & & \\ & p_T & & \\ & & p_T \end{pmatrix} \qquad \begin{aligned} p_T &= p + \pi_T = p - \pi_\eta^\eta/2, \\ p_L &= p + \pi_\eta^\eta \\ p_L &= p + \pi_\eta^\eta \end{aligned}$$
 NB: π_η^η vanishes in equilibrium

$$p_T = p + \pi_T = p - \frac{\pi^{\eta}}{2}$$

$$p_L = p + \pi^{\eta}_{\eta}$$

NB: π_n^{η} vanishes in equilibrium

• Muller-Israel-Stewart(MIS)-like (e.g., Maxwell-Cattaneo, DNMR, BDNK etc.) equations:

$$\partial_{\mu}T^{\mu\nu} = 0 \quad \Longrightarrow \quad (\tau\partial_{\tau} + 1)\varepsilon + p + \pi^{\eta}_{\eta} = 0$$

coupled 1st order ODEs

$$\left(\tau_{\pi}\partial_{\tau} + 1 + \frac{4\tau_{\pi}}{3\tau}\right)\pi_{\eta}^{\eta} + \frac{4\eta}{3\tau} = 0$$

where
$$\varepsilon=3p=C_eT^4, \eta=\frac{4}{3}C_eC_\eta T^3, \tau_\pi=C_\tau T^{-1}$$
.

Hydrodynamic attractors

• In terms of $w = \tau T$, equation for pressure anisotropy $A(w) \equiv (P_T - P_L)/P$ decouples:

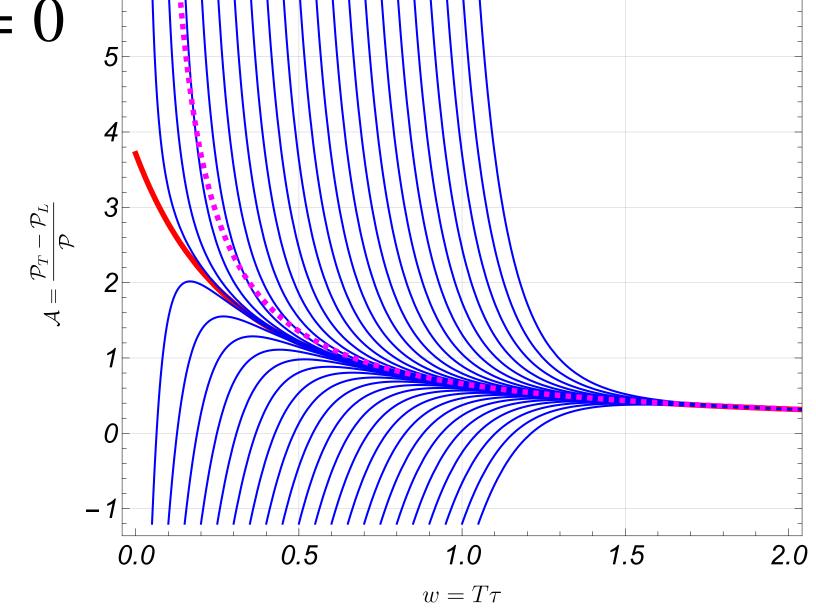
$$C_{\tau} \left(1 + \frac{A(w)}{12} \right) wA'(w) + \frac{1}{3} C_{\tau} A(w)^{2} + \frac{3}{2} wA(w) - 12C_{\eta} = 0$$

decoupled 1st order ODE

with asymptotic solutions

$$A(w) = \frac{C_0}{w^4} \left(1 + \mathcal{O}(w) \right) + 6\sqrt{C_{\eta}/C_{\tau}} + \mathcal{O}(w), \quad w \to 0$$

longitudinal expansion dominates + early time attractor



Heller et al, 1503.07514; Jankowski et al, 2303.09414

$$A(w) = \frac{8C_{\eta}}{w} \left(1 + \frac{2C_{\tau}}{3w} + \mathcal{O}(w^{-2}) \right) + C_{\infty} e^{-\frac{3w}{2C_{\tau}}} w^{\frac{C_{\eta}}{C_{\tau}}} \left(1 + \mathcal{O}(w^{-1}) \right) + \dots, \quad w \to \infty$$

hydrodynamic attractor + non-hydrodynamic (transseries) modes.

Alternative formulation of attractors

• In the presence of additional scales other than T, τ is more convenient as dynamic variable than $w = \tau T$.

two coupled 1st order ODEs (one 2nd order ODE)

$$\tau T'(\tau) + T(\tau) \left(\frac{1}{3} - \frac{A(\tau)}{18} \right) = 0$$

$$C_{\tau} \tau A'(\tau) + \frac{2}{9} C_{\tau} A(\tau)^2 + \tau T(\tau) A(\tau) - 8C_{\eta} = 0$$

• System of n coupled linear ODEs \longrightarrow one nth order ODE:

$$\tau T''(\tau) + \frac{3\tau T'(\tau)^2}{T(\tau)} + \left(\frac{11}{3} + \frac{\tau T(\tau)}{C_{\tau}}\right) T'(\tau) + \frac{T(\tau)^2}{3C_{\tau}} + \frac{4}{9\tau} \left(1 - \frac{C_{\eta}}{C_{\tau}}\right) T(\tau) = 0$$

similar equation can be obtained for $A(\tau)$

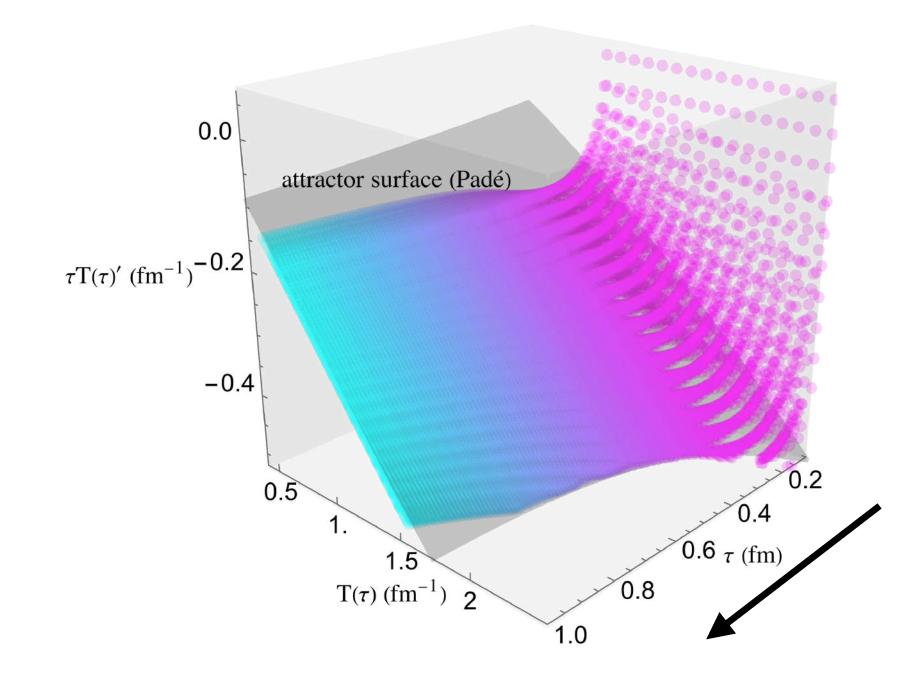
Early-time attractor

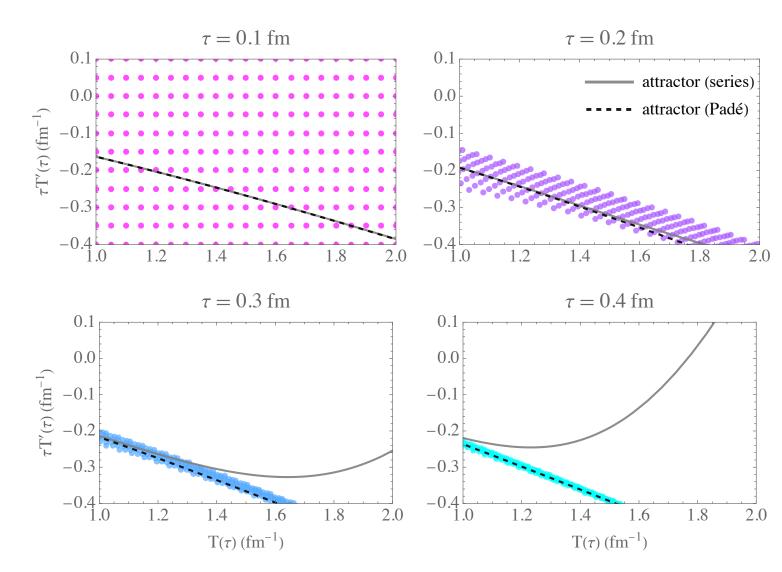
• Early-time attractor solutions:

$$\mu$$
: integration constant; $\alpha = \sqrt{C_{\eta}/C_{\tau}}$

$$T(\tau) \sim \mu(\mu\tau)^{-\frac{1-\alpha}{3}} \left(1 + \sum_{n=1}^{\infty} t_n(\mu\tau)^{\frac{n}{3}(2+\alpha)} \right), \qquad A(\tau) \sim 6\alpha \left(1 + \sum_{n=1}^{\infty} a_n(\mu\tau)^{\frac{n}{3}(2+\alpha)} \right)$$

• Generic solutions rapidly approach the *attractor surface* in phase space $(\tau T', T, \tau)$ at early time.





snapshot of $(\tau T', T)$ plane at different τ

Later-time attractor

Later-time asymptotic solutions

$$T(\tau) \sim \Lambda(\Lambda \tau)^{-\frac{1}{3}} \left(1 + \sum_{n=1}^{\infty} t_n (\Lambda \tau)^{-\frac{2}{3}n} \right) + C_{\infty} (\Lambda \tau)^{-\frac{2}{3}(1-\alpha^2)} e^{-\frac{3}{2C_{\tau}}(\Lambda \tau)^{2/3}} \left(1 + \mathcal{O}((\Lambda \tau)^{-2/3}) \right) + \dots$$

$$A(\tau) \sim 8C_{\eta}(\Lambda \tau)^{-\frac{2}{3}} \left(1 + \sum_{n=1}^{\infty} a_n (\Lambda \tau)^{-\frac{2}{3}n} \right) + C'_{\infty}(\Lambda \tau)^{-\frac{1}{3} + \alpha^2} e^{-\frac{3}{2C_{\tau}}(\Lambda \tau)^{2/3}} \left(1 + \mathcal{O}((\Lambda \tau)^{-2/3}) \right) + \dots$$

hydrodynamic attractor + non-hydrodynamic (transseries) modes.

 Λ, C_{∞} : independent integration constant

The suppression is mild since the typical $\tau \sim 10$ fm in HIC is not large.

Perturbations

Linearized modes

Linearization of MIS theory around the attractor for 6 independent fields:

$$(\delta T, \delta \theta, \delta \omega, \delta \pi_{11}, \delta \pi_{22}, \delta \pi_{12})(\tau, \mathbf{x})$$

where $\delta\theta \equiv \partial_i \delta u_i$ and $\delta\omega \equiv \epsilon_{ij}\partial_i \delta u_j$, i=1,2.

The translation invariance symmetry in transverse plane is broken.

• The dynamic system is reduced to a set of linear 2nd order ODEs for $\phi(\tau, \mathbf{x}) = (\delta T, \delta \theta, \delta \omega)(\tau, \mathbf{x}) \longrightarrow \hat{\phi}(\tau, \mathbf{k}) = (\delta \hat{T}, \delta \hat{\theta}, \delta \hat{\omega}) \equiv (\delta T/T, \delta \theta/k, \delta \omega/k)(\tau, \mathbf{k})$:

$$\hat{\phi}''(\tau, \mathbf{k}) + P_1(\tau, \mathbf{k})\hat{\phi}'(\tau, \mathbf{k}) + P_0(\tau, \mathbf{k})\hat{\phi}(\tau, \mathbf{k}) = 0$$

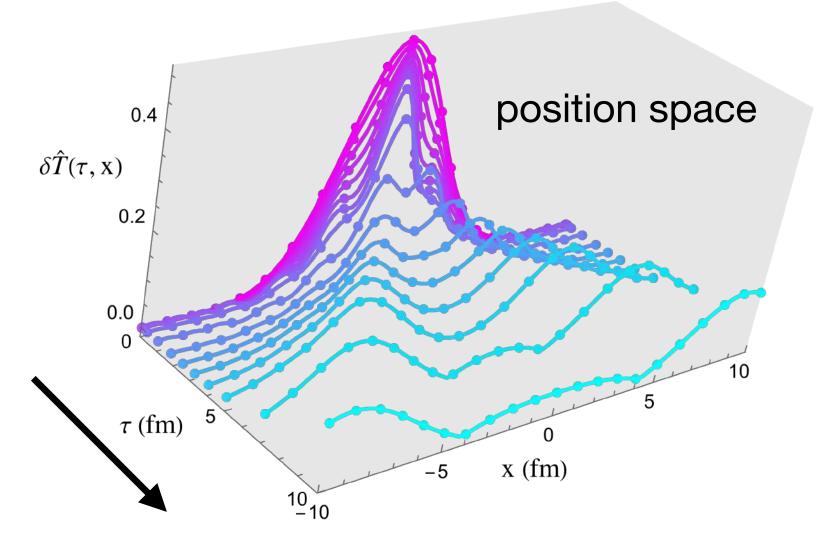
where P_1, P_0 are block-diagonal-matrix coefficients.

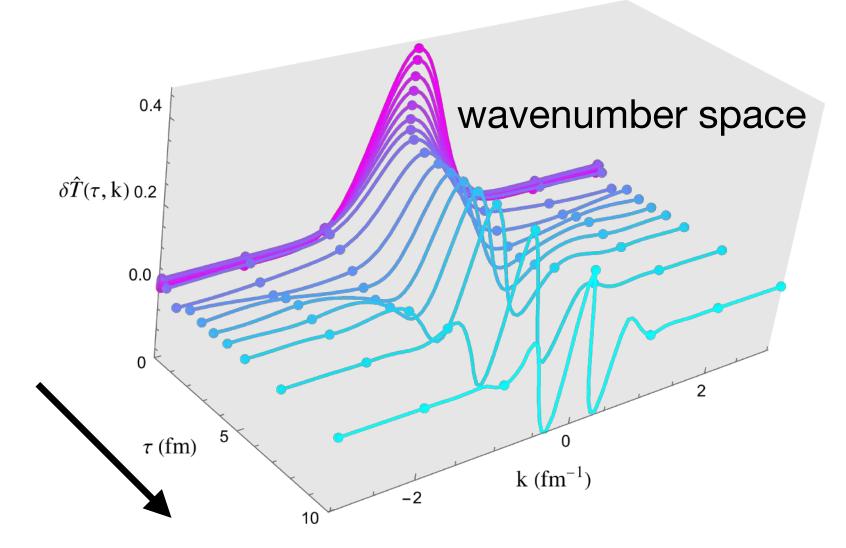
NB: the 2nd order ODE for $\delta\hat{\omega}$ decouples from that for $\delta\hat{T}$ and $\delta\hat{\theta}$, the latter can also be converted to a single 4th order ODE.

The transverse structure of initial states can be encoded in finite set of Fourier modes.

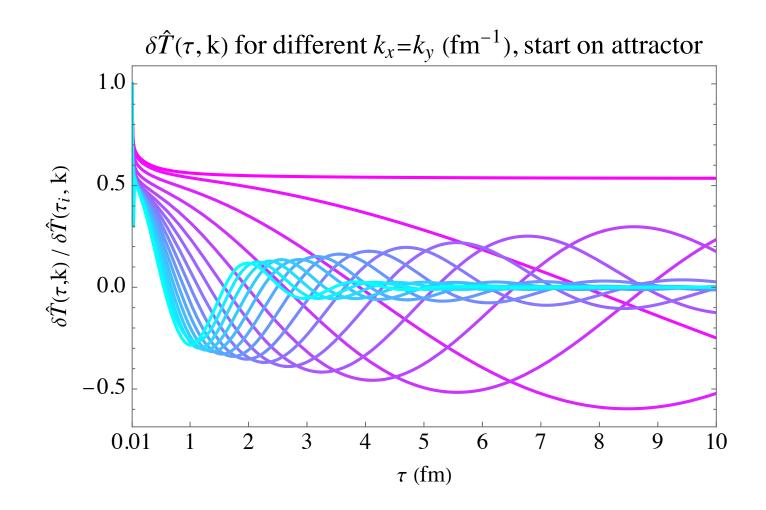
Transverse scale dependence

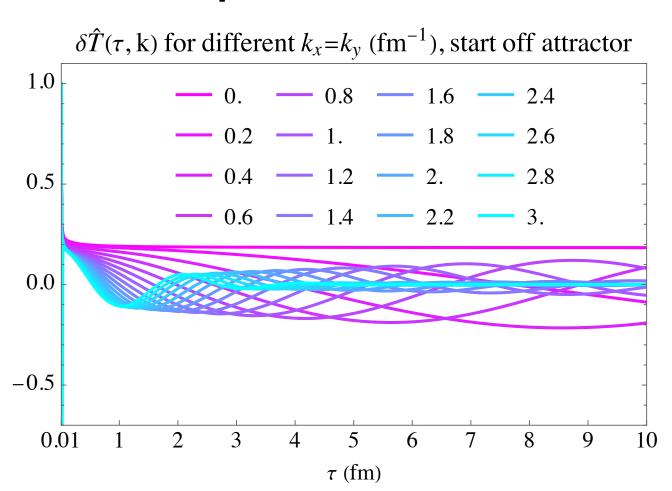
Tomography in 2D transverse plane.





Strong damping of large k modes and off-attractor perturbations.





Observables

Late-time asymptotics

Late-time asymptotic solutions perturbed around attractor:

$$\delta \hat{T} = C_1 (\Lambda \tau)^{a_1} e^{-\frac{3}{2C_{\tau}} (\Lambda \tau)^{2/3}} + C_2 (\Lambda \tau)^{a_2} e^{-\frac{3}{2\gamma^2 C_{\tau}} (\Lambda \tau)^{2/3}} + e^{-\frac{3\alpha^2}{\gamma^2 C_{\tau}} (\Lambda \tau)^{2/3}} \left(C_3 e^{i\sqrt{3}\gamma k\tau} + C_4 e^{-i\sqrt{3}\gamma k\tau} \right)$$

$$\delta\hat{\theta} = C_1'(\Lambda\tau)^{a_1-1} e^{-\frac{3}{2C_{\tau}}(\Lambda\tau)^{2/3}} + C_2'(\Lambda\tau)^{a_2-\frac{1}{3}} e^{-\frac{3}{2\gamma^2C_{\tau}}(\Lambda\tau)^{2/3}} + e^{-\frac{3\alpha^2}{\gamma^2C_{\tau}}(\Lambda\tau)^{2/3}} \left(C_3' e^{i\sqrt{3}\gamma k\tau} + C_4' e^{-i\sqrt{3}\gamma k\tau}\right)$$

$$\delta\hat{\omega} = e^{-\frac{3}{4C_{\tau}}(\Lambda\tau)^{2/3}} \left(C_5 e^{i\alpha k\tau} + C_6 e^{-i\alpha k\tau} \right)$$

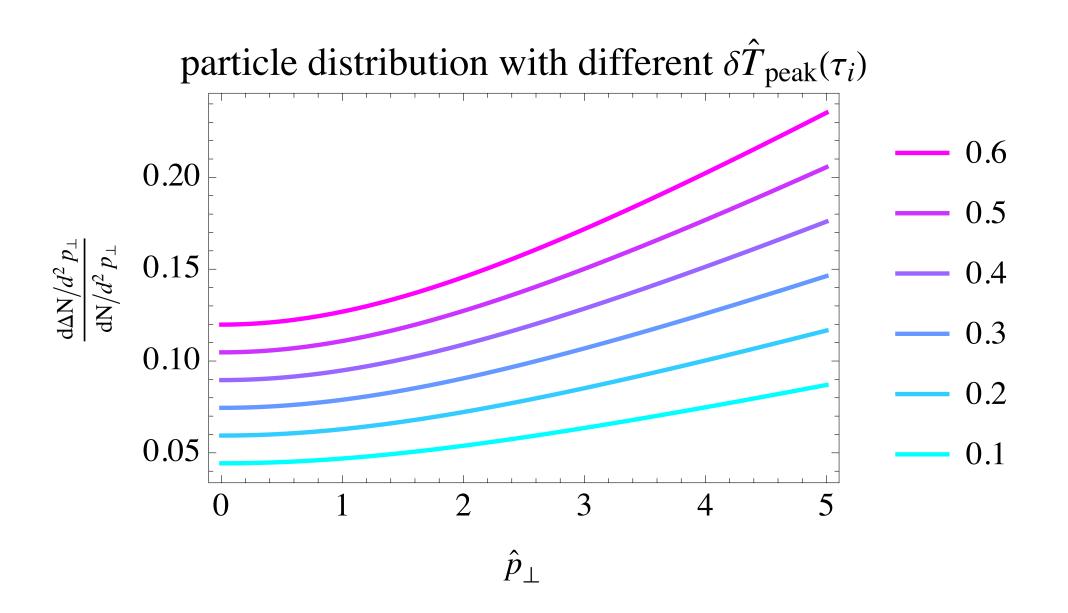
NB: the solutions for $\delta \hat{\pi}_{ij} \equiv \delta \pi_{ij} / T^4$ can be determined accordingly from $\delta \hat{T}$, $\delta \hat{\theta}$ and $\delta \hat{\omega}$.

$$\gamma = \sqrt{1 + \alpha^2}$$
; $\Lambda, C_1, ..., C_6$: independent integration constants

• The attractor is stable against transverse dynamics, and note again that the suppression is mild since the typical $\tau \sim 10$ fm in HIC is not large.

Observables

- Physical observables can be extracted from the asymptotic data of $(\delta \hat{T}, \delta \hat{\theta}, \delta \hat{\omega}, \delta \hat{\pi}_{ii})$ determined by $(C_1, ..., C_6)$.
- Linearized Cooper–Frye freezeout formula:



• Other observables (such as momentum anisotropy $A_T \sim v_2$)...

$$A_T \equiv \frac{\langle T_{11} - T_{22} \rangle_{\perp}}{\langle T_{11} + T_{22} \rangle_{\perp}} = \frac{9 \langle \delta \hat{\pi}_{11} - \delta \hat{\pi}_{22} \rangle_{\perp}}{2C_e (3 + A)}$$

See XA and Spalinski, to appear for more details

Conclusion

Recap

- Transverse dynamics can be described by perturbations around the attractor background.
- The problem reduces to a set of linear ODEs which can be analyzed semianalytically.
- Physics is captured by finite asymptotic data, mostly exponentially suppressed.

Outlook

- Systems with lesser symmetries.
- Implementation with jets or noises.
- More...