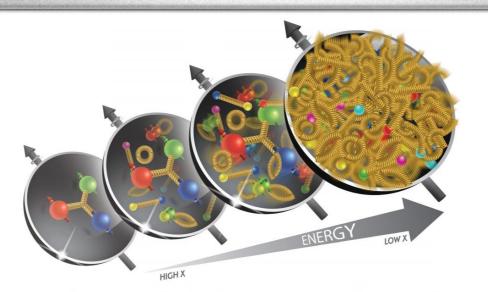


61. Cracow School Theoretical Physics: Electron-Ion Collider Physics September 20-24, 2021



Phenomenology of hadron spin structure with (polarized) TMDs

Marco Radici INFN - Pavia

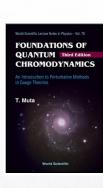
Useful references

Lecture notes

- V. Barone Cabeo School https://www.fe.infn.it/cabeo_school/2010/cabeo_school_2010.pdf
- A. Bacchetta Trento School https://www2.pv.infn.it/~bacchett/teaching/Bacchetta_Trento2012.pdf
- R. Jaffe Erice School https://arxiv.org/pdf/hep-ph/9602236.pdf
- P. Mulders GGI School http://www.nat.vu.nl/~mulders/tmdreview-vs3.pdf

Books

- V. Barone, P. Ratcliffe Transverse Spin Physics
- J. Collins Foundations of perturbative QCD
- R. Devenish, A. Cooper-Sarkar Deep Inelastic Scattering
- T. Muta Foundations of Quantum Chromodynamics



Papers

- EPJ-A topical issue: The 3D structure of the nucleon https://link.springer.com/journal/10050/topicalCollection/AC_628286e999d9a60c9a780398df15f93d
- M. Diehl Introduction to GPDs and TMDs https://inspirehep.net/literature/1408303
- A. Metz, A. Vossen Parton fragmentation functions https://inspirehep.net/literature/1475000

Outline

- Why Transverse-Momentum Dependent (TMD) partonic functions?
- The "TMD zoo"
- Where to find TMDs: observables in lepton-hadron, hadron-hadron, lepton-lepton collisions

Outline

• Why TMDs ?

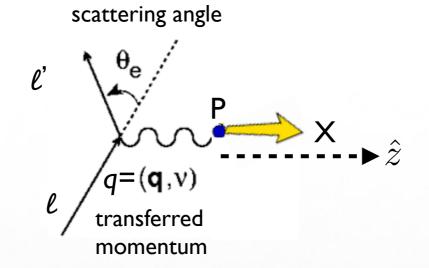
First, a short recap of collinear factorization

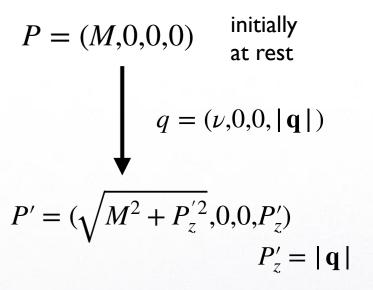
"Deep-Inelastic" kinematics

Internal hadron structure is best explored with a powerful "microscopic lense" need a process with a hard scale; example: inclusive lepton-proton scattering

Kinematic invariants

$$\begin{array}{rcl} P^2 & = & M^2 \\ Q^2 & = & -q^2 \approx 2EE'(1-\cos\theta_e) = 4EE'\sin^2\theta_e/2 \\ \\ \nu & = & \frac{P\cdot q}{M} \stackrel{\mathrm{TRF}}{=} E-E' \quad \text{transferred energy} \\ \\ y & = & \frac{P\cdot q}{P\cdot \ell} \stackrel{\mathrm{TRF}}{=} \frac{E-E'}{E} \quad \text{fraction of ""0\ley\le$I} \\ \\ x_{\mathrm{B}} & = & \frac{Q^2}{2P\cdot q} \stackrel{\mathrm{TRF}}{=} \frac{Q^2}{2M\nu} \quad \text{inelastic 0$<$x\leI elastic} \\ W^2 & = & (P+q)^2 = M^2 + Q^2(1/x-1) \ge M^2 \quad \text{invariant mass} \end{array}$$





 $\ell + N(P) \rightarrow \ell' + X$

"Deep-Inelastic" kinematics

Internal hadron structure is best explored with a powerful "microscopic lense" need a process with a hard scale; example: inclusive lepton-proton scattering

Kinematic invariants

$$P^{2} = M^{2}$$

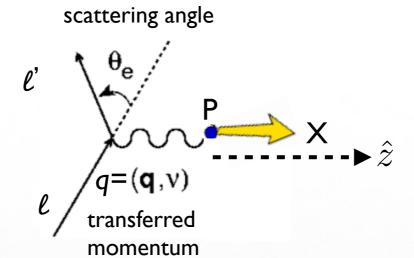
$$= -q^{2} \approx 2EE'(1 - \cos\theta_{e}) = 4EE'\sin^{2}\theta_{e}/2$$

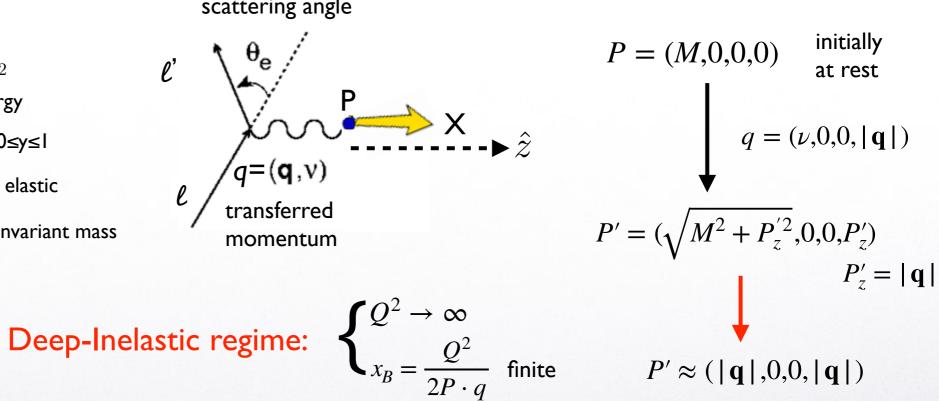
$$\nu = \frac{P \cdot q}{M} \stackrel{\text{TRF}}{=} E - E' \quad \text{transferred energy}$$

$$y = \frac{P \cdot q}{P \cdot \ell} \stackrel{\text{TRF}}{=} \frac{E - E'}{E} \quad \text{fraction of "" 0 sy l}$$

$$x_{\text{B}} = \frac{Q^{2}}{2P \cdot q} \stackrel{\text{TRF}}{=} \frac{Q^{2}}{2M\nu} \quad \text{inelastic 0 < x l elastic}$$

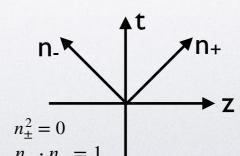
$$W^{2} = (P + q)^{2} = M^{2} + Q^{2}(1/x - 1) \geq M^{2} \quad \text{invariant mass}$$



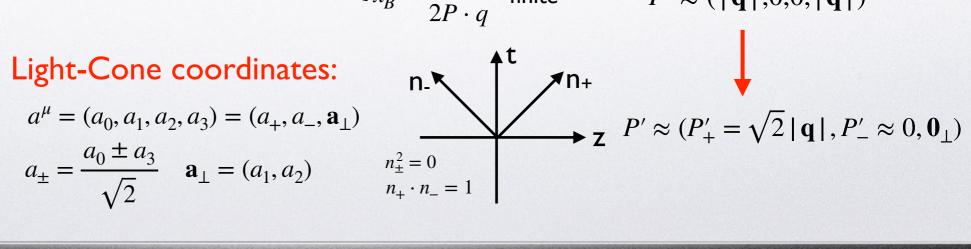


$$\begin{cases} Q^2 \to \infty \\ x_B = \frac{Q^2}{2P \cdot q} & \text{finite} \end{cases}$$

$$a^{\mu} = (a_0, a_1, a_2, a_3) = (a_+, a_-, \mathbf{a}_{\perp})$$
 $a_{\pm} = \frac{a_0 \pm a_3}{\sqrt{2}} \quad \mathbf{a}_{\perp} = (a_1, a_2)$



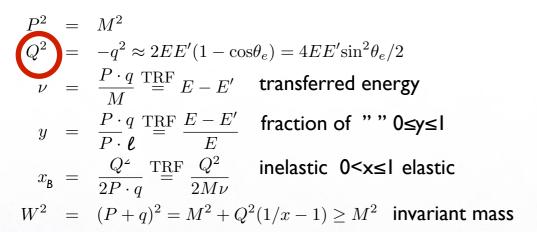
 $\ell + N(P) \rightarrow \ell' + X$

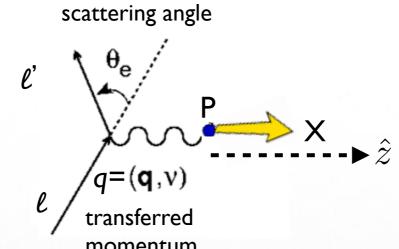


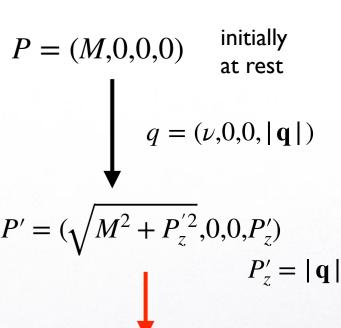
"Deep-Inelastic" kinematics

Internal hadron structure is best explored with a powerful "microscopic lense" need a process with a hard scale; example: inclusive lepton-proton scattering

Kinematic invariants



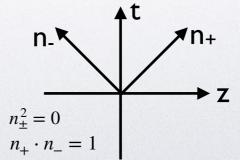




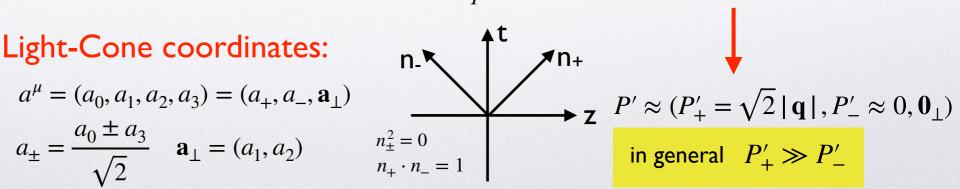
In this regime, only one single dominant component of proton momentum, P+

Deep-Inelastic regime:
$$\begin{cases} Q^2 \to \infty \\ x_B = \frac{Q^2}{2P \cdot q} \text{ finite} \end{cases} P' \approx (|\mathbf{q}|, 0, 0, |\mathbf{q}|)$$

$$a^{\mu} = (a_0, a_1, a_2, a_3) = (a_+, a_-, \mathbf{a}_{\perp})$$
 $a_{\pm} = \frac{a_0 \pm a_3}{\sqrt{2}} \quad \mathbf{a}_{\perp} = (a_1, a_2)$



 $\ell + N(P) \rightarrow \ell' + X$



collinear framework

inclusive Deep-Inelastic Scattering (DIS): 1 dominant direction of momenta

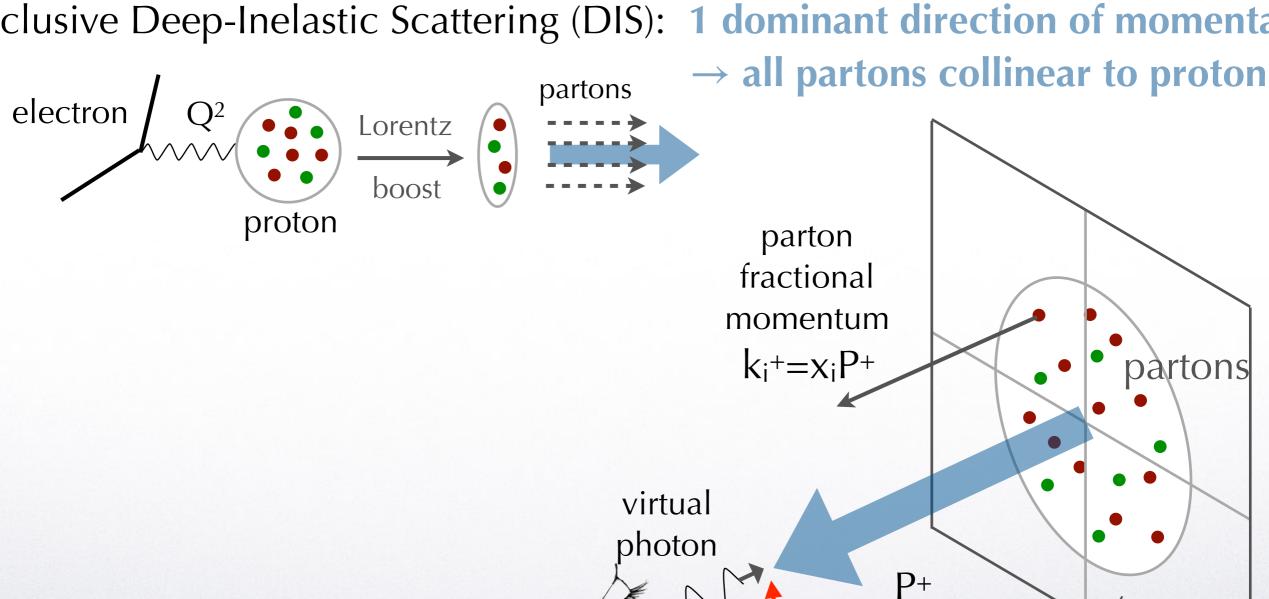
partons electron Q^2 proton

→ all partons collinear to proton

collinear framework

1 plane

inclusive Deep-Inelastic Scattering (DIS): 1 dominant direction of momenta



hard

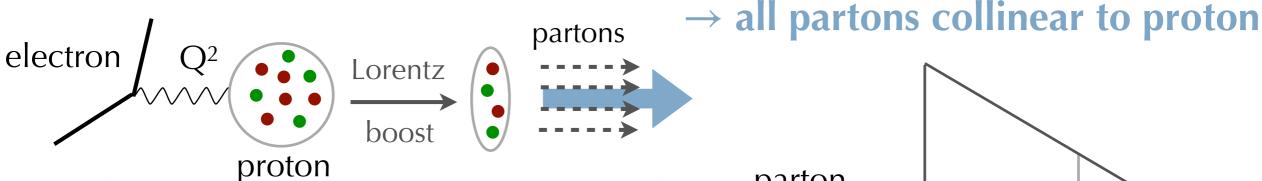
collision

proton

momentum

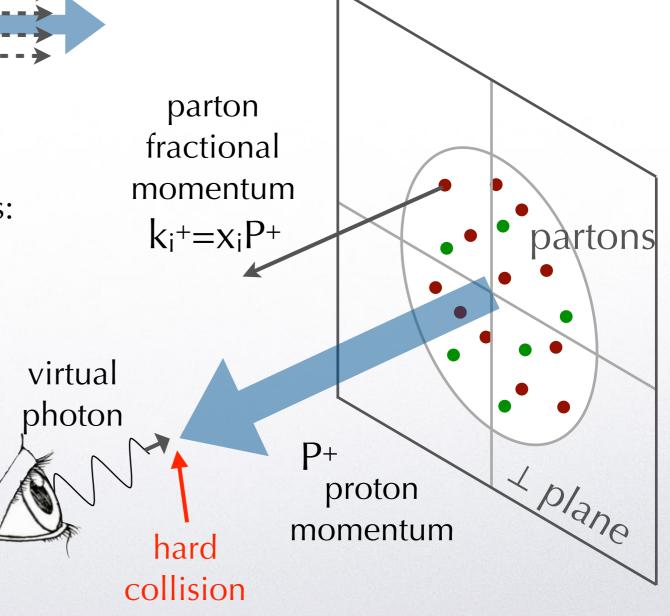
collinear framework

inclusive Deep-Inelastic Scattering (DIS): 1 dominant direction of momenta



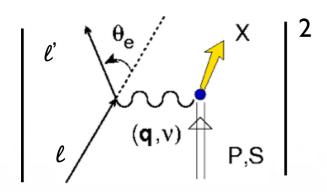
Basics of Feynman parton model:

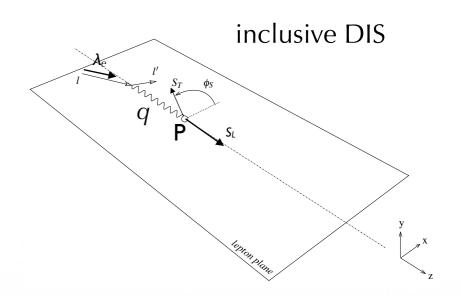
- DIS regime and relativistic corrections: the virtual photon probes a frozen ensemble of partons
- factorisation between hard collision and proton structure
- 1D imaging of proton structure, parametrised by collinear Parton Distribution Functions PDF(x,Q²)

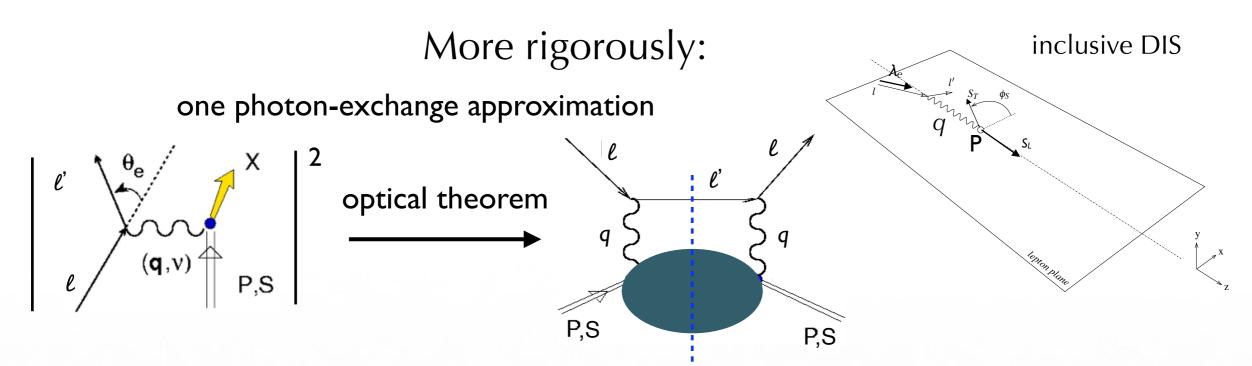


More rigorously:

one photon-exchange approximation

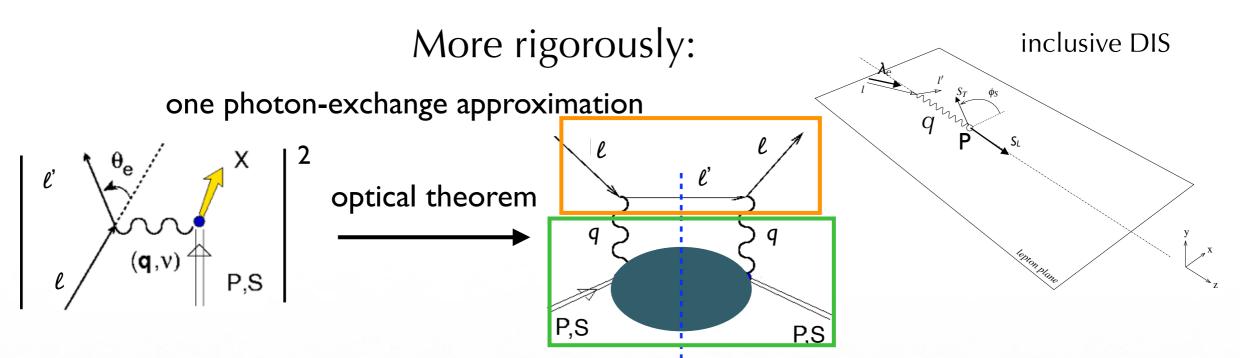






cut-diagram notation:

cross section = product of two amplitudes particles entering cut are on-shell



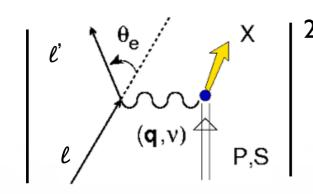
$$\frac{d\sigma}{dx_B dy d\phi_S} = \frac{\alpha^2 y}{2Q^4} \underbrace{L_{\mu\nu}(\ell, \ell', \lambda_e)}_{\mbox{leptonic tensor}} \underbrace{W^{\mu\nu}(q, P, \ell', \lambda_e)}_{\mbox{tensor}} \underbrace{W^{\mu\nu}(q, P, \ell', \lambda_e)}_{\mbox{t$$

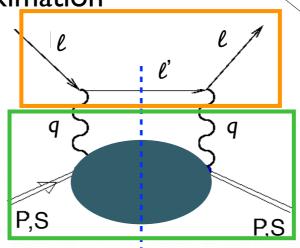
cut-diagram notation:

cross section = product of two amplitudes particles entering cut are on-shell

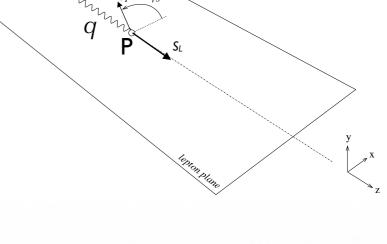
linear combination of all tensor structures with q, P, S, subject to Hermiticity, gauge-, parity- and time reversal- invariance \rightarrow parametrised with four structure functions

one photon-exchange approximation





inclusive DIS



$$\frac{d\sigma}{dx_B dy d\phi_S} = \frac{\alpha^2 y}{2Q^4} \frac{L_{\mu\nu}(\ell, \ell', \lambda_e) W^{\mu\nu}(q, P, S)}{\text{leptonic}}$$

tensor

calculable in QED

tensor

cut-diagram notation:

cross section = product of two amplitudes particles entering cut are on-shell

linear combination of all tensor structures with q, P, S, subject to Hermiticity, gauge-, parity- and time reversal- invariance → parametrised with four structure functions

$$\frac{d\sigma}{dx_B dy d\phi_S} = \frac{2\alpha^2}{x_B y Q^2} \left\{ A(y) F_{UU,T} + B(y) F_{UU,L} + \lambda_e S_L C(y) F_{LL} + \lambda_e |\mathbf{S}_T| D(y) \cos \phi_S F_{LT} \right\}$$

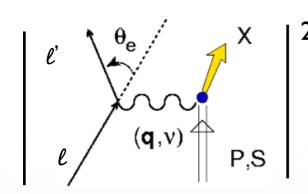
each F..
$$(x,Q^2)$$

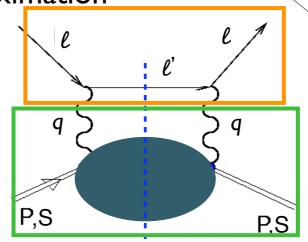
$$F_{XY,Z}$$

$$\ell P Y^*$$

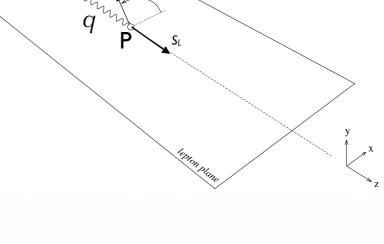
More rigorously:

one photon-exchange approximation





inclusive DIS



$$\frac{d\sigma}{dx_B dy d\phi_S} = \frac{\alpha^2 y}{2Q^4} \frac{L_{\mu\nu}(\ell, \ell', \lambda_e) W^{\mu\nu}(q, P, S)}{\text{leptonic}}$$

tensor

calculable in QED

cut-diagram notation:

cross section = product of two amplitudes particles entering cut are on-shell

linear combination of all tensor structures with q, P, S, subject to Hermiticity, gauge-, parity- and time reversal- invariance → parametrised with four structure functions

$$\frac{d\sigma}{dx_B dy d\phi_S} = \frac{2\alpha^2}{x_B y Q^2} \left\{ A(y) F_{UU,T} + B(y) F_{UU,L} + \lambda_e S_L C(y) F_{LL} + \lambda_e |\mathbf{S}_T| D(y) \cos \phi_S F_{LT} \right\}$$
connection to
$$F_{UU,T} = 2x_B F_1 \qquad F_{UU,L} = F_2 - 2x_B F_1 \qquad F_{LL} = 2x_B g_1 \qquad F_{LT} = \mathcal{O}(\gamma) (g_1 + g_2) \\ + \mathcal{O}(\gamma^2) F_2 \qquad + \mathcal{O}(\gamma^2) g_2 \qquad \qquad \gamma = \frac{2xM}{Q} \quad \text{target mass correction}$$

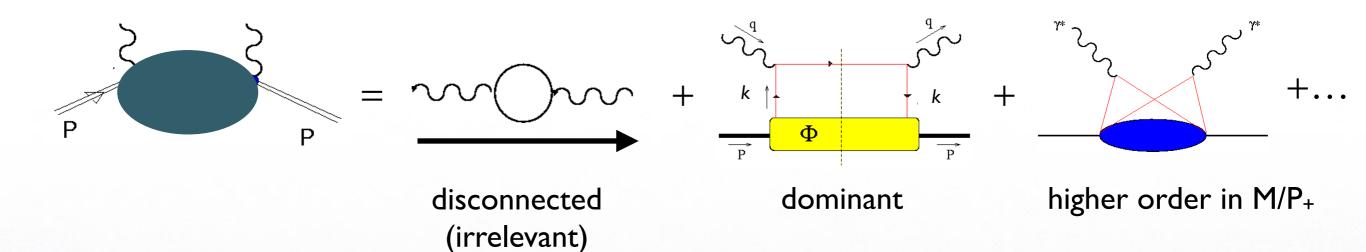
Fach F..
$$(x,Q^2)$$

$$F_{XY,Z}$$

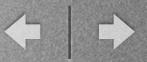
$$\ell \qquad P \qquad Y^*$$

OPE → factorisation

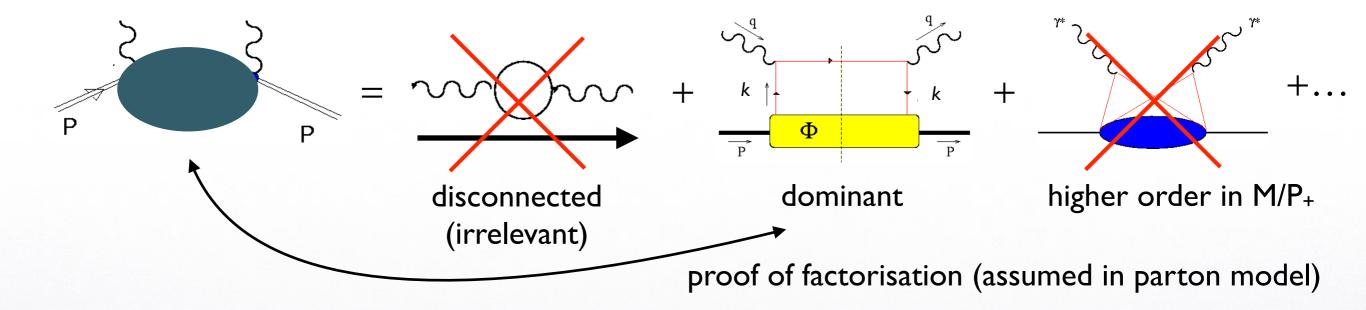
hadronic tensor W^{µv}: Operator Product Expansion (OPE)



OPE → factorisation

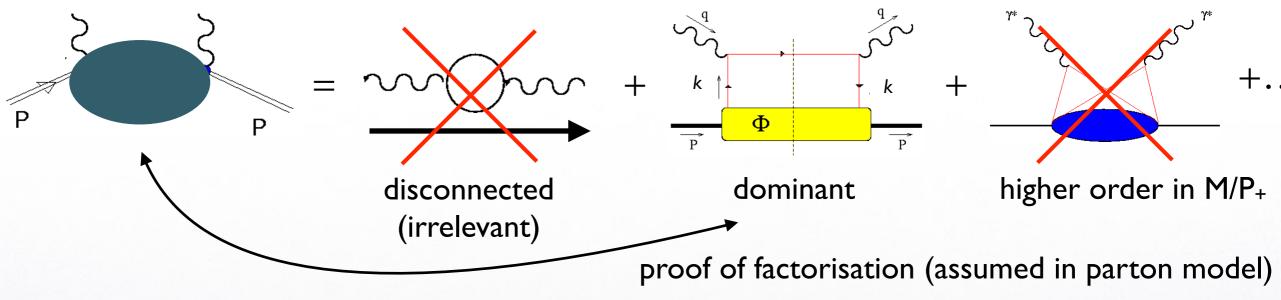


hadronic tensor W^{µv}: Operator Product Expansion (OPE)



OPE → factorisation

hadronic tensor W^{µv}: Operator Product Expansion (OPE)



$$2MW^{\mu\nu}(q,P,S) \approx \\ \sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr} \Big[\Phi(x_{B},S) \, \gamma^{\mu} \, \gamma_{+} \, \gamma^{\nu} \Big] \\ \text{non-local correlator} \\ \Phi_{ij}(x,S) = \int \frac{d\xi_{-}}{2\pi} \, e^{ik\cdot\xi} \, \langle P,S \, | \, \bar{\psi}_{j}(0) \, \psi_{i}(\xi) \, | \, P,S \rangle_{\xi_{+} = \xi_{T} = 0} \\ \text{quark field with quantum numbers } i \\ \\ \xi_{-} \end{aligned}$$

on light-cone path

parton-parton correlation

non-local correlator

$$\begin{split} \Phi_{ij}(x,S) &= \int \frac{d\xi_{-}}{2\pi} \, e^{ik\cdot\xi} \, \langle P,S \, | \, \bar{\psi}_{j}(0) \, \psi_{i}(\xi) \, | \, P,S \rangle_{\xi_{+} = \xi_{T} = 0} \\ &= \int dk_{+} dk_{-} d\mathbf{k}_{T} \, \delta(k_{+} - xP_{+}) \, \int \frac{d\xi}{(2\pi)^{4}} \, e^{ik\cdot\xi} \, \langle P,S \, | \, \bar{\psi}_{j}(0) \, \psi_{i}(\xi) \, | \, P,S \rangle \end{split}$$

parton-parton correlation

non-local correlator

$$\begin{split} \Phi_{ij}(x,S) &= \int \frac{d\xi_{-}}{2\pi} \, e^{ik\cdot\xi} \, \langle P,S \, | \, \bar{\psi}_{j}(0) \, \psi_{i}(\xi) \, | \, P,S \rangle_{\xi_{+} = \xi_{T} = 0} \\ &= \int dk_{+} dk_{-} d\mathbf{k}_{T} \, \delta(k_{+} - xP_{+}) \, \int \frac{d\xi}{(2\pi)^{4}} \, e^{ik\cdot\xi} \, \langle P,S \, | \, \bar{\psi}_{j}(0) \, \psi_{i}(\xi) \, | \, P,S \rangle \end{split}$$

$$\Phi(k,P,S)$$

 $\Phi(k, P, S)$ = linear combination of all tensor structures with k, P, S, subject to Hermiticity and parity-invariance (see later about time reversal)

OPE on $\Phi(k, P, S) \rightarrow \text{expansion in powers of M/P}_+$

Caveat

canonical OPE on local operators $\widehat{\mathcal{O}}$ expansion in twist = $\dim(\hat{\mathcal{O}})$ - $spin(\hat{\mathcal{O}})$ Here, Φ is non-local, but can be expanded in local operators of same twist "working" def. twist = $2 + powers of M/P_+$

OPE → PDFs

OPE on $\Phi(k, P, S) \rightarrow$ expansion in powers of M/P₊ \rightarrow keeping only leading twist

$$\begin{split} \Phi(x,S) &= \int dk_+ dk_- d\mathbf{k}_T \, \delta(k_+ - x P_+) \, \Phi(k,P,S) \\ &= \frac{1}{2} \Big[f_1(x) \, \gamma_- \, + \\ g_1(x) \, S_L \gamma_5 \gamma_- \, + \\ \sigma^{\mu\nu} &= \frac{i}{2} \left[\gamma^\mu, \gamma^\nu \right] \qquad h_1(x) \, i \sigma_{-\nu} \, \gamma_5 S_T^\nu \, \Big] \\ f_1(x) &= \frac{1}{2} \mathsf{Tr} \big[\Phi \, \gamma_+ \big] \equiv \Phi^{[\gamma_+]} \\ S_L \, g_1(x) &= \frac{1}{2} \mathsf{Tr} \big[\Phi \, \gamma_+ \gamma_5 \big] \equiv \Phi^{[\gamma_+ \gamma_5]} \\ (S_T)_i \, h_1(x) &= \frac{1}{2} \mathsf{Tr} \big[\Phi \, i \sigma_{+i} \, \gamma_5 \big] \equiv \Phi^{[i\sigma_{+i} \gamma_5]} \end{split}$$

OPE → PDFs

OPE on $\Phi(k, P, S) \rightarrow$ expansion in powers of M/P₊ \rightarrow keeping only leading twist

$$\Phi(x,S) = \int dk_{+}dk_{-}d\mathbf{k}_{T} \,\delta(k_{+} - xP_{+}) \,\Phi(k,P,S)$$

$$= \frac{1}{2} \Big[f_{1}(x) \,\gamma_{-} + \text{unpolariz} \Big]$$

$$g_1(x) S_I \gamma_5 \gamma_- +$$

$$\sigma^{\mu\nu} = \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right] \qquad h_1(x) i \sigma_{-\nu} \gamma_5 S_T^{\nu}$$

unpolarized Parton Distribution Function (PDF)

longitudinally polarized PDF (requires hadron long. pol. S_L)

transversely polarized PDF (requires hadron transv. pol. S_T)

$$f_1(x) = \frac{1}{2} \text{Tr} \left[\Phi \gamma_+ \right] \equiv \Phi^{[\gamma_+]}$$

$$S_L g_1(x) = \frac{1}{2} \text{Tr} \left[\Phi \gamma_+ \gamma_5 \right] \equiv \Phi^{[\gamma_+ \gamma_5]}$$

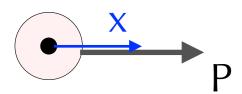
$$(S_T)_i h_1(x) = \frac{1}{2} \text{Tr} \left[\Phi i \sigma_{+i} \gamma_5 \right] \equiv \Phi^{[i\sigma_{+i}\gamma_5]}$$

(fractional) momentum distribution

helicity distribution

transversity distribution

The PDF table



PDFs (x; Q²) at leading twist for a spin-1/2 hadron (Nucleon)

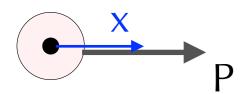
quark

nucleon

		Quark polarization				
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
Nucleon Polarization	U	$f_1 = \bullet$				
	L		$g_1 = -$			
	Т			$h_1 = $ \bullet \bullet		

N.B. Using appropriate projections $\Phi^{[\Gamma]}$ one can extract also subleading-twist PDFs, but no probabilistic interpretation

The PDF table



PDFs (x; Q^2) at leading twist for a spin-1/2 hadron (Nucleon)

quark

nucleon

	Quark polarization				
	Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
U	$f_1 = \bullet$)		
L		$g_1 = -$			
Т			$h_1 = \stackrel{\bigstar}{ } - \stackrel{\bigstar}{ }$		
	L	$f_1 = \bullet$	Unpolarized (U) Longitudinally Polarized (L) $ f_1 = \bullet $ $ g_1 = \bullet - \bullet - \bullet $		

probabilistic interpretation

probability density of finding an unpol. quark in an unpol. nucleon

probability density of finding a long. pol. quark in a long. pol. nucleon

probability density of finding a transv. pol. quark in a transv. pol. nucleon

N.B. Using appropriate projections $\Phi^{[\Gamma]}$ one can extract also subleading-twist PDFs, but no probabilistic interpretation

"observable" PDFs

connection of PDFs with measurable structure functions

at leading order $\mathcal{O}(\alpha_s^0)$ and leading twist

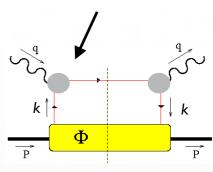
$$F_{UU,T}(x_B,Q^2) = x_B \sum e_q^2 \, f_1^q(x_B,Q^2)$$

$$F_{UU,T}(x_B, Q^2) = x_B \sum_{q} e_q^2 f_1^q(x_B, Q^2)$$
$$F_{LL}(x_B, Q^2) = x_B \sum_{q} e_q^2 g_1^q(x_B, Q^2)$$

$$F_{UU,L}(x_B,Q^2)\approx 0$$

$$F_{LT}(x_B, Q^2) \approx 0$$

hard cross section $d\hat{\sigma} = 1 + c_1\alpha_s + \dots$ produce $\textbf{F}_{\textbf{L}}$, $\textbf{F}_{\textbf{LT}} \neq 0$



"observable" PDFs

connection of PDFs with measurable structure functions

at leading order $\mathcal{O}(\alpha_s^0)$ and leading twist

$$F_{UU,T}(x_B, Q^2) = x_B \sum_{q} e_q^2 f_1^q(x_B, Q^2)$$

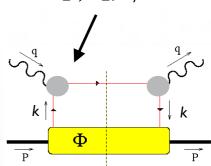
$$F_{LL}(x_B, Q^2) = x_B \sum_{q} e_q^2 g_1^q(x_B, Q^2)$$

$$F_{LL}(x_B, Q^2) = x_B \sum_{q} e_q^2 g_1^q(x_B, Q^2)$$

$$F_{UU,L}(x_B,Q^2)\approx 0$$

$$F_{LT}(x_B, Q^2) \approx 0$$

hard cross section $d\hat{\sigma} = 1 + c_1\alpha_s + \dots$ produce F_L , $F_{LT} \neq 0$



Transversity PDF does not appear in inclusive DIS cross section!

It happens because transverse polarization mixes quark helicities:

$$\langle \uparrow | \dots | \uparrow \rangle \propto \langle + | \dots | - \rangle, \langle - | \dots | + \rangle$$

chirality = helicity for a spin-1/2 object; hence, $h_1(x)$ is a chiral-odd PDF and can appear in the cross section only paired to another chiral-odd structure.

> Transversity is not suppressed (as expected in perturbative QCD as m_q/Q), it can be extracted in processes with at least two hadrons

$$\Phi(k, P, S) = \int \frac{d\xi}{(2\pi)^4} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$

this non-local operator is not color-gauge invariant under $\psi(x) \to e^{i\alpha^a(x)\,t^a} \psi(x) \equiv U(x)\,\psi(x)$

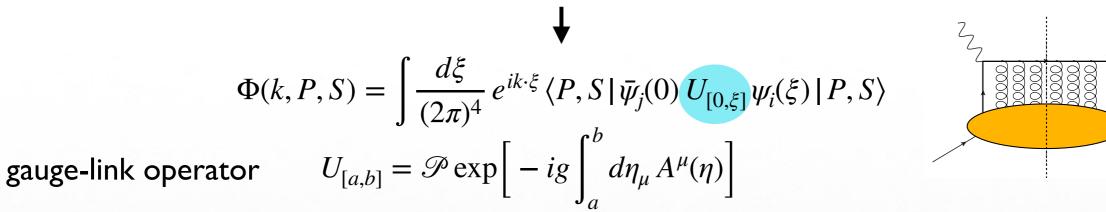
$$\Phi(k, P, S) = \int \frac{d\xi}{(2\pi)^4} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$

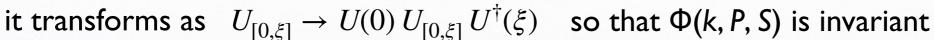
this non-local operator is not color-gauge invariant under $\psi(x) \to e^{i\alpha^a(x)\,t^a} \psi(x) \equiv U(x)\,\psi(x)$

$$\Phi(k,P,S) = \int \frac{d\xi}{(2\pi)^4} \, e^{ik\cdot\xi} \, \langle P,S \, | \, \bar{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, | \, P,S \rangle$$
 gauge-link operator
$$U_{[a,b]} = \mathcal{P} \exp \Big[-ig \int_a^b d\eta_\mu \, A^\mu(\eta) \Big]$$
 it transforms as
$$U_{[0,\xi]} \to U(0) \, U_{[0,\xi]} \, U^\dagger(\xi) \quad \text{so that } \Phi(k,P,S) \text{ is invariant}$$

$$\Phi(k, P, S) = \int \frac{d\xi}{(2\pi)^4} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$

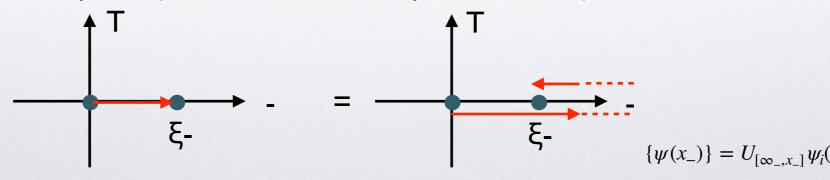
this non-local operator is not color-gauge invariant under $\psi(x) \rightarrow e^{i\alpha^a(x)t^a} \psi(x) \equiv U(x) \psi(x)$





 $\Phi(x, S)$ involves only the LC "-" direction: $d\xi_- \dots |_{\xi_+, \xi_T=0}$

 $\text{trick: } \Phi(x,S) \propto \langle P,S \, | \, \bar{\psi}_j(0) \, U_{[0,\xi_-]} \, \psi_i(\xi_-) \, | \, P,S \rangle = \langle P,S \, | \, \bar{\psi}_j(0) \, U_{[0,\infty_-]} \, U_{[\infty_-,\xi_-]} \, \psi_i(\xi_-) \, | \, P,S \rangle \\ \equiv \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, \{\psi_i(\xi_-)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, \{\psi_i(\xi_-)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle \\ = \langle P,S \, | \, \{\bar{\psi}_j(0)\} \, | \, P,S \rangle$



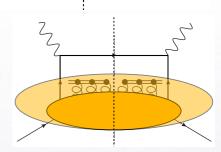
$$\Phi(k, P, S) = \int \frac{d\xi}{(2\pi)^4} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_j(0) \psi_i(\xi) | P, S \rangle$$

 $\psi(x) \to e^{i\alpha^a(x)t^a} \psi(x) \equiv U(x)\psi(x)$ this non-local operator is not color-gauge invariant under

$$\Phi(k, P, S) = \int \frac{d\xi}{(2\pi)^4} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_j(0) \mathbf{U}_{[0,\xi]} \psi_i(\xi) | P, S \rangle$$

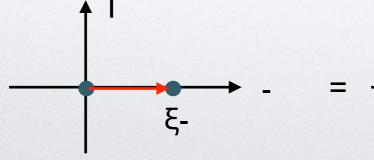
gauge-link operator
$$U_{[a,b]} = \mathcal{P} \exp \left[-ig \int_a^b d\eta_\mu A^\mu(\eta) \right]$$

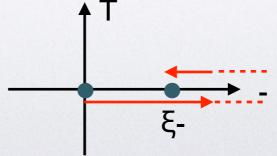
it transforms as $U_{[0,\xi]} \to U(0) U_{[0,\xi]} U^{\dagger}(\xi)$ so that $\Phi(k, P, S)$ is invariant



 $\Phi(x, S)$ involves only the LC "-" direction: $d\xi_- \dots |_{\xi_+, \xi_T=0}$

 $\equiv \langle P, S | \{ \bar{\psi}_i(0) \} \{ \psi_i(\xi_-) \} | P, S \rangle$ trick: $\Phi(x,S) \propto \langle P, S | \bar{\psi}_j(0) U_{[0,\xi_-]} \psi_i(\xi_-) | P, S \rangle = \langle P, S | \bar{\psi}_j(0) U_{[0,\infty_-]} U_{[\infty_-,\xi_-]} \psi_i(\xi_-) | P, S \rangle$





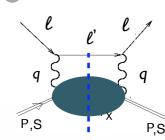
factorisation is preserved

$$\{\psi(x_{-})\} = U_{[\infty_{-},x_{-}]}\psi_{i}(x_{-})$$

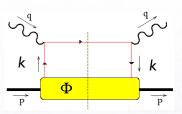
Recap

• hadron structure better explored in processes with a hard scale (much bigger than involved masses, $Q^2 \gg M^2$); on the Light-Cone, it implies one dominant direction → collinear framework natural choice

• Example: inclusive DIS, cross section $d\sigma \sim L_{\mu\nu} W^{\mu\nu}$ can be parametrised in terms of 4 structure functions (including polarization)



• OPE on $W^{\mu\nu} \rightarrow$ factorisation of hadron structure in parton-parton non-local correlator Φ . It can be made color-gauge invariant by inserting proper gauge link



• Expansion of Φ in powers of M/Q (effective twist) contains operator-definition of collinear PDFs, that can be extracted by suitable projections



 Leading-twist PDFs have nice probabilistic interpretations, and can be connected to structure functions (except the chiral-odd transversity PDF)

	Quark polarization			
	Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)	
U	$f_1 = loodsymbol{lack}{lack}$)	
L		$g_1 = \bigcirc - \bigcirc$		
т		1	$h_1 = \stackrel{\bigstar}{ } - \stackrel{\bigstar}{ }$	
	L	$f_1 = \odot$	Unpolarized (U) Longitudinally Polarized (L) $g_1 = \bigodot \qquad g_1 = \bigodot + - \bigodot +$	

Evidences to go beyond collinear

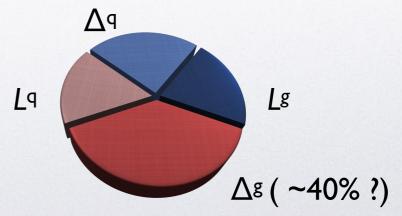
Evidences of going beyond the collinear framework

Example #1: the "Spin Crisis"

Ashmann et al. (EMC). P.L. **B206** (88) 364

- In 1988, the EMC Collaboration at CERN measures the F_{LL} structure function in the polarized inclusive DIS process $\overrightarrow{\mu} + \overrightarrow{p} \rightarrow \mu' + X$. Surprisingly, the sum of quark helicities Δq contributes at most 25% of spin 1/2 of the proton (depending on Q^2).
- ullet There has been an intense activity to measure the gluon helicity Δg , which is currently known with a large error. But it's very unlikely that it amounts to the missing 75%...
- Missing contribution must come from the orbital angular momentum of partons L^q , L^g → need to be sensitive also to transverse components of parton momentum

$$\frac{1}{2} = \sum_{q} \left(\frac{1}{2} \Delta q(Q^2) + L^q(Q^2) \right) + \Delta g(Q^2) + L^g(Q^2)$$



Evidences to go beyond collinear

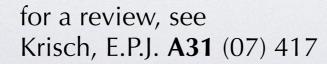
Evidences of going beyond the collinear framework

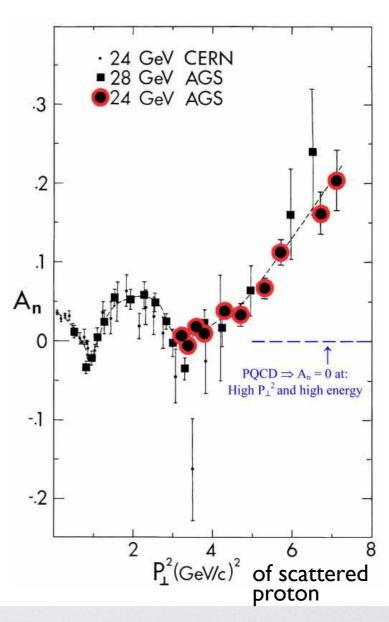
Example #2: elastic p-p scattering

$$A_N = \frac{\mathrm{d}\sigma^\uparrow - \mathrm{d}\sigma^\downarrow}{\mathrm{d}\sigma^\uparrow + \mathrm{d}\sigma^\downarrow}$$

$$p^\uparrow p \to p \, p \quad \text{versus} \quad p^\downarrow p \to p \, p$$

correlation between spin of the proton and *k*_T of partons





Evidences to go beyond collinear

Evidences of going beyond the collinear framework

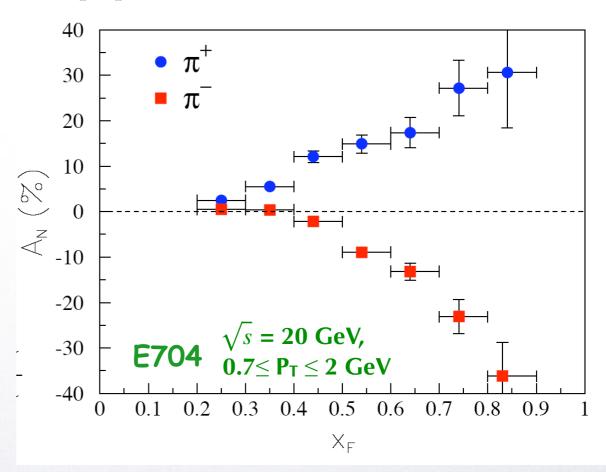
Example #3: semi-inclusive p-p collisions

$$p^{\uparrow} p \rightarrow \pi X$$

$$A_N = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

single-spin asymmetry

correlation between spin of the proton and k_{T} and flavor of partons



Persisting also at higher energies up to $\sqrt{s} = 200 \text{ GeV}$

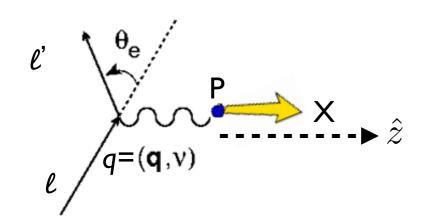
Adams et al. (STAR), PRL 92 (04) 171801

also in the $p + N \rightarrow \Lambda^{\uparrow} + X$ channel

Outline

- The "TMD zoo"
 - factorisation th. and general properties
 (generalising same steps to get to PDFs)
 - specific properties

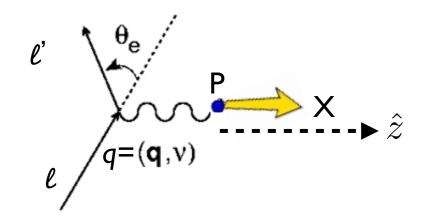
Need semi-inclusive process



inclusive DIS: - hard scale $Q^2 = -q^2 \gg M^2$ to "see" partons

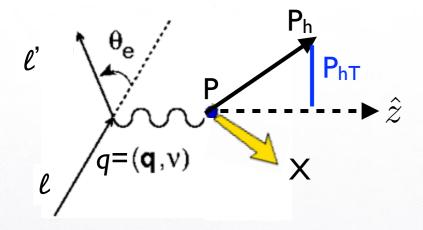
- factorisation \rightarrow isolate PDFs
- no further scale to probe proton interior

Need semi-inclusive process



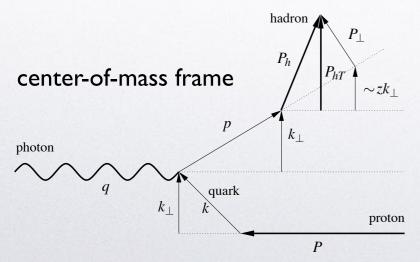
inclusive DIS: - hard scale $Q^2 = -q^2 \gg M^2$ to "see" partons

- factorisation → isolate PDFs
- no further scale to probe proton interior



semi-inclusive DIS (SIDIS):

- hard scale $Q^2 = -q^2 \gg M^2$ to "see" partons
- soft scale: detect hadron h with $P_{hT}^2 \sim M^2 \ll Q^2$
- factorisation \rightarrow isolate TMDs



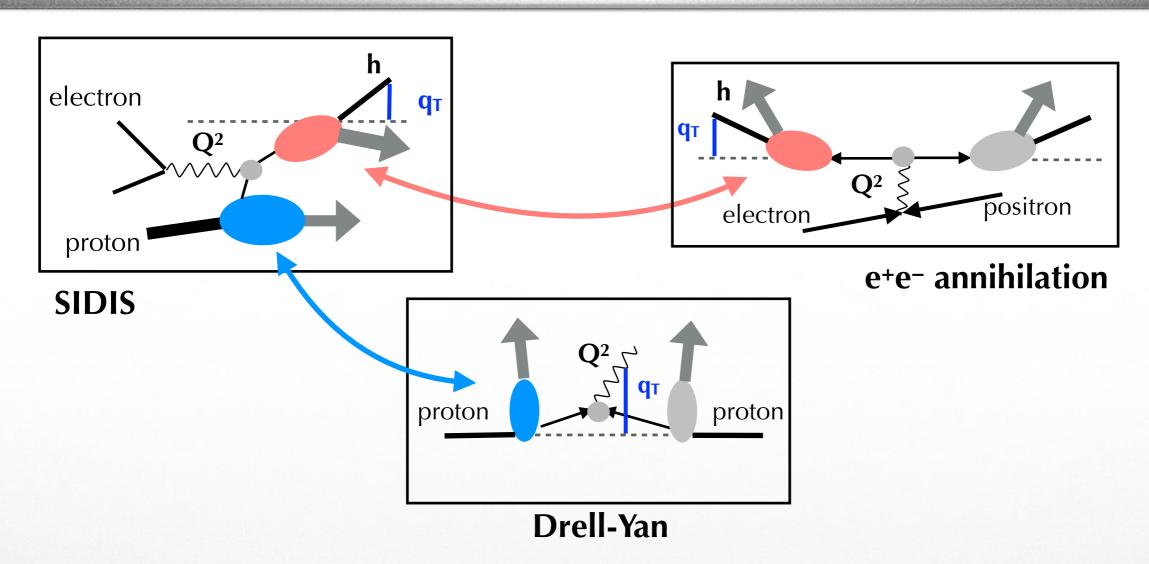
with these two scales, the process is factorizable into a hard photon-quark vertex and a quark—hadron fragmentation

$$\mathbf{P}_{hT} = z\mathbf{k}_{\perp} + \mathbf{P}_{\perp} + \mathcal{O}(\mathbf{k}_{\perp}^2/Q^2)$$
 z = fractional energy of h (analogous of x)

hadron P_{hT} arises from struck quark k_{\perp} and transverse momentum P_{\perp} generated during fragmentation

measure $P_{hT} \rightarrow get to k_{\perp}$

TMDs: factorisation theorems



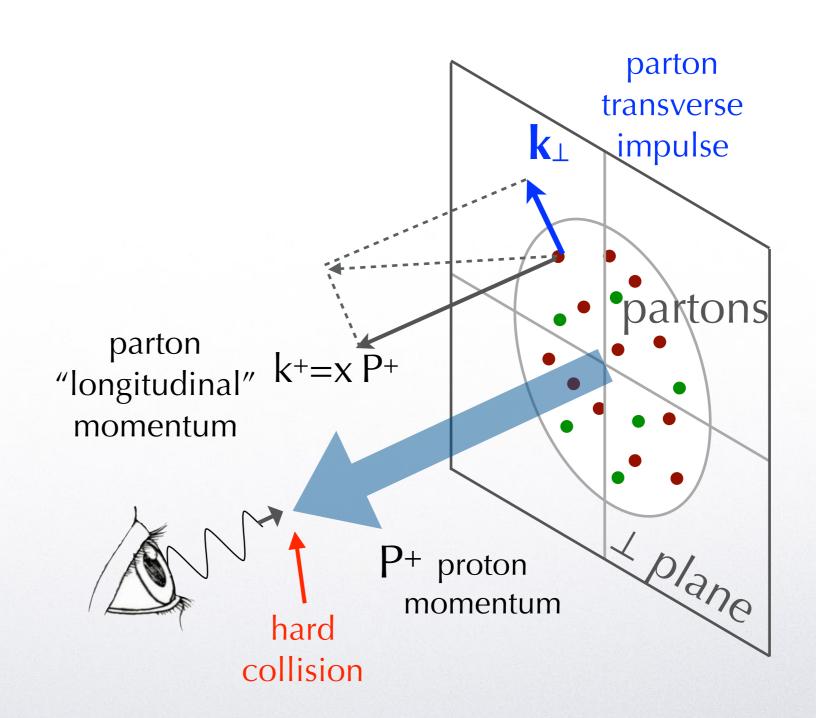
Factorization theorems well understood for $\mathbf{q}_T \ll \mathbf{Q}$ universality of TMD PDFs and FFs (but see later)

Ji, Yuan, Ma, P.R. D**71** (05) Rogers & Aybat, P.R. D**83** (11) Collins, "Foundations of Perturbative QCD" (11) Echevarria, Idilbi, Scimemi, JHEP **1207** (12)

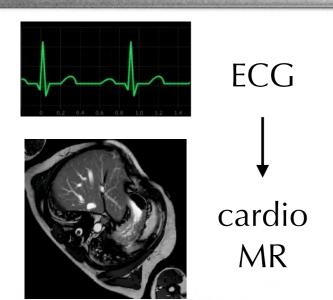
For $H_1+H_2 \rightarrow h+X$ no factor. th. but also no counterexample disproving it **Factorization broken** for $2\rightarrow 2$ processes Rogers & Mulders, P.R. D81 (10) Buffing, Kang, Lee, Liu, arXiv:1812.07549

The TMD framework

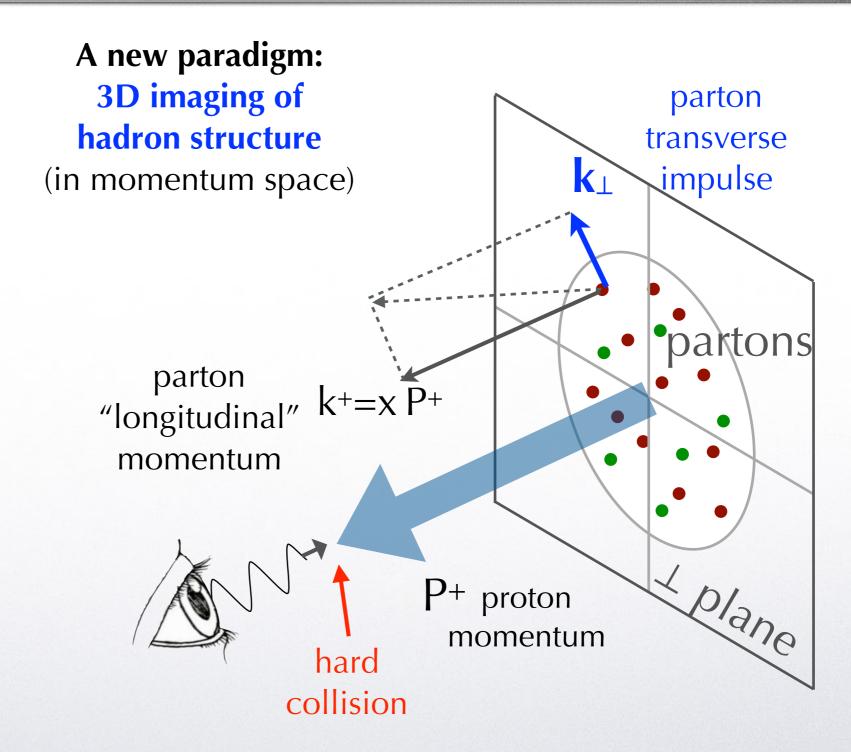
parametrised by Transverse-Momentum Dependent PDFs TMD PDF($x, k_{\perp}; Q^2$)



The TMD framework

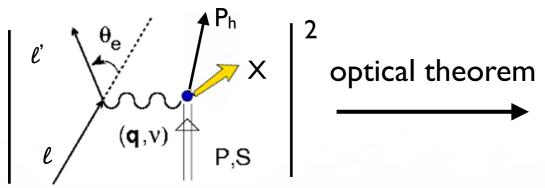


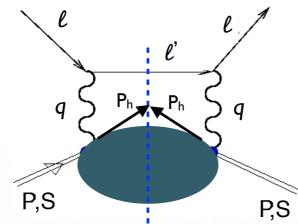
parametrised by Transverse-Momentum Dependent PDFs TMD PDF($x, k_{\perp}; Q^2$)

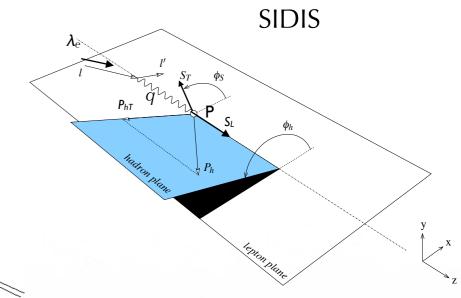


Example: SIDIS

one photon-exchange approximation







same invariants as inclusive DIS plus

$$z_h = \frac{P \cdot P_h}{P \cdot q}$$

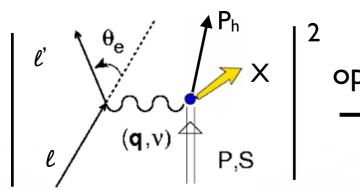
 $z_h = \frac{P \cdot P_h}{P \cdot q}$ "energy fraction" of fragmenting parton carried by final hadron

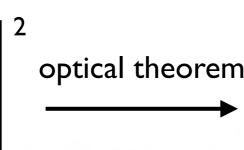
$$\frac{d\sigma}{dx_B dy d\phi_S dz_h d\phi_h dP_{hT}^2} = \frac{\alpha^2 y}{2z_h Q^4} L_{\mu\nu}(\ell, \ell', \lambda_e) W^{\mu\nu}(q, P, S, P_h)$$

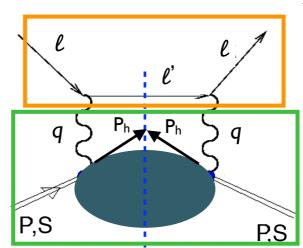
new dependence (for unpolarized hadron, $S_h=0$)

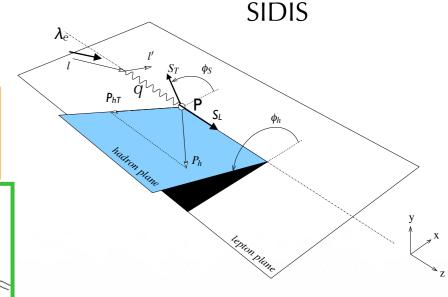
Example: SIDIS

one photon-exchange approximation









same invariants as inclusive DIS plus

$$z_h = \frac{P \cdot P_h}{P \cdot q}$$

 $z_h = \frac{P \cdot P_h}{P \cdot q}$ "energy fraction" of fragmenting parton carried by final hadron

$$\frac{d\sigma}{dx_B dy d\phi_S dz_h d\phi_h dP_{hT}^2} = \frac{\alpha^2 y}{2z_h Q^4} \frac{L_{\mu\nu}(\ell, \ell', \lambda_e) W^{\mu\nu}(q, P, S, P_h)}{\text{leptonic}}$$

new dependence (for unpolarized hadron, $S_h=0$) tensor

parametrised with 8 structure functions at leading twist (18 including subleading twist)

tensor

SIDIS cross section

$$\frac{d\sigma}{dx_B dy d\phi_S dz_h d\phi_h dP_{hT}^2} =$$

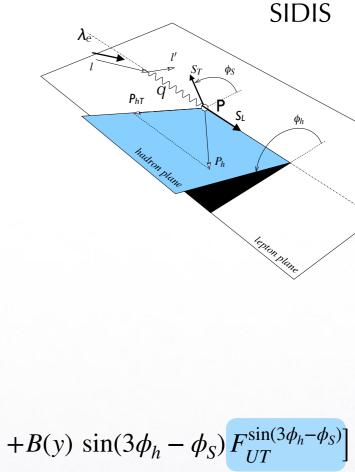
$$= \frac{\alpha^2}{x_B y Q^2} \left[A(y) F_{UU,T} + B(y) \cos 2\phi_h F_{UU}^{\cos 2\phi_h} \right]$$

$$+S_L \sin 2\phi_h F_{UL}^{\sin 2\phi_h}$$

$$+\lambda_e S_L C(y) F_{LL}$$

$$+S_{T}[A(y) \sin(\phi_{h} - \phi_{S}) F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + B(y) \sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} + B(y) \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})}]$$

$$+\lambda_e S_T C(y) \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \mathcal{O}\left(\frac{M}{Q}\right)$$



SIDIS cross section

$$\frac{d\sigma}{dx_B dy d\phi_S dz_h d\phi_h dP_{hT}^2} =$$

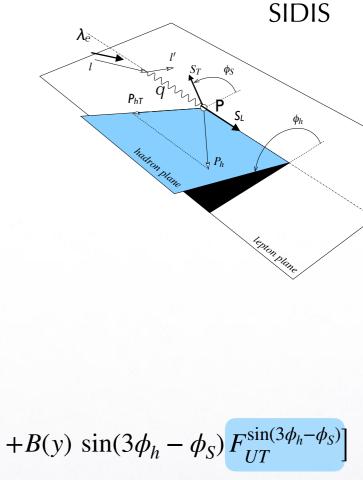
$$= \frac{\alpha^2}{x_B y Q^2} \left[A(y) F_{UU,T} + B(y) \cos 2\phi_h F_{UU}^{\cos 2\phi_h} \right]$$

$$+S_L \sin 2\phi_h F_{UL}^{\sin 2\phi_h}$$

$$+\frac{\lambda_e}{S_L}S_LC(y)F_{LL}$$

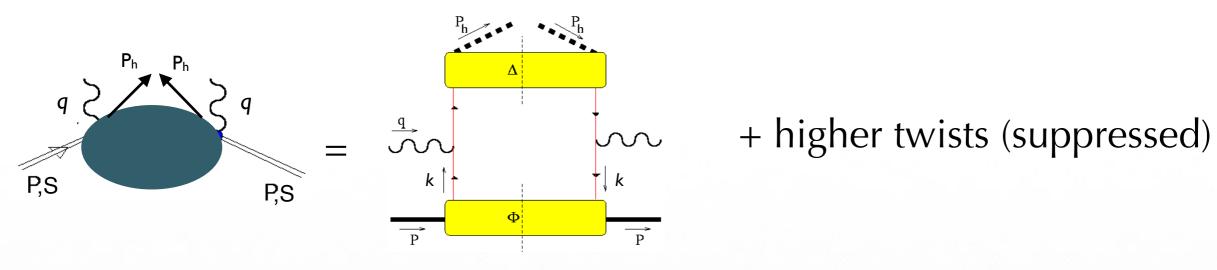
$$+S_{T}[A(y) \sin(\phi_{h} - \phi_{S}) F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + B(y) \sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} + B(y) \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})}]$$

$$+\frac{\lambda_e S_T C(y) \cos(\phi_h - \phi_S)}{E_{LT}} + \mathcal{O}\left(\frac{M}{Q}\right)$$



SIDIS: factorisation

OPE not possible, use diagrammatic approach (select dominant diagram by counting powers of divergences)



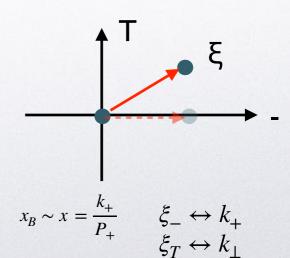
$$2MW^{\mu\nu}(q,P,S,P_h) = 2z_h \mathcal{C}\left[\mathsf{Tr}\left[\Phi(x_B,\mathbf{k}_\perp,S)\,\gamma^\mu\,\Delta(z_h,\mathbf{P}_\perp)\,\gamma^\nu\right]\,\right]$$

$$\mathscr{C}\left[\ldots\right] = \int d\mathbf{P}_{\perp} d\mathbf{k}_{\perp} \, \delta^{(2)}(z\mathbf{k}_{\perp} + \mathbf{P}_{\perp} - \mathbf{P}_{hT}) \left[\ldots\right]$$

non-local correlator:

$$\Phi_{ij}(x,S) = \int \frac{d\xi_{-}}{2\pi} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_{j}(0) U_{[0,\xi]} \psi_{i}(\xi) | P, S \rangle_{\xi_{+} = \xi_{T} = 0}$$

$$\Phi_{ij}(x, \mathbf{k}_{\perp}, S) = \int \frac{d\xi_{-}d^{2}\xi_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_{j}(0) U_{[0,\xi]} \psi_{i}(\xi) | P, S \rangle_{\xi_{+}=0}$$

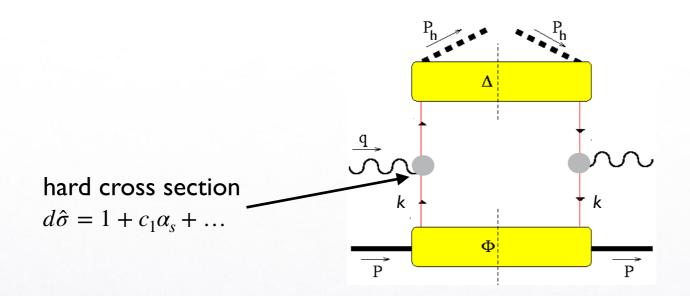


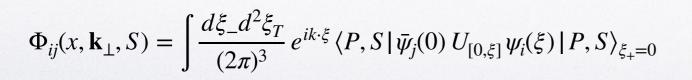
SIDIS: factorisation

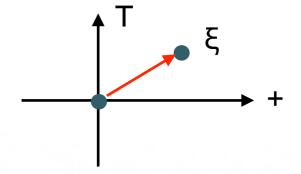
non-local correlators

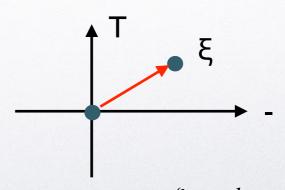
$$z_h \sim z = \frac{P_{h-}}{k_-} \qquad \frac{\xi_+ \leftrightarrow k_-}{\xi_T \leftrightarrow k_\perp}$$

$$\Delta_{ij}(z, \mathbf{k}_{\perp}) = \sum_{X} \int \frac{d\xi_{+} d^{2}\xi_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \langle 0 | \psi_{i}(\xi) | X, P_{h} \rangle \langle X, P_{h} | \bar{\psi}_{j}(0) | 0 \rangle_{\xi_{-}=0}$$









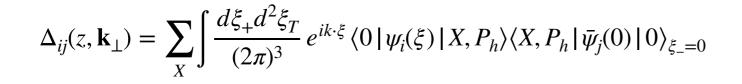
$$x_B \sim x = \frac{k_+}{P_+}$$
 $\xi_- \leftrightarrow k_+$ $\xi_T \leftrightarrow k_\perp$

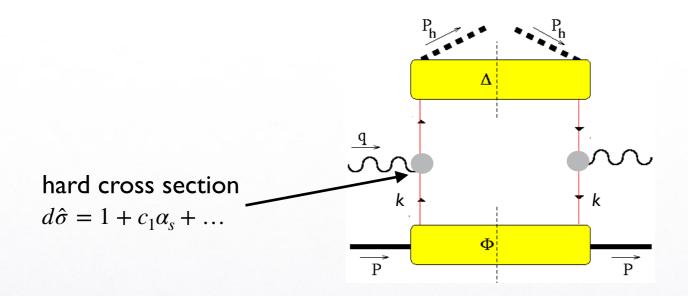
$$\xi_- \leftrightarrow k_+$$
 $\xi_T \leftrightarrow k_\perp$

SIDIS: factorisation

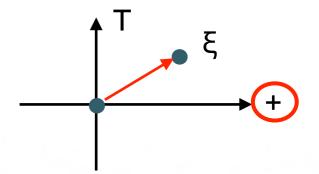
non-local correlators

$$z_h \sim z = \frac{P_{h-}}{k_-} \qquad \begin{array}{c} \xi_+ \leftrightarrow k_- \\ \xi_T \leftrightarrow k_\perp \end{array}$$

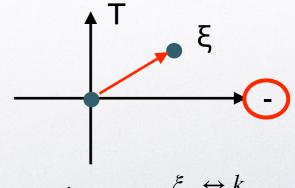




$$\Phi_{ij}(x, \mathbf{k}_{\perp}, S) = \int \frac{d\xi_{-}d^{2}\xi_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_{j}(0) U_{[0,\xi]} \psi_{i}(\xi) | P, S \rangle_{\xi_{+}=0}$$



flipping LC-dominant direction

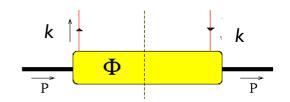


$$x_B \sim x = \frac{k_+}{P_+}$$
 $\xi_- \leftrightarrow k_+$ $\xi_T \leftrightarrow k_\perp$

$$\xi_{-} \leftrightarrow k_{\perp}$$
 $\xi_{T} \leftrightarrow k_{\perp}$

parton-parton correlator

linear combination of all tensor structures with k, P, S, subject to Hermiticity and parity-invariance (see later about time reversal) expansion of Φ in powers of M/P_+ . At leading twist:



$$\begin{split} \Phi(x,\mathbf{k}_{\perp},S) &= \frac{1}{2} \Big[f_{1} \gamma_{-} - f_{1T}^{\perp} \frac{(\mathbf{k}_{\perp} \times \mathbf{S}_{T}) \cdot \hat{\mathbf{P}}}{M} \gamma_{-} \\ &+ g_{1L} S_{L} \gamma_{5} \gamma_{-} + g_{1T} \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{T}}{M} \gamma_{5} \gamma_{-} \\ \sigma^{\mu\nu} &= \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right] \\ &+ h_{1T} i \sigma_{-\nu} \gamma_{5} S_{T}^{\nu} + h_{1L}^{\perp} i \sigma_{-\nu} \gamma_{5} S_{L} \frac{k_{\perp}^{\nu}}{M} \\ &+ h_{1T}^{\perp} \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{T}}{M} i \sigma_{-\nu} \gamma_{5} \frac{k_{\perp}^{\nu}}{M} - h_{1}^{\perp} \sigma_{-\nu} \frac{k_{\perp}^{\nu}}{M} \Big] \end{split}$$

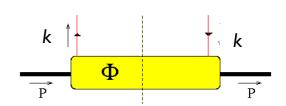
Notations:

t = f unpolarized parton t = g longitudinally polarized parton t = h transversely polarized parton

Notations:

parton-parton correlator

linear combination of all tensor structures with k, P, S, subject to Hermiticity and parity-invariance (see later about time reversal) expansion of Φ in powers of M/P_+ . At leading twist:



$$\begin{split} \Phi(x,\mathbf{k}_{\perp},S) &= \frac{1}{2} \Big[\mathbf{f}_{1} \gamma_{-} - \mathbf{f}_{1T}^{\perp} \frac{(\mathbf{k}_{\perp} \times \mathbf{S}_{T}) \cdot \hat{\mathbf{P}}}{M} \gamma_{-} \\ &\quad + g_{1L} S_{L} \gamma_{5} \gamma_{-} + g_{1T} \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{T}}{M} \gamma_{5} \gamma_{-} \\ \sigma^{\mu\nu} &= \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right] \\ &\quad + h_{1T} i \sigma_{-\nu} \gamma_{5} S_{T}^{\nu} + h_{1L}^{\perp} i \sigma_{-\nu} \gamma_{5} S_{L} \frac{k_{\perp}^{\nu}}{M} \\ &\quad + h_{1T}^{\perp} \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{T}}{M} i \sigma_{-\nu} \gamma_{5} \frac{k_{\perp}^{\nu}}{M} - h_{1}^{\perp} \sigma_{-\nu} \frac{k_{\perp}^{\nu}}{M} \Big] \end{split}$$

t = f unpolarized partont = g longitudinally polarized parton

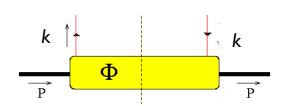
t = h transversely polarized parton

leading twist X = L longitudinally polarized hadron X = T transversely polarized hadron

 $t_{1X}^{(\perp)}(x, \mathbf{k}_{\perp}^2)$ waited by k_{\perp}^i

parton-parton correlator

linear combination of all tensor structures with k, P, S, subject to Hermiticity and parity-invariance (see later about time reversal) expansion of Φ in powers of M/P₊. At leading twist:



$$\begin{split} \Phi(x,\mathbf{k}_{\perp},S) &= \frac{1}{2} \left[f_{1} \gamma_{-} - f_{1T}^{\perp} \frac{(\mathbf{k}_{\perp} \times \mathbf{S}_{T}) \cdot \hat{\mathbf{P}}}{M} \gamma_{-} & \frac{1}{2} \mathrm{Tr} \left[\Phi \gamma_{+} \right] \equiv \Phi^{\left[\gamma_{+}\right]} \rightarrow \\ &+ g_{1L} S_{L} \gamma_{5} \gamma_{-} + g_{1T} \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{T}}{M} \gamma_{5} \gamma_{-} & \frac{1}{2} \mathrm{Tr} \left[\Phi \gamma_{+} \gamma_{5} \right] \equiv \Phi^{\left[\gamma_{+} \gamma_{5}\right]} \rightarrow \\ \sigma^{\mu\nu} &= \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right] & + h_{1T} i \sigma_{-\nu} \gamma_{5} S_{T}^{\nu} + h_{1L}^{\perp} i \sigma_{-\nu} \gamma_{5} S_{L} \frac{k_{\perp}^{\nu}}{M} & \frac{1}{2} \mathrm{Tr} \left[\Phi i \sigma_{+i} \gamma_{5} \right] \equiv \Phi^{\left[i\sigma_{+i} \gamma_{5}\right]} \\ &+ h_{1T}^{\perp} \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{T}}{M} i \sigma_{-\nu} \gamma_{5} \frac{k_{\perp}^{\nu}}{M} - h_{1}^{\perp} \sigma_{-\nu} \frac{k_{\perp}^{\nu}}{M} \right] & \rightarrow \mathbf{4} \, \mathsf{TMDPD} \end{split}$$

$$\frac{1}{2} \left[f_{1} \gamma_{-} - f_{1T}^{\perp} \frac{(\mathbf{k}_{\perp} \times \mathbf{S}_{T}) \cdot \mathbf{P}}{M} \gamma_{-} \qquad \qquad \frac{1}{2} \text{Tr} \left[\Phi \gamma_{+} \right] \equiv \Phi^{[\gamma_{+}]} \rightarrow \mathbf{2} \text{ TMDPDFs} \text{ for unpol. parton} \\
+ g_{1L} S_{L} \gamma_{5} \gamma_{-} + g_{1T} \frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{T}}{M} \gamma_{5} \gamma_{-} \qquad \qquad \frac{1}{2} \text{Tr} \left[\Phi \gamma_{+} \gamma_{5} \right] \equiv \Phi^{[\gamma_{+} \gamma_{5}]} \rightarrow \mathbf{2} \text{ TMDPDFs} \text{ for long. pol. parton}$$

$$\frac{1}{2} \text{Tr} \left[\Phi i \sigma_{+i} \gamma_5 \right] \equiv \Phi^{[i\sigma_{+i}\gamma_5]}$$

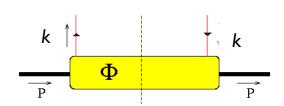
$$\rightarrow \text{4 TMDPDFs for transv. pol. parton along } i$$

 $t_{1X}^{(\perp)}(x, \mathbf{k}_{\perp}^2)$ waited by k_{\perp}^i Notations: leading twist X = L longitudinally polarized hadron X = T transversely polarized hadron

t = f unpolarized parton t = g longitudinally polarized parton t = h transversely polarized parton

parton-parton correlator

linear combination of all tensor structures with k, P, S, subject to Hermiticity and parity-invariance (see later about time reversal) expansion of Φ in powers of M/P₊. At leading twist:



$$\frac{1}{2} \text{Tr} [\Phi \gamma_{+}] \equiv \Phi^{[\gamma_{+}]} \rightarrow \text{2 TMDPDFs for unpol. parton}$$

$$\frac{1}{2} \text{Tr} [\Phi \gamma_{+} \gamma_{5}] = \Phi^{[\gamma_{+} \gamma_{5}]} \rightarrow \text{2 TMDPDFs for long pol. parton}$$

$$\frac{1}{2} \text{Tr} \left[\Phi i \sigma_{+i} \gamma_5 \right] \equiv \Phi^{[i\sigma_{+i}\gamma_5]}$$

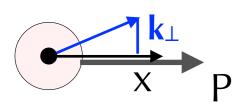
$$\rightarrow \frac{\text{4 TMDPDFs}}{\text{for transv. pol. parton along } i}$$

 $t_{1X}^{(\perp)}(x, \mathbf{k}_{\perp}^2)$ waited by k_{\perp}^i Notations: leading twist X = L longitudinally polarized hadron X = T transversely polarized hadron

t = f unpolarized parton t = g longitudinally polarized parton t = h transversely polarized parton

survive upon $d\mathbf{k}_{\perp} \rightarrow \text{collinear PDF}$

The TMD PDF table



TMD PDFs $(x, k_{\perp}; Q^2)$ at leading twist for a spin-1/2 hadron (Nucleon)

quark

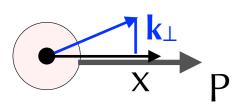
nucleon

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	C	$f_1 = \bullet$		$h_1^{\perp} = $ \bullet \bullet
	L		$g_1 = -$	$h_{1L}^{\perp} = \bigcirc - \bigcirc$
	т	$f_{1T}^{\perp} = \bigodot$ - \bigodot	$g_{1T} = \stackrel{\bullet}{\smile} - \stackrel{\bullet}{\smile}$	$h_1 = \stackrel{\bullet}{\bigcirc} - \stackrel{\bullet}{\bigcirc}$
		11		$h_{1T}^{\perp} = \bigodot - \bigodot$

Each entry has a nice probabilistic interpretation

N.B. Using appropriate projections $\Phi^{[\Gamma]}$ one can extract also subleading-twist TMD PDFs, but no probabilistic interpretation

The TMD PDF table



TMD PDFs $(x, k_{\perp}; Q^2)$ at leading twist for a spin-1/2 hadron (Nucleon)

quark

nucleon

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
on	כ	$f_1 = \bullet$		$h_1^{\perp} = \bigcirc - \bigcirc$
Nucleon Polarization	L		$g_1 = -$	$h_{1L}^{\perp} = \bigcirc - \bigcirc$
Nucleon	Т	$f_{1T}^{\perp} = \stackrel{\bullet}{\bullet} - \stackrel{\bullet}{\bullet}$	$g_{1T} = \stackrel{\bullet}{\longleftarrow} - \stackrel{\bullet}{\bigodot}$	$h_1 = \stackrel{\bigstar}{\bullet} - \stackrel{\bigstar}{\bullet}$
	'	Υ11		$h_{1T}^{\perp} = \bigodot - \bigodot$
		Sivers	worm gear	

nomenclature

Boer-Mulders no-name

helicity Kotzinian-Mulders

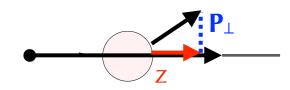
transversity

pretzelocity

Each entry has a nice probabilistic interpretation

N.B. Using appropriate projections $\Phi^{[\Gamma]}$ one can extract also subleading-twist TMD PDFs, but no probabilistic interpretation

The TMD FF table



TMD FFs (\mathbf{Z} , \mathbf{P}_{\perp} ; \mathbf{Q}^2) at leading twist (and $S_h \leq 1/2$)

quark

•

†

pove hadron

-

1

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	D_1 •		H_1^{\perp} 8 - \mathbf{Q}
	L		$G_{1L} \longrightarrow - \bigcirc \longrightarrow$	H_{1L}^{\perp} $\bullet \bullet - \bullet \bullet$
	Т	$D_{1 ext{T}}^{\perp}$ - $lacksquare$	G_{1T} \bullet - \bullet	H_1 \bullet \bullet \bullet \bullet \bullet \bullet

nomenclature

no-name Collins

...

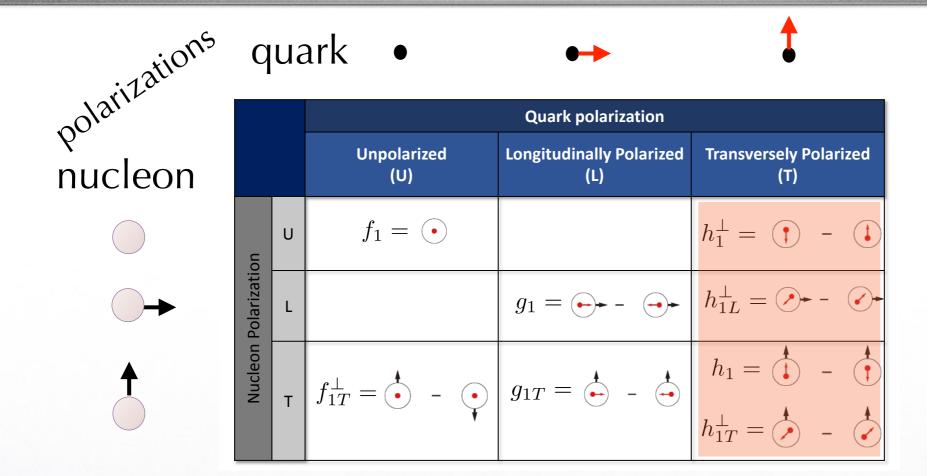
...

polarising FF

Each entry has a nice probabilistic interpretation

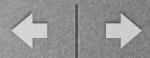
N.B. Using appropriate projections $\Phi^{[\Gamma]}$ one can extract also subleading-twist TMD FFs, but no probabilistic interpretation

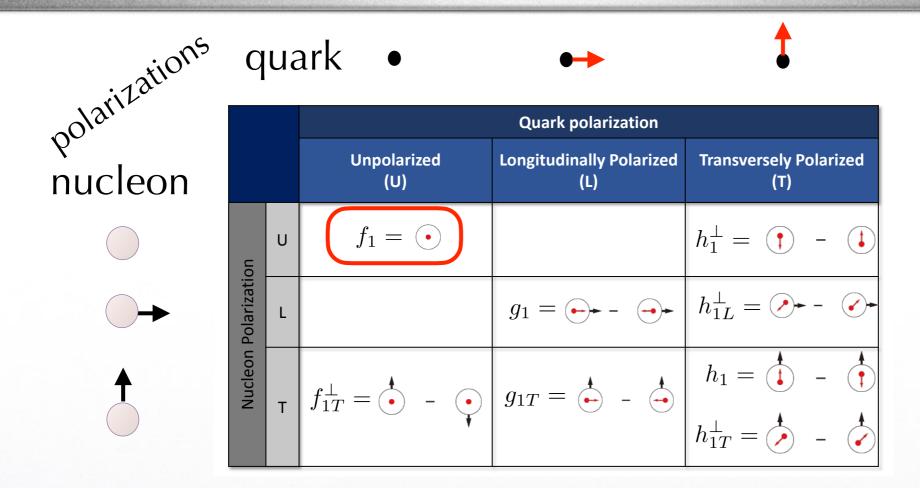
The chiral-odd TMD PDFs



all TMD PDFs belonging to right column involve transverse polarization of quarks, hence they are "chiral-odd" and are suppressed in perturbative QCD as m_q/Q . Similarly to transversity h₁, they can appear in the cross section at leading twist if paired to another chiral-odd structure.

The unpolarized TMD PDF





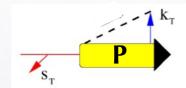
 $f_1^q(x, \mathbf{k}_\perp^2)$ probability density of finding a quark q with "longitudinal" (along "+" LC direction) fraction x of nucleon momentum, and transverse momentum \mathbf{k}_{\perp}

The Sivers TMD PDF

nucleon

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
on	U	$f_1 = \bullet$		$h_1^{\perp} = $ \bullet \bullet
Nucleon Polarization	L		$g_1 = -$	$h_{1L}^{\perp} = \bigcirc - \bigcirc$
	т	$f_{1T}^{\perp} = \stackrel{\bullet}{\bullet} - \stackrel{\bullet}{\bullet}$	$g_{1T} = \stackrel{\bigstar}{\bigodot} - \stackrel{\bigstar}{\bigodot}$	$h_1 = $ \bullet \bullet
				$h_{1T}^{\perp} = \bigodot - \bigodot$

$$\frac{1}{2} \text{Tr} \left[\Phi \gamma_{+} \right] \rightarrow f_{1} - f_{1T}^{\perp} \frac{(\mathbf{k}_{\perp} \times \mathbf{S}_{T}) \cdot \hat{\mathbf{P}}}{M} \qquad \qquad \mathbf{S}_{\mathsf{T}} \cdot \mathbf{k}_{\perp} \times \mathbf{P}$$



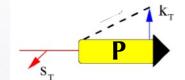
$$\mathbf{S}_{\mathsf{T}} \cdot \mathbf{k}_{\perp} \times \mathbf{P}$$

The Sivers TMD PDF

nucleon

			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	C	$f_1 = \bullet$		$h_1^{\perp} = $ \bullet \bullet
	L		$g_1 = -$	$h_{1L}^{\perp} = \bigcirc - \bigcirc$
	т	$f_{1T}^{\perp} = \bigodot$ - \bigodot	$g_{1T} = \begin{array}{c} \bullet \\ \bullet \end{array}$	$h_1 = $ \bullet \bullet
	'			$h_{1T}^{\perp} = \bigodot - \bigodot$

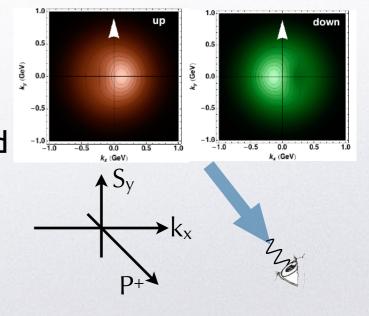
$$\frac{1}{2} \operatorname{Tr} \left[\Phi \gamma_{+} \right] \rightarrow f_{1} - f_{1T}^{\perp} \frac{(\mathbf{k}_{\perp} \times \mathbf{S}_{T}) \cdot \hat{\mathbf{P}}}{M} \qquad \qquad \mathbf{S}_{\mathsf{T}} \cdot \mathbf{k}_{\perp} \times \mathbf{P}$$



$$\mathbf{S}_{\mathsf{T}} \cdot \mathbf{k}_{\perp} \times \mathbf{P}$$

Sivers effect: how the momentum distribution of quarks is distorted by the transverse polarization of parent nucleon ("spin-orbit" correlation)

Sivers function $f_{1T}^{\perp} \rightarrow$ access to quark orbital angular momentum

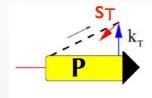


The Boer-Mulders TMD PDF

polari Za
nucleon
†

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} = \begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ \end{array}$
	L		$g_1 = -$	$h_{1L}^{\perp} = \bigcirc - \bigcirc -$
	Т	$f_{1T}^{\perp} = \stackrel{\bullet}{\bullet} - \stackrel{\bullet}{\bullet}$	$g_{1T} = \bigodot$ - \bigodot	$h_1 = \stackrel{\bullet}{\bigcirc} - \stackrel{\bullet}{\bigcirc}$
	•	Y		$h_{1T}^{\perp} = \bigodot - \bigodot$

$$\frac{1}{2} \text{Tr} \left[\Phi i \sigma_{+i} \gamma_5 \right] \rightarrow \dots + h_1^{\perp} \frac{(\mathbf{k}_{\perp} \times \mathbf{s}_T) \cdot \hat{\mathbf{P}}}{M}$$



$$\mathbf{s}_{\mathsf{T}} \cdot \mathbf{k}_{\perp} \times \mathbf{P}$$

Boer-Mulders effect: "spin-orbit" correlation at partonic level

Forbidden combinations

polarizations

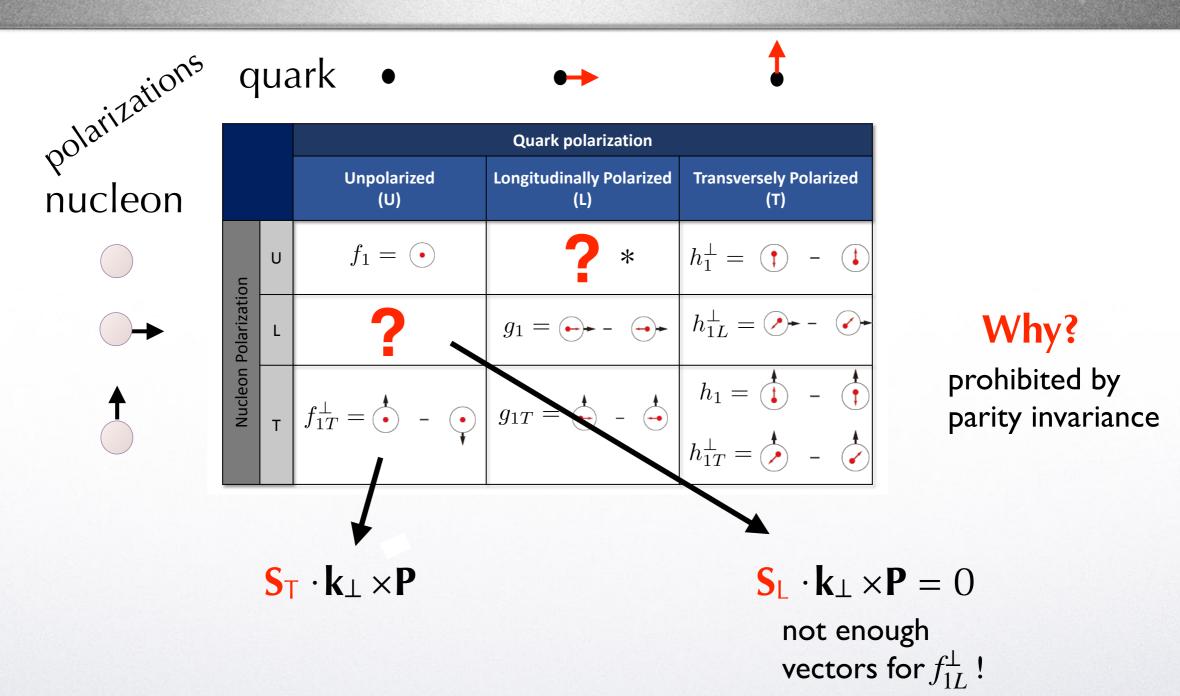
nucleon

quark

		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
on	U	$f_1 = \bullet$		$h_1^{\perp} = \begin{array}{c} \bullet \\ \bullet \end{array} - \begin{array}{c} \bullet \\ \bullet \end{array}$
Polarization	L	?	$g_1 = -$	$h_{1L}^{\perp} = \bigcirc - \bigcirc$
Nucleon	Т	$f_{1T}^{\perp} = \bigodot$ - \bigodot	$g_{1T} = \bigodot$ - \bigodot	$h_1 = \begin{array}{c} \bullet \\ \bullet $
		·		$h_{1T}^{\perp} = \bigcirc - \bigcirc$

Why?

Forbidden combinations



^{*} similarly for "swapped" combination

T-odd TMD PDFs

Sivers and Boer-Mulders TMD PDFs vanish without gauge link U

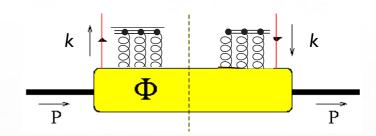
$$\Phi_{ij}(x, \mathbf{k}_{\perp}, S) = \int \frac{d\xi_{-}d^{2}\xi_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_{j}(0) U_{[0,\xi]} \psi_{i}(\xi) | P, S \rangle_{\xi_{+}=0}$$

$$U_{[a,b]} = \mathscr{P} \exp \left[-ig \int_{a}^{b} d\eta_{\mu} A^{\mu}(\eta) \right]$$

They are generated by interference of different channels.

(for example, f_{1T}^\perp can be reproduced by interference of model LC wave functions with different orbital angular momentum)

Gauge link *U* represents the residual color interactions that generate the necessary phase difference for the interference. As such, time reversal puts no constraints on these structures.



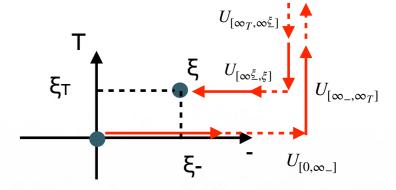
Sivers and Boer-Mulders TMD PDFs are conventionally named "T-odd" TMD PDFs

The gauge link

$$\Phi_{ij}(x, \mathbf{k}_{\perp}, S) = \int \frac{d\xi_{-}d^{2}\xi_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_{j}(0) \mathbf{U}_{[0,\xi]} \psi_{i}(\xi) | P, S \rangle_{\xi_{+}=0}$$

TMD factorisation for SIDIS process suggests a trick similar to collinear framework case:

$$\begin{split} \langle P, S \,|\, \bar{\psi}(0)\,\, U_{[0,\xi]}\,\psi(\xi)\,|\, P, S \rangle &= \langle P, S \,|\, \bar{\psi}(0)\,\, U_{[0,\infty_{-}]}\,\, U_{[\infty_{-},\infty_{T}]}\,\, U_{[\infty_{T},\infty_{\xi_{-}}]}\,\, U_{[\infty_{\xi},\xi]}\,\psi(\xi)\,|\, P, S \rangle \\ &= \langle P, S \,|\, \{\bar{\psi}(0)\}\, \{\psi(\xi)\}\,|\, P, S \rangle \end{split}$$

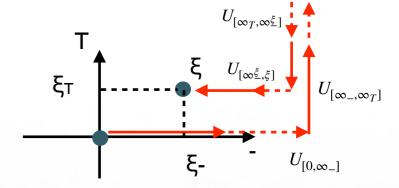


The gauge link

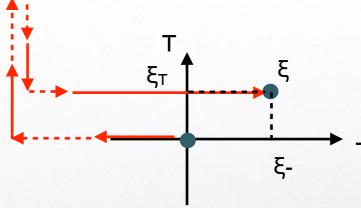
$$\Phi_{ij}(x, \mathbf{k}_{\perp}, S) = \int \frac{d\xi_{-}d^{2}\xi_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_{j}(0) \mathbf{U}_{[0,\xi]} \psi_{i}(\xi) | P, S \rangle_{\xi_{+}=0}$$

TMD factorisation for SIDIS process suggests a trick similar to collinear framework case:

$$\begin{split} \langle P, S \,|\, \bar{\psi}(0)\,\, U_{[0,\xi]}\,\psi(\xi)\,|\, P, S \rangle &= \langle P, S \,|\, \bar{\psi}(0)\,\, U_{[0,\infty_{-}]}\,\, U_{[\infty_{-},\infty_{T}]}\,\, U_{[\infty_{T},\infty_{-}^{\xi}]}\,\, U_{[\infty_{-}^{\xi},\xi]}\,\psi(\xi)\,|\, P, S \rangle \\ \\ &= \langle P, S \,|\, \{\bar{\psi}(0)\}\,\, \{\psi(\xi)\}\,|\, P, S \rangle \end{split}$$



In Drell-Yan process, TMD factorisation gives the following path for gauge link:

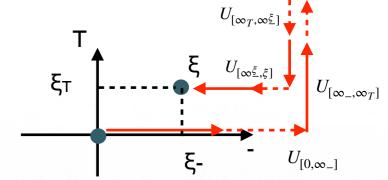


The gauge link

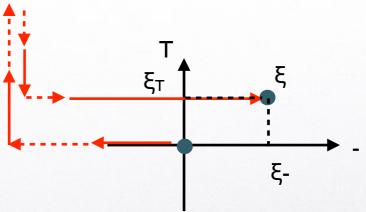
$$\Phi_{ij}(x, \mathbf{k}_{\perp}, S) = \int \frac{d\xi_{-}d^{2}\xi_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \langle P, S | \bar{\psi}_{j}(0) \mathbf{U}_{[0,\xi]} \psi_{i}(\xi) | P, S \rangle_{\xi_{+}=0}$$

TMD factorisation for SIDIS process suggests a trick similar to collinear framework case:

$$\begin{split} \langle P, S \,|\, \bar{\psi}(0)\,\, U_{[0,\xi]}\,\psi(\xi)\,|\, P, S \rangle &= \langle P, S \,|\, \bar{\psi}(0)\,\, U_{[0,\infty_{-}]}\,\, U_{[\infty_{-},\infty_{T}]}\,\, U_{[\infty_{T},\infty_{-}^{\xi}]}\,\, U_{[\infty_{-}^{\xi},\xi]}\,\psi(\xi)\,|\, P, S \rangle \\ \\ &= \langle P, S \,|\, \{\bar{\psi}(0)\}\, \{\psi(\xi)\}\,|\, P, S \rangle \end{split}$$



In Drell-Yan process, TMD factorisation gives the following path for gauge link:



Notations: gauge link $U_{[+]}$ for SIDIS; $U_{[-]}$ for Drell-Yan

breaking universality!(but in a calculable way)

Process dependence

Sivers

$$f_{1T}^{\perp[+]} = -f_{1T}^{\perp[-]}$$

Boer-Mulders

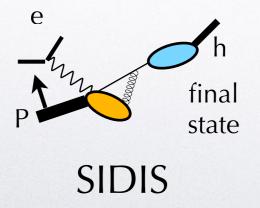
$$h_1^{\perp[+]} = -h_1^{\perp[-]}$$

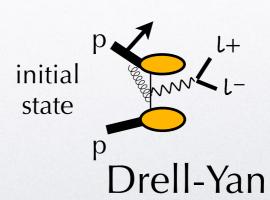
SIDIS

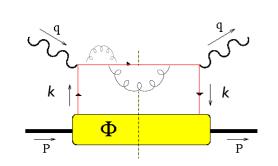
Drell-Yan

Prediction of QCD based on interplay between time-reversal and (color) gauge symmetry Intense experimental work to test this prediction (see next lecture)

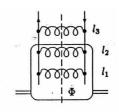
Intuition: in SIDIS, gauge link $U_{[+]}$ describes color final-state interactions in Drell-Yan, gauge link $U_{[-]}$ describes color initial-state interactions





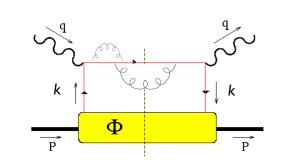




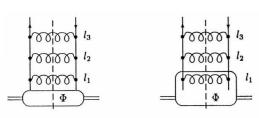


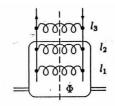
inclusive DIS: QCD corrections generate soft and collinear divergences sum of real and virtual diagrams cancel soft divergences collinear divergences reabsorbed in collinear PDFs

factorisation scale μ determines what is perturbative (calculable) from what is non perturbative (inside PDFs) \rightarrow scale dependence given by DGLAP evolution eq.'s

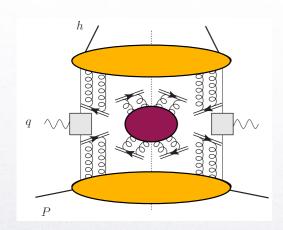


inclusive DIS: QCD corrections generate soft and collinear divergences sum of real and virtual diagrams cancel soft divergences collinear divergences reabsorbed in collinear PDFs



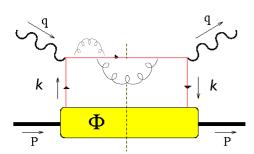


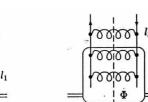
factorisation scale µ determines what is perturbative (calculable) from what is non perturbative (inside PDFs) → scale dependence given by DGLAP evolution eq.'s

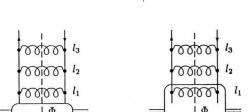


SIDIS: soft divergences do not cancel anymore new class of light-cone (rapidity) divergences

need to introduce a soft factor convoluted with TMD PDFs and FFs

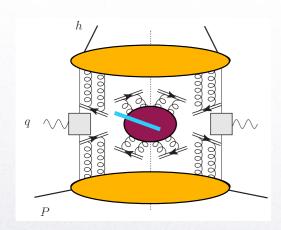






inclusive DIS: QCD corrections generate soft and collinear divergences sum of real and virtual diagrams cancel soft divergences collinear divergences reabsorbed in collinear PDFs

factorisation scale μ determines what is perturbative (calculable) from what is non perturbative (inside PDFs) \rightarrow scale dependence given by DGLAP evolution eq.'s



SIDIS: soft divergences do not cancel anymore new class of light-cone (rapidity) divergences

need to introduce a **soft factor** convoluted with TMD PDFs and FFs need to introduce a new "rapidity scale" ζ that regulates the rapidity divergences and splits soft factor content between TMD PDFs and FFs \rightarrow new scale dependence

DGLAP eq.'s
$$\frac{d \log \text{TMD}}{d \log \mu} = \gamma_D(\mu, \zeta)$$
 CSS eq.'s $\frac{d \log \text{TMD}}{d \log \sqrt{\zeta}} = K(\mu)$

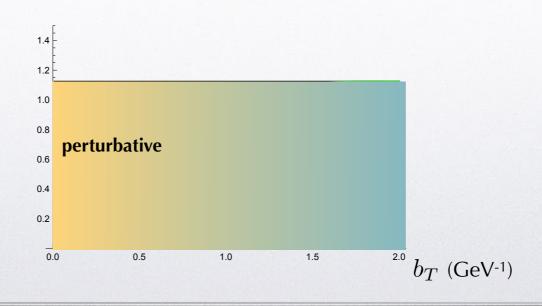
TMD evolution from initial (μ_0,ζ_0) scales is better studied in position space $b_T \leftrightarrow k_\perp$

For $b_T \ll 1/\Lambda_{QCD}$ perturbation theory is valid

$$f_1^q(x,b_T^2;\mu,\zeta) =$$

$$f_1^q(x,b_T^2;\mu,\zeta) = \qquad \text{Evo}\Big[(\mu,\zeta) \leftarrow (\mu_0,\zeta_0)\Big] \qquad f_1^q(x,b_T^2;\mu_0,\zeta_0)$$

$$f_1^q(x, b_T^2; \mu_0, \zeta_0)$$

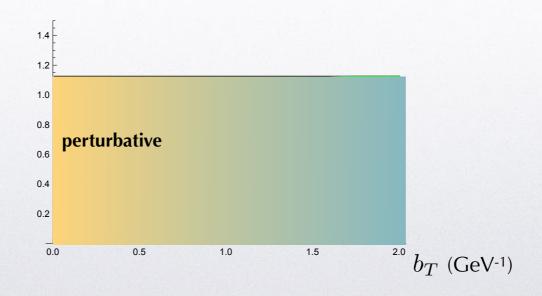


TMD evolution from initial (μ_0,ζ_0) scales is better studied in position space $b_T \leftrightarrow k_\perp$

For $b_T \ll 1/\Lambda_{QCD}$ perturbation theory is valid

$$\begin{split} f_1^q(x,b_T^2;\mu,\zeta) = & \quad \text{Evo}\Big[(\mu,\zeta) \leftarrow (\mu_0,\zeta_0)\Big] \qquad f_1^q(x,b_T^2;\mu_0,\zeta_0) \\ & \quad \text{DGLAP+CSS eqs. } \downarrow \\ & \quad \exp\Big[\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \, \gamma_D(\mu,\zeta) + K(\mu_0) \log \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\Big] \end{split}$$

$$f_1^q(x, b_T^2; \mu_0, \zeta_0)$$



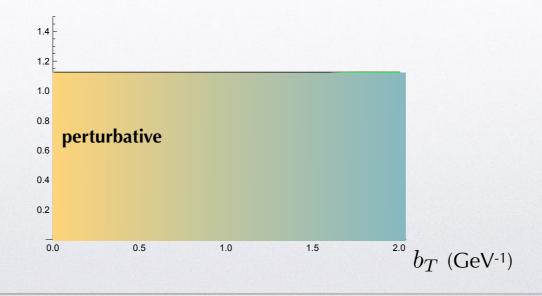
TMD evolution from initial (μ_0,ζ_0) scales is better studied in position space b_T $(\leftrightarrow k_\perp)$

For $b_T \ll 1/\Lambda_{OCD}$ perturbation theory is valid

$$f_1^q(x,b_T^2;\mu,\zeta) = \operatorname{Evo}\left[(\mu,\zeta) \leftarrow (\mu_0,\zeta_0)\right]$$

$$\operatorname{DGLAP+CSS\ eqs.} \downarrow$$

$$\exp\left[\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_D(\mu,\zeta) + K(\mu_0) \log \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right]$$



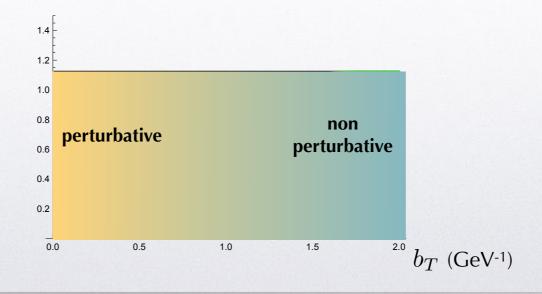
More on factorisation → evolution

TMD evolution from initial (μ_0,ζ_0) scales is better studied in position space b_T $(\leftrightarrow k_\perp)$

For $b_T \ll 1/\Lambda_{OCD}$ perturbation theory is valid

$$f_1^q(x,b_T^2;\mu,\zeta) = \text{Evo}\left[(\mu,\zeta) \leftarrow (\mu_0,\zeta_0)\right]$$

$$\text{DGLAP+CSS eqs.} \downarrow \\ \exp\left[\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_D(\mu,\zeta) + K(\mu_0) \log \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right]$$
 For large b_T perturbation th.
$$K \to K + g_{NP}(b_T)$$
 breaks down



breaks down

More on factorisation \rightarrow evolution

TMD evolution from initial (μ_0,ζ_0) scales is better studied in position space b_T $(\leftrightarrow k_\perp)$

For $b_T \ll 1/\Lambda_{QCD}$ perturbation theory is valid

$$f_1^q(x,b_T^2;\mu,\zeta) = \text{Evo}\Big[(\mu,\zeta) \leftarrow (\mu_0,\zeta_0)\Big] \qquad f_1^q(x,b_T^2;\mu_0,\zeta_0) \qquad \text{permode } f_1^q(x,b_T^2;\mu_0,\zeta_0) \qquad \text{permo$$

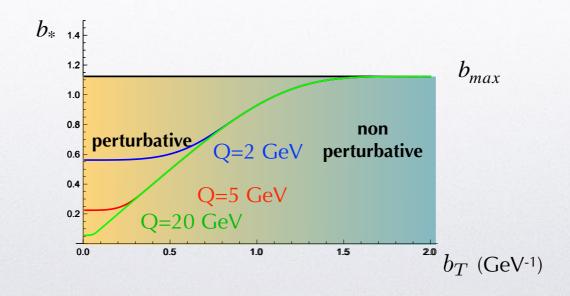
Choice of matching scale

$$\mu = \sqrt{\zeta} = Q$$

$$\mu_0 = \sqrt{\zeta_0} = \mu_b = \frac{2e^{-\gamma_E}}{b_*(b_T)}$$

$$b_{max} = 2e^{-\gamma_E}$$

$$b_{min} = \frac{2e^{-\gamma_E}}{O}$$



breaks down

More on factorisation → evolution

TMD evolution from initial (μ_0,ζ_0) scales is better studied in position space b_T $(\leftrightarrow k_{\perp})$

For $b_T \ll 1/\Lambda_{OCD}$ perturbation theory is valid

$$f_1^q(x,b_T^2;\mu,\zeta) = \operatorname{Evo}\left[(\mu,\zeta) \leftarrow (\mu_0,\zeta_0)\right]$$

$$\operatorname{DGLAP+CSS\ eqs.} \downarrow \\ \exp\left[\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_D(\mu,\zeta) + K(\mu_0) \log \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right]$$
 For large b_T perturbation th.
$$K \to K + g_{NP}(b_T)$$

$$f_1^q(x,b_T^2;\mu_0,\zeta_0) \qquad \text{perturbative splitting} \\ \downarrow \text{OPE on PDFs} \qquad \qquad \qquad + \dots \\ = \sum_i \left[C_{q \to i}(x,b_T^2;\mu_0,\zeta_0) \otimes f_1^i(x,\mu_0) \right] \\ \times F_{NP}(b_T)$$

Final formula
$$f_1^q(x, b_T^2; Q^2) = \exp\left[\int_{\mu_b}^Q \frac{d\mu'}{\mu'} \gamma_D(Q) + K(\mu_b) \log(Q/\mu_b) + g_{NP}(b_T) \log(Q/Q_0)\right] \sum_i \left[C_{q \to i} \otimes f_1^i\right](x, b_T, \mu_b) F_{NP}(b_T, Q_0)$$

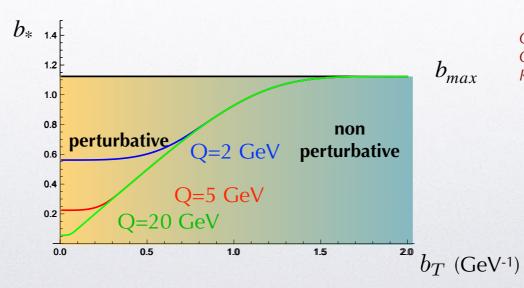
Choice of matching scale

$$\mu = \sqrt{\zeta} = Q$$

$$\mu_0 = \sqrt{\zeta_0} = \mu_b = \frac{2e^{-\gamma_E}}{b_*(b_T)}$$

$$b_{max} = 2e^{-\gamma_E}$$

$$b_{min} = \frac{2e^{-\gamma_E}}{Q}$$



Collins, Soper, Sterman, N.P. **B250** (85) Collins, "Foundations of Perturbative QCD" (2011) Rogers and Aybat, P.R. D**83** (11)

More on factorisation → evolution

others schemes possible:

Laenen, Sterman Vogelsang, P.R.L. **84** (00) Bozzi et al., N.P. **B737** (06) Echevarria et al., E.P.J. **C73** (13) ... CSS evolution formula for TMD

$$f_{1}^{q}(x, b_{T}^{2}; Q^{2}) = \exp\left[\int_{\mu_{b}}^{Q} \frac{d\mu'}{\mu'} \gamma_{D}(Q) + K(\mu_{b})\log(Q/\mu_{b}) + g_{NP}(b_{T})\log(Q/Q_{0})\right] \sum_{i} \left[C_{q \to i} \otimes f_{1}^{i}\right](x, b_{T}, \mu_{b}) F_{NP}(b_{T}, Q_{0})$$

$$\mu_{b} = \frac{2e^{-\gamma_{E}}}{b_{*}(b_{T})}$$

More on factorisation → evolution

others schemes possible:

Laenen, Sterman Vogelsang, P.R.L. **84** (00) Bozzi et al., N.P. **B737** (06) Echevarria et al., E.P.J. **C73** (13) ... CSS evolution formula for TMD

$$f_1^q(x, b_T^2; Q^2) = \exp\left[\int_{\mu_b}^{Q} \frac{d\mu'}{\mu'} \gamma_D(Q) + K(\mu_b) \log(Q/\mu_b) + (g_{NP})b_T \log(Q/Q_0)\right] \sum_i \left[C_{q \to i} \otimes f_1^i\right](x, b_T(\mu_b) F_{NP}(b_T, Q_0)$$

$$2e^{-\gamma_E}$$

arbitrariness of nonperturbative components

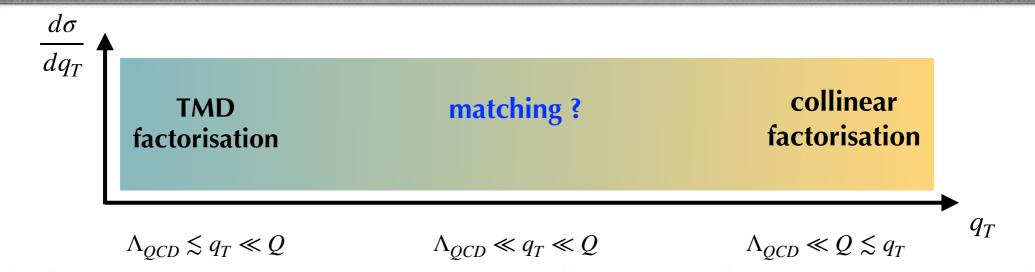
$$\mu_b = \frac{2e^{-\gamma_E}}{b_*(b_T)}$$

- choice of $b*(b_T)$ functional form
- choice of $g_{NP}(b_T)$ functional form
- choice of $F_{NP}(b_T,Q_0)$ functional form

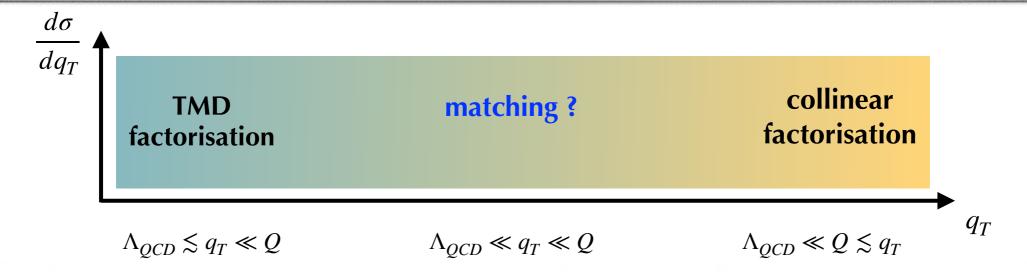
each one affects evolution: how k_{\perp} -distribution changes with scale

ightarrow source of theoretical bias/uncertainty need to be constrained by experimental data with large lever arm in Q^2 EIC is the suitable machine for that

Matching problem



Matching problem

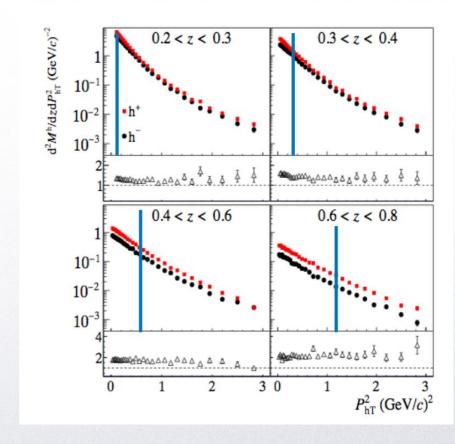


relevant also for phenomenological analysis

Example:

COMPASS unpolarized SIDIS multiplicity bin $\langle Q^2 \rangle = 9.78~{\rm GeV^2}$, $\langle x \rangle = 0.149$

TMD factorisation valid for $q_T^2 = \frac{P_{hT}^2}{z^2} \ll Q^2$ highlight in picture the $\frac{P_{hT}^2}{z^2} = 0.25 \, Q^2$

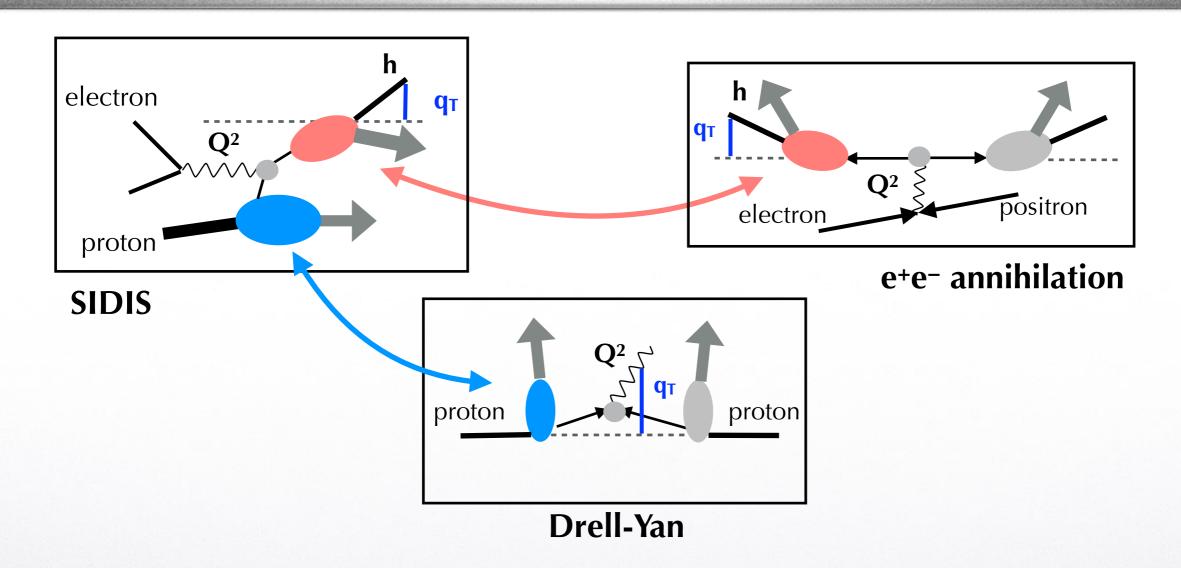


COMPASS, arXiv:1709.07374

Outline

- Where to find TMDs
 - structure functions for various processes
 - prominent examples of phenomenological extractions of TMDs
 - perspectives with the EIC

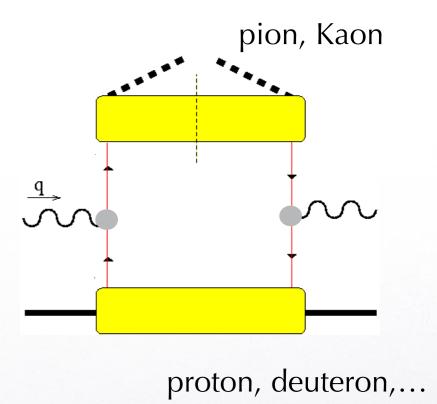
TMDs: factorisation theorems



In order to extract information on TMD PDFs and TMD FFs, it is desirable to perform global fits, but this is not yet a standard

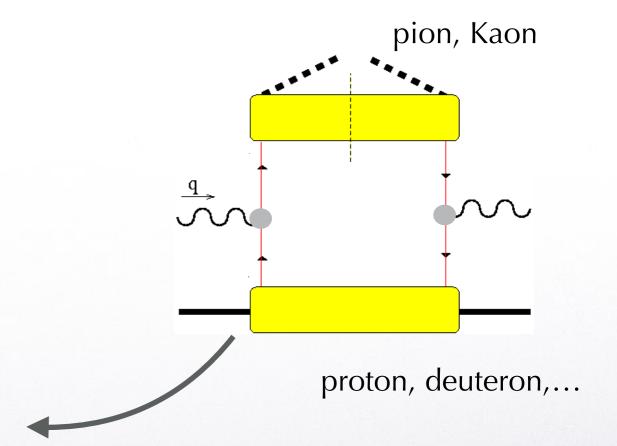
(also because, for example, very few data on polarized Drell-Yan are currently available)

Example: SIDIS



Example: SIDIS

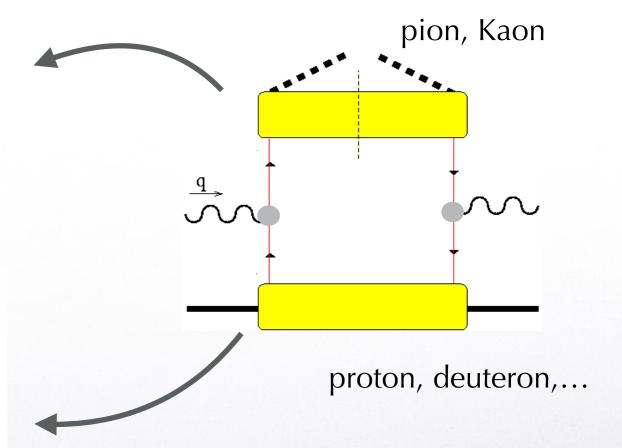
			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
uc	C	$f_1 = \bullet$		$h_1^{\perp} = $ \bullet \bullet
Polarization	L		$g_1 = -$	$h_{1L}^{\perp} = \bigcirc - \bigcirc -$
Nucleon	T	$f_{1T}^{\perp} = \bigodot$ - \bigodot	$g_{1T} = \bigodot$ - \bigodot	$h_1 = \stackrel{\bigstar}{\bullet} - \stackrel{\bigstar}{\bullet}$
				$h_{1T}^{\perp} = \bigodot - \bigodot$



			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
าก	U	D_1 \odot		H_1^{\perp} \bullet - \circ

			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
uc	C	$f_1 = \bullet$		$h_1^{\perp} = $ \bullet \bullet
Polarization	L		$g_1 = -$	$h_{1L}^{\perp} = \bigcirc - \bigcirc -$
Nucleon	T	$f_{1T}^{\perp} = \bigodot$ - \bigodot	$g_{1T} = \bigodot$ - \bigodot	$h_1 = \stackrel{\bigstar}{\bullet} - \stackrel{\bigstar}{\bullet}$
				$h_{1T}^{\perp} = \bigodot - \bigodot$

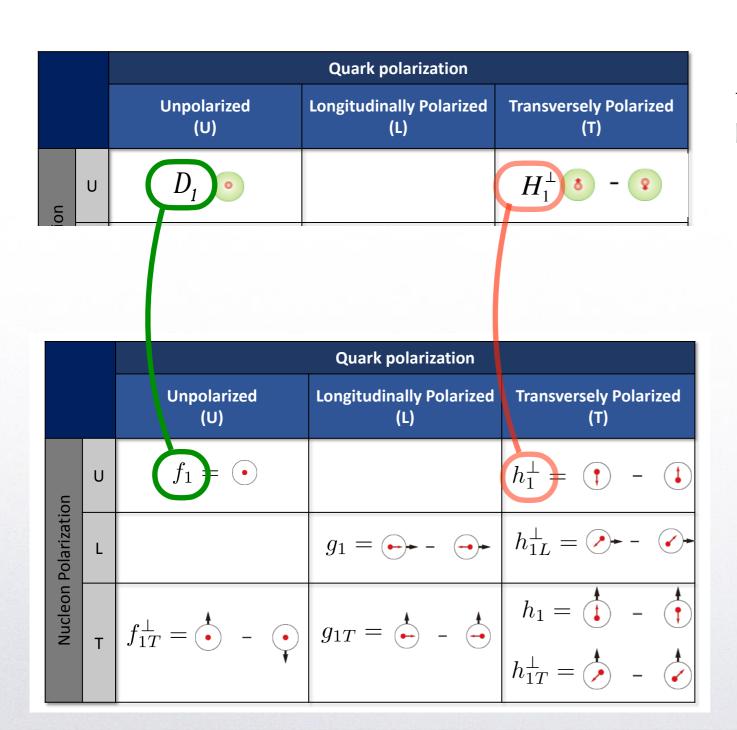
Example: SIDIS



each structure function ~

$$F \sim d\hat{\sigma}(Q^2) \mathcal{C}\left[\text{TMDPDF}(x, \mathbf{k}_{\perp}^2), \text{TMDFF}(z, \mathbf{P}_{\perp}^2)\right]$$

$$\mathscr{C}[\dots] = \int d\mathbf{P}_{\perp} d\mathbf{k}_{\perp} \, \delta^{(2)}(z\mathbf{k}_{\perp} + \mathbf{P}_{\perp} - \mathbf{P}_{hT})[\dots]$$



Example: SIDIS

target polariz.
$$\frac{d\sigma}{dx\,dy\,dz\,d\phi_h\,dP_{hT}^2} \sim$$

$$A(y) F_U + B(y) \cos 2\phi_h F_U^{\cos 2\phi_h}$$

$$+ C(y) F_{LL} + B(y) \sin 2\phi_h F_L^{\sin 2\phi_h}$$

$$+ A(y) \sin(\phi_h - \phi_S) F_T^{\sin(\phi_h - \phi_S)}$$

$$+ B(y) \sin(\phi_h + \phi_S) F_T^{\sin(\phi_h + \phi_S)}$$

$$+ B(y) \sin(3\phi_h - \phi_S) F_T^{\sin(3\phi_h - \phi_S)}$$

$$+ C(y) \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)}$$

each structure function ~ $F \sim d\hat{\sigma}(Q^2) \mathscr{C} \left[\text{TMDPDF}(x, \mathbf{k}_{\perp}^2), \text{TMDFF}(z, \mathbf{P}_{\perp}^2) \right]$ $\mathscr{C}[\ldots] = \left[d\mathbf{P}_{\perp} d\mathbf{k}_{\perp} \, \delta^{(2)} (z\mathbf{k}_{\perp} + \mathbf{P}_{\perp} - \mathbf{P}_{hT}) \right[\ldots \right]$

Quark polarization Unpolarized Longitudinally Polarized Transversely Polarized (U) (L) **(T) Quark polarization** Longitudinally Polarized **Unpolarized Transversely Polarized** (U) $f_1 = \bullet$ U **Nucleon Polarization**

Example: SIDIS

target polariz.
$$\frac{d\sigma}{dx\,dy\,dz\,d\phi_h\,dP_{hT}^2} \sim$$

$$A(y)\,F_U + B(y)\,\cos 2\phi_h\,F_U^{\cos 2\phi_h}$$

$$+ C(y)\,F_{LL} + B(y)\,\sin 2\phi_h\,F_L^{\sin 2\phi_h}$$

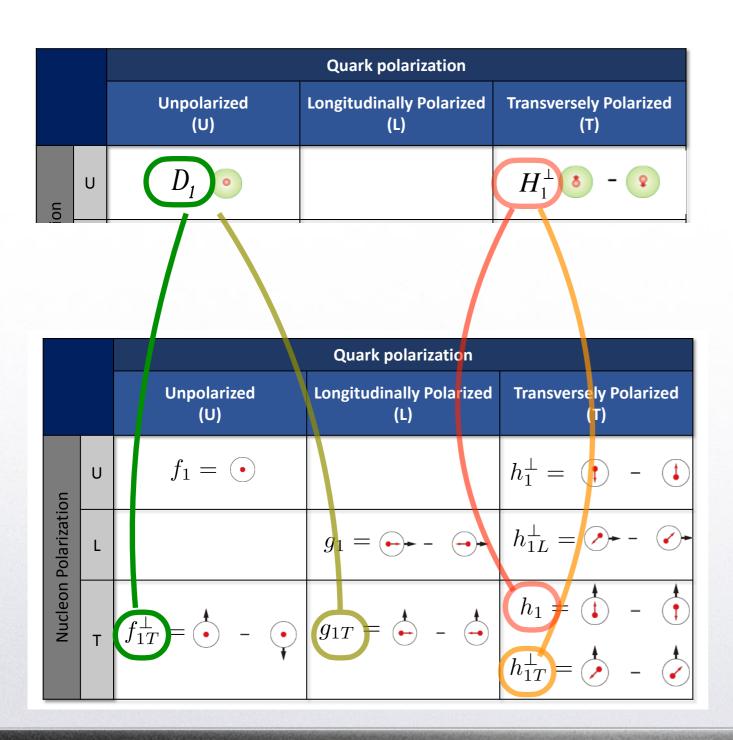
$$+ A(y)\,\sin(\phi_h - \phi_S)\,F_T^{\sin(\phi_h - \phi_S)}$$

$$+ B(y)\,\sin(\phi_h + \phi_S)\,F_T^{\sin(\phi_h + \phi_S)}$$

$$+ B(y)\,\sin(3\phi_h - \phi_S)\,F_T^{\sin(3\phi_h - \phi_S)}$$

$$+ C(y)\,\cos(\phi_h - \phi_S)\,F_{LT}^{\cos(\phi_h - \phi_S)}$$

each structure function ~ $F \sim d\hat{\sigma}(Q^2) \mathscr{C} \left[\text{TMDPDF}(x, \mathbf{k}_{\perp}^2), \text{TMDFF}(z, \mathbf{P}_{\perp}^2) \right]$ $\mathscr{C}[\ldots] = \left[d\mathbf{P}_{\perp} d\mathbf{k}_{\perp} \, \delta^{(2)} (z\mathbf{k}_{\perp} + \mathbf{P}_{\perp} - \mathbf{P}_{hT}) \right[\ldots \right]$



Example: SIDIS

target polariz.
$$\frac{d\sigma}{dx\,dy\,dz\,d\phi_h\,dP_{hT}^2} \sim$$

$$A(y)\,F_U + B(y)\,\cos 2\phi_h\,F_U^{\cos 2\phi_h}$$

$$+ C(y)\,F_{LL} + B(y)\,\sin 2\phi_h\,F_L^{\sin 2\phi_h}$$

$$+ A(y)\,\sin(\phi_h - \phi_S)\,F_T^{\sin(\phi_h - \phi_S)}$$

$$+ B(y)\,\sin(\phi_h + \phi_S)\,F_T^{\sin(\phi_h + \phi_S)}$$

$$+ B(y)\,\sin(3\phi_h - \phi_S)\,F_T^{\sin(3\phi_h - \phi_S)}$$

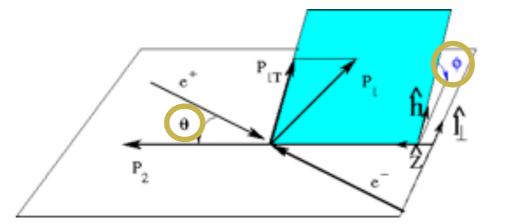
$$+ C(y)\,\cos(\phi_h - \phi_S)\,F_{LT}^{\cos(\phi_h - \phi_S)}$$

each structure function ~

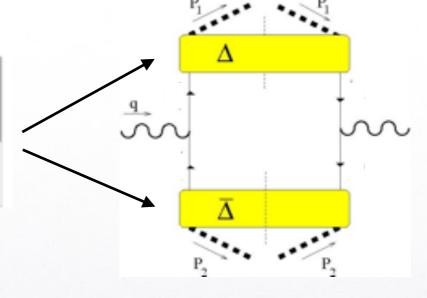
$$F \sim d\hat{\sigma}(Q^2) \mathcal{C}\left[\text{TMDPDF}(x, \mathbf{k}_{\perp}^2), \text{TMDFF}(z, \mathbf{P}_{\perp}^2)\right]$$

$$\mathscr{C}[\ldots] = \int d\mathbf{P}_{\perp} d\mathbf{k}_{\perp} \, \delta^{(2)}(z\mathbf{k}_{\perp} + \mathbf{P}_{\perp} - \mathbf{P}_{hT}) \left[\ldots\right]$$

Example: e+ e- to unpolarized hadrons

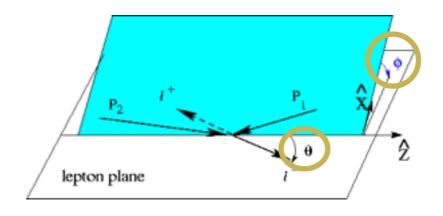


			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
nc	U	D_1 •		H_1^{\perp} \bullet - \circ



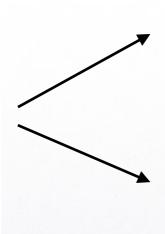
$$\frac{d\sigma}{dz_1dz_2d\mathbf{q}_Td\Omega} \sim \left(1 + \cos^2\theta\right) \mathcal{C}\left[D_1(z_1, \mathbf{k}_{1\perp}), \bar{D}_1(z_2, \mathbf{k}_{2\perp})\right] + \sin^2\theta\cos^22\phi \mathcal{C}\left[w_e(\mathbf{k}_{1\perp}, \mathbf{k}_{2\perp}) H_1^{\perp}(z_1, \mathbf{k}_{1\perp}), \bar{H}_1^{\perp}(z_2, \mathbf{k}_{2\perp})\right]$$

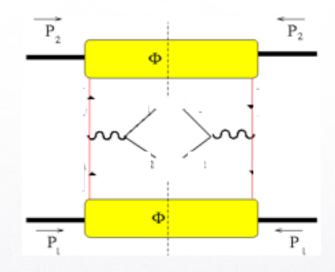
Example: Drell-Yan



Collins-Soper frame (transv. momenta in xz plane)

			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
uo	U	$f_1 = loodsymbol{lack}{lack}$		$h_1^{\perp} = $ -
Nucleon Polarization	L		$g_1 = \longrightarrow$	$h_{1L}^{\perp} = \bigcirc - \bigcirc$
		$f_{1T}^{\perp} = \stackrel{\bullet}{\bullet} - \stackrel{\bullet}{\bullet}$	$g_{1T} = \stackrel{\bullet}{\longleftarrow} - \stackrel{\bullet}{\bigodot}$	$h_1 = $ - \uparrow
	Т			$h_{1T}^{\perp} = \bigodot$ - \bigodot

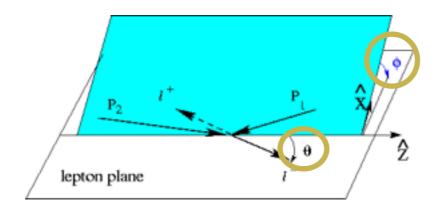




$$\frac{d\sigma}{dx_1 dx_2 d\mathbf{q}_T d\Omega} \sim (1+\cos^2\theta) \, \mathcal{C} \left[f_1(x_1,\mathbf{k}_{1\perp}) \,, \bar{f}_1(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2 2\phi \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{1\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2 2\phi \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{1\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2 2\phi \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{1\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2 2\phi \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{1\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2 2\phi \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{1\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2 2\phi \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{1\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2 2\phi \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{1\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2 2\phi \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{1\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2 2\phi \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{2\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2\theta \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \, h_1^\perp(x_1,\mathbf{k}_{2\perp}) \,, \bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp}) \right] \\ + \sin^2\theta \cos^2\theta \, \mathcal{C} \left[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp}) \,, \bar{h}_1^\perp(x_1,\mathbf{k}_{2\perp}) \,, \bar{h}_2^\perp(x_1,\mathbf{k}_{2\perp}) \,, \bar{h}_2^\perp(x_1,\mathbf{k}_{2\perp$$

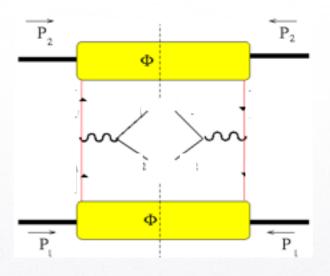
unpolarized

Example: Drell-Yan



Collins-Soper frame (transv. momenta in xz plane)

			Quark polarization	
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
uo	U	$f_1 = loodsymbol{lack}{lack}$		$h_1^{\perp} = \textcircled{\dagger}$ - $\textcircled{1}$
Nucleon Polarization	L		$g_1 = \bigcirc - \bigcirc$	$h_{1L}^{\perp} = \bigcirc - \bigcirc -$
	_	$f_{1T}^{\perp} = \stackrel{\bullet}{\bigcirc} - \stackrel{\bullet}{\bigcirc}$	$g_{1T} = \bigodot$ - \bigodot	$h_1 = $ \bullet \bullet
				$h_{1T}^{\perp} = \bigodot$ - \bigodot



$$\frac{d\sigma}{dx_1dx_2d\mathbf{q}_Td\Omega} \sim (1+\cos^2\theta)\,\mathcal{C}\Big[f_1(x_1,\mathbf{k}_{1\perp})\,,\bar{f}_1(x_2,\mathbf{k}_{2\perp})\Big] + \sin^2\theta\cos^22\phi\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_1^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + |\mathbf{S}_{2T}|\,\Big[(1+\cos^2\theta)\sin(\phi-\phi_{S_2})\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,f_1(x_1,\mathbf{k}_{1\perp})\,,\bar{f}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\sin(\phi-\phi_{S_2})\,\mathcal{C}\Big[w_2(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_1(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\sin(\phi-\phi_{S_2})\,\mathcal{C}\Big[w_2(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_1(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\sin(\phi-\phi_{S_2})\,\mathcal{C}\Big[w_2(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\cos^22\phi\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\cos^22\phi\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \cos^2\theta\sin(\phi-\phi_{S_2})\,\mathcal{C}\Big[w_2(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\cos^2\phi\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \cos^2\theta\sin(\phi-\phi_{S_2})\,\mathcal{C}\Big[w_2(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\cos^2\phi\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{1\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\sin^2\phi\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{2\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{2\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{2\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{2\perp})\,,\bar{h}_{1T}^\perp(x_2,\mathbf{k}_{2\perp})\Big] \\ + \sin^2\theta\,\mathcal{C}\Big[w_1(\mathbf{k}_{1\perp},\mathbf{k}_{2\perp})\,h_1^\perp(x_1,\mathbf{k}_{2\perp})\,,\bar{h}_1^\perp(x_1,\mathbf{k}_{2\perp})\,,\bar{h}_1^\perp(x_1,\mathbf{k}_{2\perp})\Big]$$

Single Spin Asymmetries (SSA)

How to extract a specific structure function?

Example: SIDIS

$$\begin{split} \frac{d\sigma}{dx_{B}dyd\phi_{S}dz_{h}d\phi_{h}dP_{hT}^{2}} &= \frac{\alpha^{2}}{x_{B}yQ^{2}} \left[A(y) F_{UU,T} + B(y) \cos 2\phi_{h} F_{UU}^{\cos 2\phi_{h}} \right. \\ &+ S_{L} \sin 2\phi_{h} F_{UL}^{\sin 2\phi_{h}} + \lambda_{e} S_{L} C(y) F_{LL} \\ &+ S_{T} \Big[A(y) \sin(\phi_{h} - \phi_{S}) F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + B(y) \sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} \right. \\ &+ B(y) \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \\ &+ \lambda_{e} S_{T} C(y) \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} \Big] + \mathcal{O}\left(\frac{M}{O}\right) \end{split}$$

Single Spin Asymmetries (SSA)

How to extract a specific structure function?

Example: SIDIS

$$\frac{d\sigma}{dx_{B}dyd\phi_{S}dz_{h}d\phi_{h}dP_{hT}^{2}} = \frac{\alpha^{2}}{x_{B}yQ^{2}} \left[A(y)F_{UU,T} + B(y)\cos 2\phi_{h}F_{UU}^{\cos 2\phi_{h}} + S_{L}\sin 2\phi_{h}F_{UL}^{\sin 2\phi_{h}} + \lambda_{e}S_{L}C(y)F_{LL} + S_{T} \left[A(y)\sin(\phi_{h} - \phi_{S})F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + B(y)\sin(\phi_{h} + \phi_{S})F_{UT}^{\sin(\phi_{h} + \phi_{S})} + B(y)\sin(3\phi_{h} - \phi_{S})F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \delta_{e}S_{T}C(y)\cos(\phi_{h} - \phi_{S})F_{LT}^{\cos(\phi_{h} - \phi_{S})} \right] + \mathcal{O}\left(\frac{M}{Q}\right)$$

if we want to isolate the "Sivers" effect, we build the spin asymmetry

$$A_{UT}^{\sin(\phi_h - \phi_S)} = 2 \frac{\int d\phi_h d\phi_S \sin(\phi_h - \phi_S) \left[d\sigma^{\uparrow} - d\sigma^{\downarrow} \right]}{\int d\phi_h d\phi_S \left[d\sigma^{\uparrow} + d\sigma^{\downarrow} \right]} = \frac{F_{UT,T}^{\sin(\phi_h - \phi_S)}}{F_{UU,T}} = \frac{\mathcal{C} \left[-\frac{\mathbf{h} \cdot \mathbf{k}_{\perp}}{M} f_{1T}^{\perp} D_1 \right]}{\mathcal{C} \left[f_1 D_1 \right]}$$

Single-Spin Asymmetry (SSA)

Single Spin Asymmetries (SSA)

How to extract a specific structure function?

Example: SIDIS

$$\begin{split} \frac{d\sigma}{dx_{B}dyd\phi_{S}dz_{h}d\phi_{h}dP_{hT}^{2}} &= \frac{\alpha^{2}}{x_{B}yQ^{2}} \left[A(y) F_{UU,T} + B(y) \cos 2\phi_{h} F_{UU}^{\cos 2\phi_{h}} \right. \\ &+ S_{L} \sin 2\phi_{h} F_{UL}^{\sin 2\phi_{h}} + \lambda_{e} S_{L} C(y) F_{LL} \\ &+ S_{T} \left[A(y) \sin(\phi_{h} - \phi_{S}) F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + B(y) \sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} \right. \\ &+ B(y) \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \\ &+ \lambda_{e} S_{T} C(y) \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} \right] \\ &+ \mathcal{O}\left(\frac{M}{Q}\right) \end{split}$$

if we want to isolate the "Sivers" effect, we build the spin asymmetry

$$A_{UT}^{\sin(\phi_h - \phi_S)} = 2 \frac{\int d\phi_h d\phi_S \sin(\phi_h - \phi_S) \left[d\sigma^{\uparrow} - d\sigma^{\downarrow} \right]}{\int d\phi_h d\phi_S \left[d\sigma^{\uparrow} + d\sigma^{\downarrow} \right]} = \frac{F_{UT,T}^{\sin(\phi_h - \phi_S)}}{F_{UU,T}} = \frac{\mathcal{C} \left[-\frac{\mathbf{h} \cdot \mathbf{k}_{\perp}}{M} \cdot f_{1T}^{\perp} D_1 \right]}{\mathcal{C} \left[f_1 D_1 \right]}$$

Single-Spin Asymmetry (SSA)

any polarized measurement requires knowledge of unpolarized cross section

Overview of current TMD phenomenology

$$F_{UU} \sim f_1 \otimes D_1$$

Overview of current TMD phenomenology

$$F_{UU} \sim f_1 \otimes D_1$$

N.B. analysis with NⁿLO and N^mLL accuracy means $\mathcal{O}(\alpha_s^n)$ corrections in hard vertex and resummation up to $\alpha_s^n \log^{2n-m}(Q^2/\mu_b^2)$ contributions in the perturbative part of the TMD Evo operator

Overview of current TMD phenomenology

$$F_{UU} \sim f_1 \otimes D_1$$

N.B. analysis with NⁿLO and N^mLL accuracy means $O(\alpha_s^n)$ corrections in hard vertex and resummation up to $O(\alpha_s^n)$ contributions in the perturbative part of the TMD Evo operator

Caveat: unpol. SIDIS data come as multiplicities

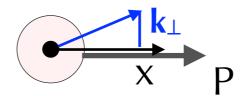
$$\frac{d\sigma}{dxdydzd\mathbf{P}_{hT}}$$

$$\frac{d\sigma_{DIS}}{dxdy}$$

normalisation problems because due to matching problem

$$\sum_{h} \int z dz d\mathbf{P}_{hT} \frac{d\sigma}{dx dy dz d\mathbf{P}_{hT}} \neq \frac{d\sigma_{DIS}}{dx dy}$$

Questions



What do we know about $\langle \mathbf{k}_{\perp}^2 \rangle$?

- I. does it depend on x?
- 2. does it depend on flavor of quarks?
- 3. does it change with Q^2 ?

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2013 arXiv:1309.3507	extended parton model	✓	×	×	×	1538
Torino 2014 arXiv:1312.6261	extended parton model	✓ (separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NLO+N ² LL	×	×	>	~	223
EIKV 2014 arXiv:1401.5078	LO+NLL	1 (x,Q²) bin	1 (x,Q²) bin	>	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLO+NLL'	×	~	>	~	200 (?)
Pavia 2017 arXiv:1703.10157	LO+NLL	>	~	>	~	8059
SV 2017 arXiv:1706.01473	N ² LO+N ² LL'	×	×	~	✔ (LHC)	309
BSV 2019 arXiv:1902.08474	N ² LO+N ² LL'	×	×	~	✔ (LHC)	457
Pavia 2019 arXiv:1912.07550	N ² LO+N ³ LL	×	×	~	✔ (LHC)	319
SV 2020 arXiv:1912.06532	N ² LO (+N ³ LO)	~	V	~	~	1039

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2013 arXiv:1309.3507	extended parton model	✓	×	×	×	1538
Torino 201 arXiv:1312.62	st to in	troduce	flavor	depend	ence	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NLO+N ² LL	X	X	~	~	223
EIKV 2014 arXiv:1401.5078	LO+NLL	1 (x,Q²) bin	1 (x,Q²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLO+NLL'	×	~	~	~	200 (?)
Pavia 2017 arXiv:1703.10157	LO+NLL	>	>	>	~	8059
SV 2017 arXiv:1706.01473	N ² LO+N ² LL'	×	×	>	✓ (LHC)	309
BSV 2019 arXiv:1902.08474	N ² LO+N ² LL'	×	×	>	✓ (LHC)	457
Pavia 2019 arXiv:1912.07550	N ² LO+N ³ LL	×	×	>	✓ (LHC)	319
SV 2020 arXiv:1912.06532	N ² LO (+N ³ LO)	~	~	~	~	1039

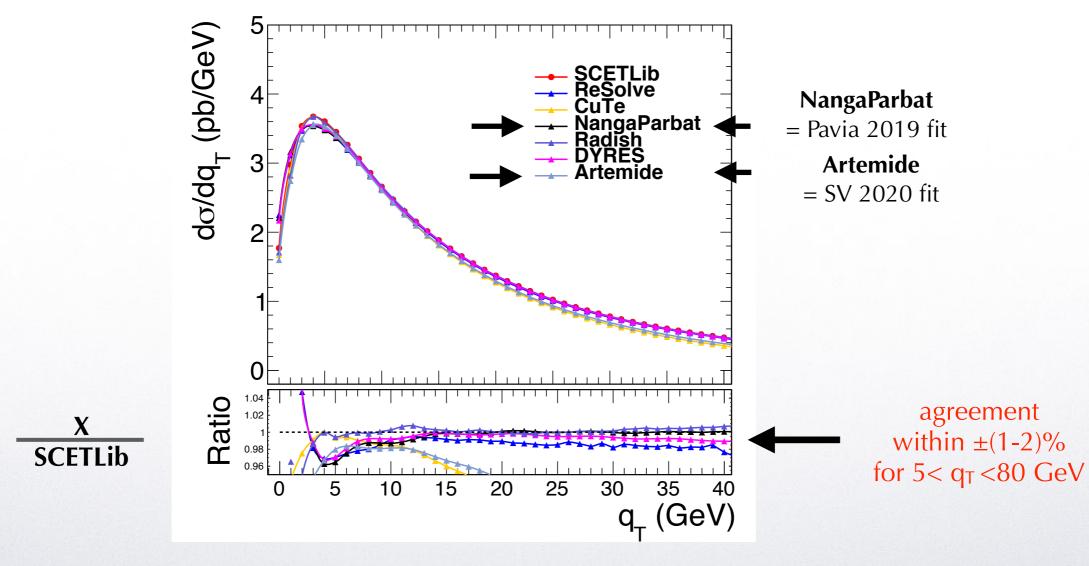
	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2013 arXiv:1309.3507	extended parton model	~	×	×	×	1538
Torino 2014 arXiv:1312.6261	extended parton model	✓ (separately)	✓ (separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NLO+N ² LL	×	×	>	~	223
EIKV 2014 arXiv:1401.5078	LO+NLL	1 (x,Q²) bin	1 (x,Q²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLO+NLL'	×	✓	✓	~	200 (?)
Pavia 2017 arXiv:1703.10157	LO+NLL	✓	✓	>	~	8059
SV 2017 arXiv:1706.01473	N ² L First	global t	fit (>8K	data po	oints)	309
BSV 2019 arXiv:1902.08474	N ² LO+N ² LL'	×	X	~	✔ (LHC)	457
Pavia 2019 arXiv:1912.07550	N ² LO+N ³ LL	×	×	~	✔ (LHC)	319
SV 2020 arXiv:1912.06532	N ² LO (+N ³ LO)	~	~	~	~	1039



	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2013 arXiv:1309.3507	extended parton model	✓	×	×	×	1538
Torino 2014 arXiv:1312.6261	extended parton model	✓ (separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NLO+N ² LL	×	×	✓	~	223
EIKV 2014 arXiv:1401.5078	LO+NLL	1 (x,Q²) bin	1 (x,Q²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLO+NLL'	×	>	>	~	200 (?)
Pavia 2017 arXiv:1703.10157	LO+NLL	>	>	>	~	8059
SV 2017 arXiv:1706.01473	N ² LO+N ² LL'	×	×	>	✓ (LHC)	309
BSV 2019 arXiv:1902.08474	N ² LO+N ² LL'	×	×	~	✓ (LHC)	457
Pavia 2019 arXiv:1912.07550	Global fit with current top accuracy					
SV 2020 arXiv:1912.06532	N ² LO (+N ³ LO)	✓	✓	✓	✓	1039

Precision era for TMDs

Z production at rapidity y=0 in ATLAS kin. benchmarking TMDs (resummed at N3LL) with perturbative calculations



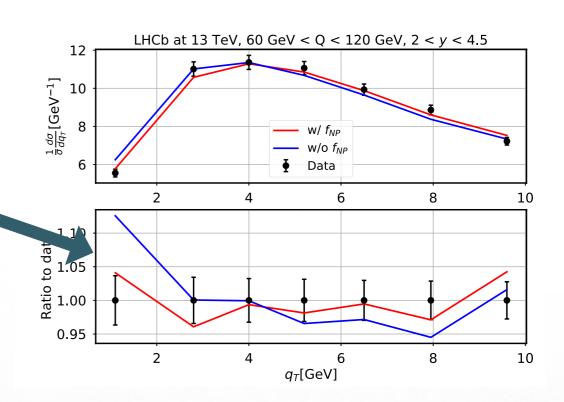
G. Bozzi, I. Scimemi (eds.) et al., Yellow Report of CERN EW Working Group, in preparation

TMD impact at LHC

output of PV19 fit

Effect of nonperturbative intrinsic k_T (not included in other benchmark codes)

> G. Bozzi, I. Scimemi (eds.) et al., Yellow Report of CERN EW Working Group, in preparation

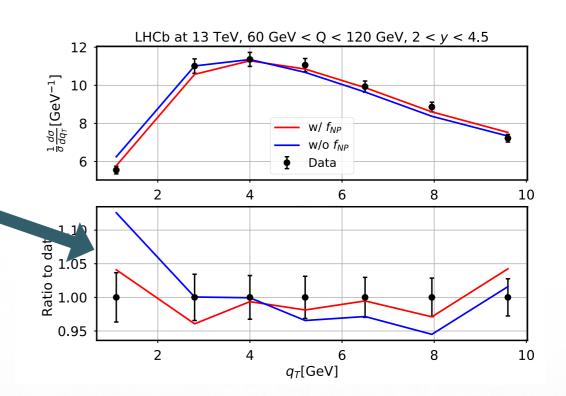


TMD impact at LHC

output of PV19 fit

Effect of nonperturbative intrinsic k_T (not included in other benchmark codes)

G. Bozzi, I. Scimemi (eds.) et al., Yellow Report of CERN EW Working Group, in preparation



Current **extractions of M**_w based on q_T-distribution of decay products **do not include flavor sensitivity**

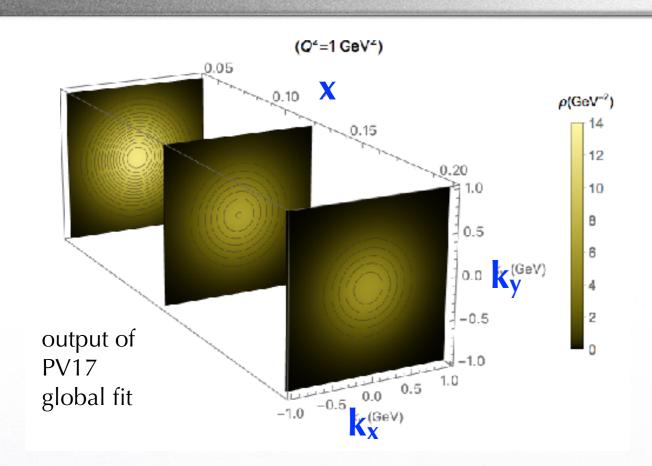
Exercise:

- generate pseudo-data for q_T-spectrum of W[±] with sets of flavor-dep. parameters that give the same q_T-spectrum of Z⁰, from p_T-lepton data and uncertainties of ATLAS and CDF
- make a template fit of these pseudo-data by varying Mw on a set of flavor-independent parameters
- → shifts comparable to world-average uncertainty

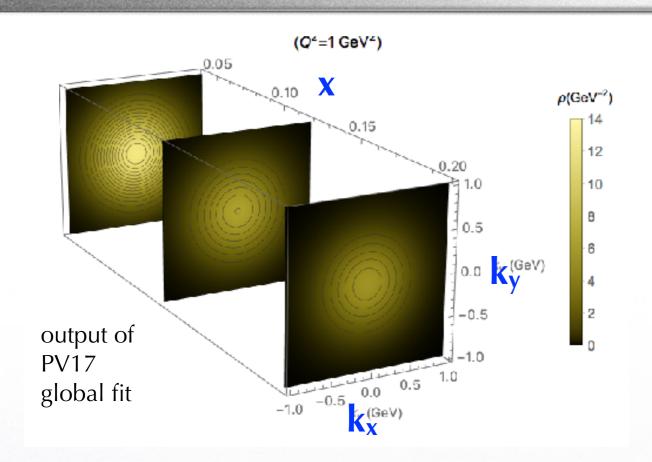
$$-6 \le \Delta M_{W^{\pm}} \le +9 \text{ MeV}$$

Bacchetta, Bozzi, Radici, Ritzmann, Signori, P.L. **B788** (19) 542, arXiv:1807.02101

$$-4 \le \Delta M_W - \le +4 \text{ MeV}$$



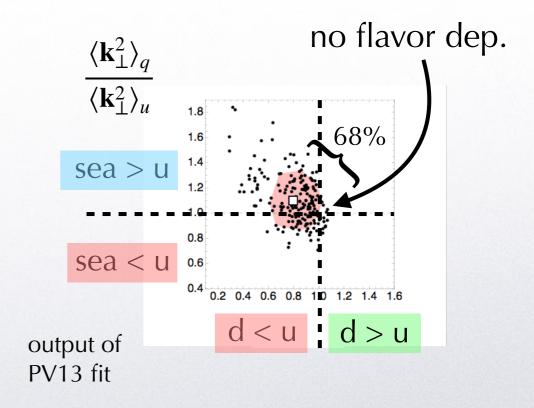
Answer to question #1: yes, $\langle \mathbf{k}_{\perp}^2 \rangle$ does depend on x



Answer to question #1: yes, $\langle \mathbf{k}_{\perp}^2 \rangle$ does depend on x

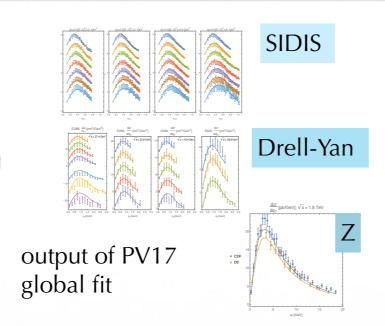
Answer to question #2:

need more and more precise data to assess flavor dependence (currently, fits w/ and w/o flavor dep. are equivalent)



Answer to question #3:

 $\langle \mathbf{k}_{\perp}^2 \rangle$ changes with Q^2 but large uncertainties in TMD evolution



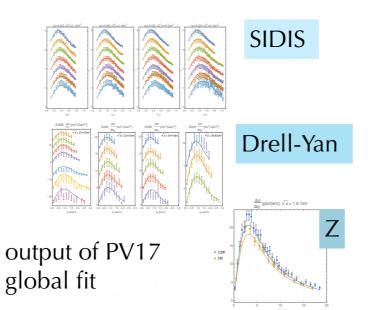
$$\langle Q^2 \rangle \sim 2 - 10 \text{ GeV}^2 \rightarrow (P_{hT})_{\text{peak}} \sim 0.5 \text{ GeV/c}$$

$$\langle Q^2 \rangle \sim 20 - 150 \text{ GeV}^2 \rightarrow (P_{hT})_{\text{peak}} \sim 1 \text{ GeV/c}$$

$$Q^2 \sim 8200 \text{ GeV}^2 \rightarrow (P_{hT})_{\text{peak}} \sim 4 \text{ GeV/c}$$

Answer to question #3:

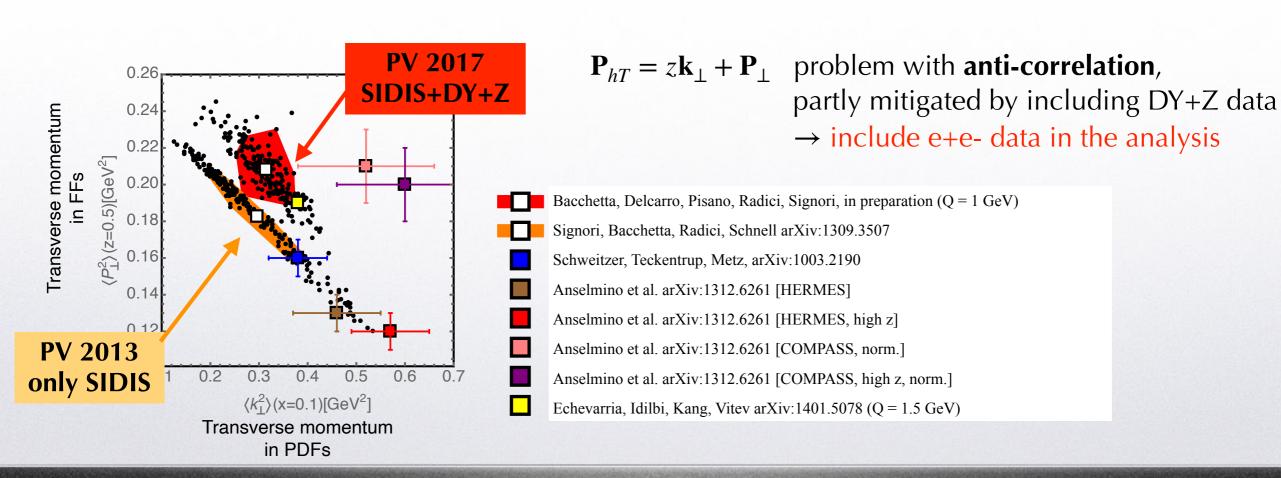
 $\langle \mathbf{k}_{\perp}^2 \rangle$ changes with Q^2 but large uncertainties in TMD evolution



$$\langle Q^2 \rangle \sim 2 - 10 \text{ GeV}^2 \rightarrow (P_{hT})_{\text{peak}} \sim 0.5 \text{ GeV/c}$$

 $\langle Q^2 \rangle \sim 20 - 150 \text{ GeV}^2 \rightarrow (P_{hT})_{\text{peak}} \sim 1 \text{ GeV/c}$

$$Q^2 \sim 8200 \text{ GeV}^2 \rightarrow (P_{hT})_{\text{peak}} \sim 4 \text{ GeV/c}$$



Hadron tomography

problem with e+e- data

TMD factorisation theorem exists for production of two back-to-back hadrons

$$e+e- \rightarrow h_1+h_2+X$$

$$d\sigma \sim \mathscr{C}\left[FF(h_1), FF(h_2)\right]$$

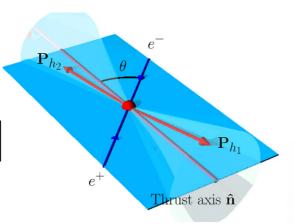
Hadron tomography

problem with e+e- data

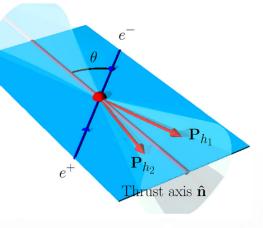
TMD factorisation theorem exists for production of two back-to-back hadrons

$$e+e- \rightarrow h_1+h_2+X$$

 $d\sigma \sim \mathscr{C}[FF(h_1), FF(h_2)]$



non unique way to distinguish back-to-back from same emisphere (and from Di-hadron FF, $DiFF(h_1,h_2)$)



Belle, PRD 101 (20) 092004

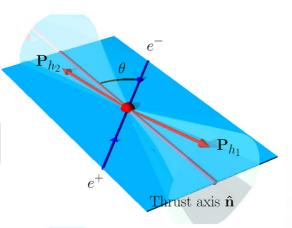
Hadron tomography

problem with e+e- data

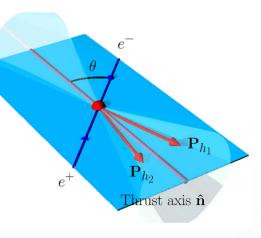
TMD factorisation theorem exists for production of two back-to-back hadrons

$$e+e- \rightarrow h_1+h_2+X$$

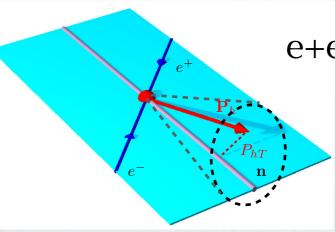
$$d\sigma \sim \mathscr{C}\left[FF(h_1), FF(h_2)\right]$$



non unique way to distinguish back-to-back from same emisphere (and from Di-hadron FF, $DiFF(h_1,h_2)$)



Belle, PRD 101 (20) 092004



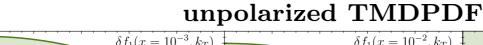
 $e+e- \rightarrow h+X$ data available Belle, PRD 99 (19) 112006 d σ depends on z, \mathbf{P}_T , and thrust $T = \frac{\sum_i \mathbf{P}_i \cdot \hat{\mathbf{n}}}{\sum_i |\mathbf{P}_i|}$

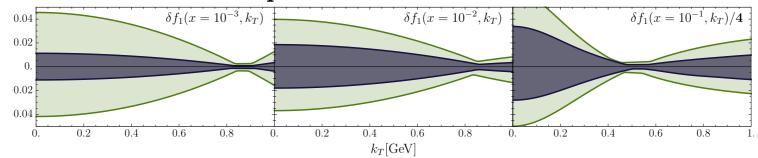
depending on where h is inside the jet → different factorisation th.'s some not well established

work in progress, see

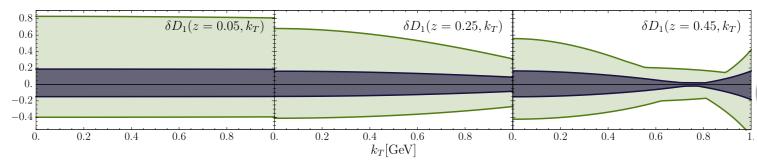
Boglione, Simonelli, JHEP 02 (21) 076 Makris, Ringer, Waalewijn, JHEP 02 (21) 070 Kang, Shao, Zhao, JHEP 12 (20) 127 Boglione, Simonelli, in preparation

EIC impact on unpolarised TMD





unpolarized TMDFF



using SV19 parametrisation

Vladimirov, talk at Snowmass 2021 EF06-EF07 meeting, 28 Oct. 2020

see also EIC Yellow Report, arXiv:2103.05419

Overview of current TMD phenomenology

$$A_{UT}^{\sin(\phi_h - \phi_S)} \propto \frac{F_{UT}^{\sin(\phi_h - \phi_S)}}{F_{UU}} \sim \frac{f_{1T}^{\perp} \otimes D_1}{f_1 \otimes D_1}$$

Sivers effect

Overview of current TMD phenomenology

$$A_{UT}^{\sin(\phi_h - \phi_S)} \propto \frac{F_{UT}^{\sin(\phi_h - \phi_S)}}{F_{UU}} \sim \frac{f_{1T}^{\perp} \otimes D_1}{f_1 \otimes D_1}$$

Sivers effect

Long record of extractions of k_T-moment of Sivers

$$f_{1T}^{\perp(1)}(x) = \int d\mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}^2}{2M^2} f_{1T}^{\perp}(x, \mathbf{k}_{\perp}^2)$$

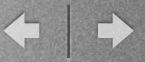
from k_T-weighted SSA A_{UT}

Vogelsang & Yuan, P.R. D72 (05) 054028
Collins et al., P.R. D73 (06) 014021
Bacchetta & Radici, P.R.L. 107 (11) 212001
Anselmino, Boglione, Melis, P.R. D86 (12) 014028
Aybat, Prokudin, Rogers, P.R.L. 108 (12) 242003
Sun & Yuan, P.R. D88 (13) 034016
Boer, N.P. B874 (13) 217
Echevarria et al., P.R. D89 (14)
Boglione et al., JHEP 07 (18) ...

	Framework	SIDIS	DY	W/Z production	e+e-	N of points
JAM 20 arXiv:2002.08384	extended parton model	>	>	>	>	517
Pavia 2020 arXiv:2004.14278	LO+NLL	~	in progress	in progress	×	118 (+32)
EKT 2020 arXiv:2009.10710	NLO+N ² LL	~	~	~	×	243
BPV 2020 arXiv:2012.05135	?	~	~	~	X	76



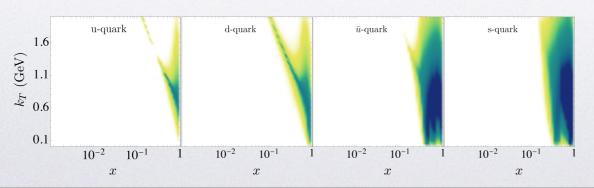
	Framework	SIDIS	DY	W/Z production	e+e-	N of points
JAM 20 arXiv:2002.08384	extended parton model	✓	✓	✓	✓	517
Pavia 2020 arXiv:2004.14278	LO+NL Fir	st global f	it (but sim	plified ana	lysis)	118 (+32)
EKT 2020 arXiv:2009.10710	NLO+N ² LL	~	~	~	×	243
BPV 2020 arXiv:2012.05135	?	~	~	~	×	76



	Framework	SIDIS	DY	W/Z production	e+e-	N of points
JAM 20 arXiv:2002.08384	extended parton model	~	✓	✓	>	517
Pavia 2020 arXiv:2004.14278	LO+NLL	✓	in progress	in progress	×	118 (+32)
First consist	tent extra	ction of f_{12}^{\perp}	$_{T}$ and f_{1} in	TMD fram	nework (u	se PV17)
an a						- П
BPV 2020 arXiv:2012.05135	?	~	~	~	×	76

	Framework	SIDIS	DY	W/Z production	e+e-	N of points
JAM 20 arXiv:2002.08384	extended parton model	>	>	✓	>	517
Pavia 2020 arXiv:2004.14278	LO+NLL	>	in progress	in progress	×	118 (+32)
EKT 2020 arXiv:2009.10710	NLO+N ² LL	~	~	~	×	243
BPV 2020 arXiv:2012.05135	?	>	~	~	×	76

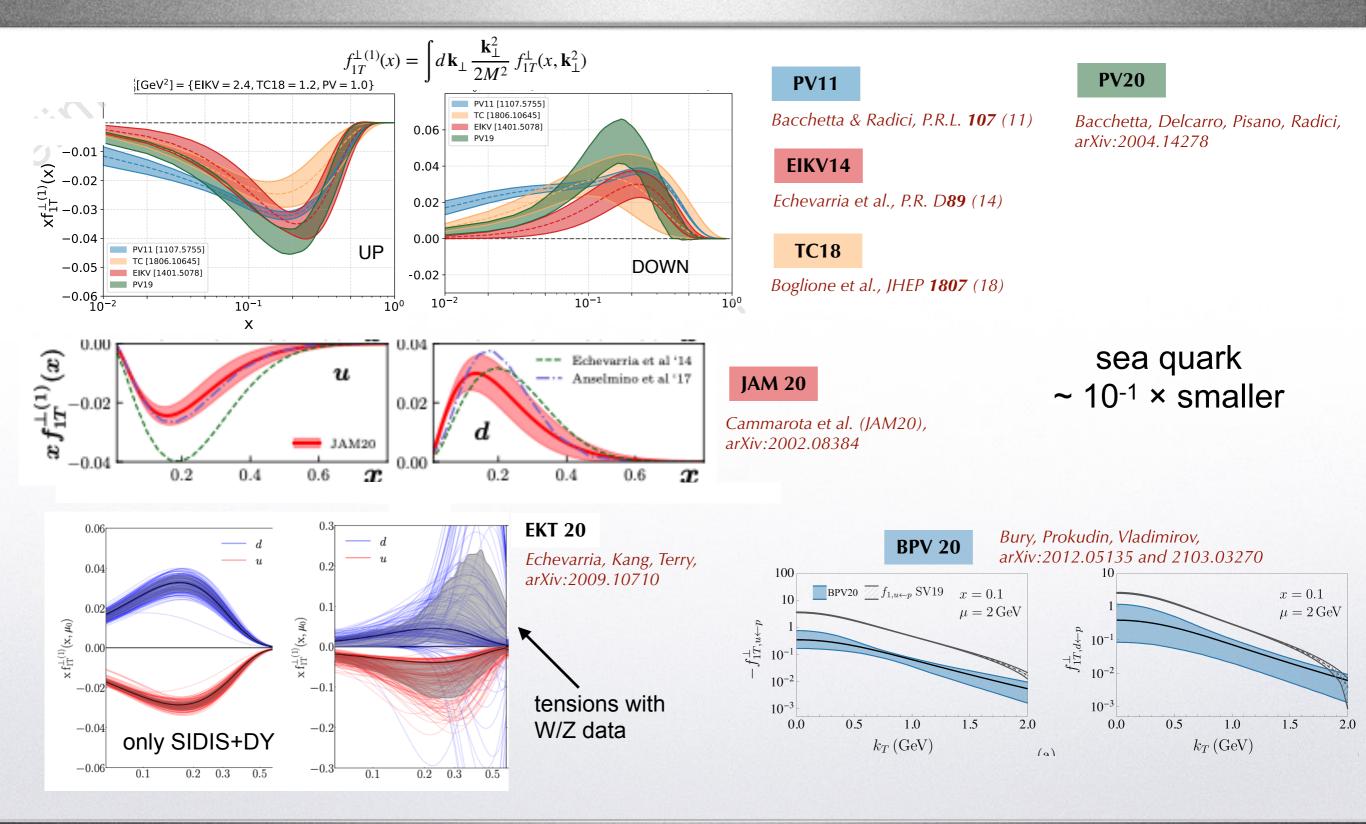
Perturbative matching coeffs. of f_{1T}^{\perp} onto collinear function at small b_T are known only at NLO. $f_{1T}^{\perp} \otimes D_1$ Authors replace matching formula with fitting parametrisation, and use SV19 for f_1 and D_1 $f_1 \otimes D_1$ The claim is that in their (ζ -prescription) scheme they can mix different descriptions of numerator and denominator of the asymmetry, hence overall perturbative accuracy is same as SV19, namely N2LO (+N3LO). Also, resulting Sivers function violates positivity bounds at medium-large x



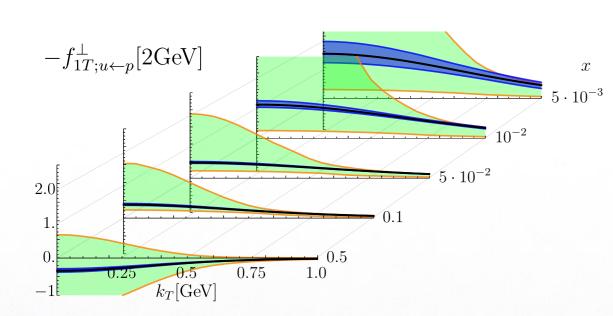
$$\frac{\mathbf{k}_{\perp}^{2}}{M^{2}} \left[f_{1T}^{\perp}(x, \mathbf{k}_{\perp}^{2}) \right]^{2} \neq \left[f_{1}(x, \mathbf{k}_{\perp}^{2}) \right]^{2}$$

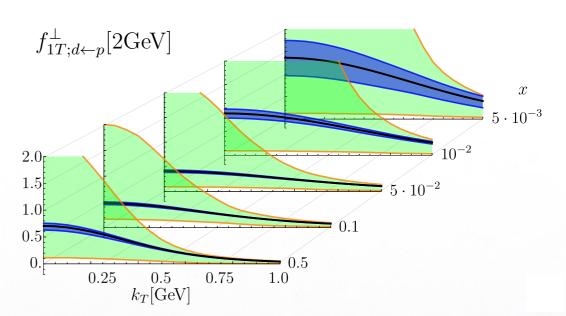
in coloured areas

Sivers extractions



EIC impact on Sivers





using BPV20 parametrisation

EIC Yellow Report, arXiv:2103.05419

Overview of current TMD phenomenology

$$A_{UT}^{\sin(\phi_h + \phi_S)} \propto \frac{F_{UT}^{\sin(\phi_h + \phi_S)}}{F_{UU}} \sim \frac{h_1 \otimes H_1^{\perp}}{f_1 \otimes D_1}$$

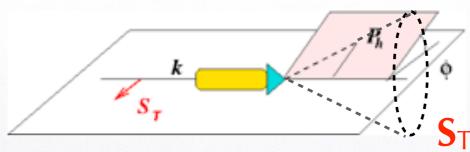
transversity

		Quark polarization							
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)					
on	U	D_1 \odot		H_1^{\perp} \bullet - \circ					

Overview of current TMD phenomenology

$$A_{UT}^{\sin(\phi_h + \phi_S)} \propto \frac{F_{UT}^{\sin(\phi_h + \phi_S)}}{F_{UU}} \sim \frac{h_1 \otimes H_1^{\perp}}{f_1 \otimes D_1}$$

requires knowledge of H_1^{\perp} from e+e- \rightarrow h₁+h₂+X data



transversity based on Collins effect

 $\mathbf{r} \cdot \mathbf{k} \times \mathbf{P}_{\mathsf{hT}}$

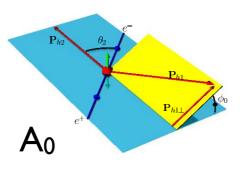
		Quark polarization							
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)					
on	U	D_1 •		H_1^{\perp} \bullet - \circ					

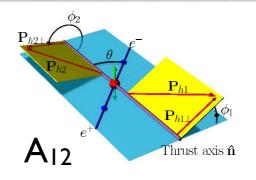
non recent extractions

Anselmino et al., P.R. D87 (13) 094019 Anselmino et al., P.R. D92 (15) 114023 Martin, Bradamante, Barone, P.R. D91 (15) 014034 Kang et al., P.R. D93 (16) 014009 Lin et al., P.R.L. 120 (18) 152502 ...

Collins extractions

2 exp. frames:





2 kinds of data:

$$A_0^{UL} \equiv \frac{A_0(\pi^{\pm} \, \pi^{\mp})}{A_0(\pi^{\pm} \, \pi^{\pm})}$$

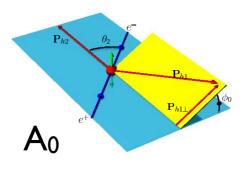
$$A_0^{UL} \equiv \frac{A_0(\pi^{\pm} \pi^{\mp})}{A_0(\pi^{\pm} \pi^{\pm})}$$
 $A_0^{UC} \equiv \frac{A_0(\pi^{\pm} \pi^{\mp})}{A_0(\text{all }\pi)}$

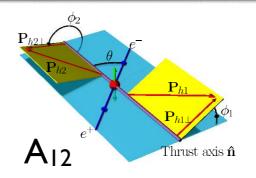
problems with TMD factoriz. th. because of thrust

and similarly for A₁₂

Collins extractions

2 exp. frames:





problems with TMD factoriz. th. because of thrust

2 kinds of data:

$$A_0^{UL} \equiv \frac{A_0(\pi^{\pm} \, \pi^{\mp})}{A_0(\pi^{\pm} \, \pi^{\pm})}$$

$$A_0^{UL} \equiv \frac{A_0(\pi^{\pm} \pi^{\mp})}{A_0(\pi^{\pm} \pi^{\pm})}$$
 $A_0^{UC} \equiv \frac{A_0(\pi^{\pm} \pi^{\mp})}{A_0(\text{all }\pi)}$

and similarly for A₁₂

Belle data: $A_{0,12}^{UL,UC}(z_1,z_2)$ Abe et al., P.R.L. 96 (06) 232002; S Seidl et al., P.R. D78 (08) 032011, D86 (12) 039905(E)

 $A_{12}^{UL,UC}(z_1, z_2, \mathbf{P}_{1T}, \mathbf{P}_{2T})$ P.R. D100 (19) 092008

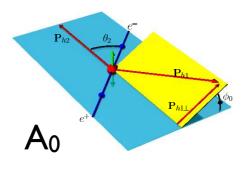
BaBar data: $A_{0.12}^{UL,UC}(z_1,z_2), A_0^{UL,UC}(z_1,z_2,\mathbf{P}_{1T}), A_{12}^{UL,UC}(z_1,z_2,\mathbf{P}_{1T},\mathbf{P}_{2T})$

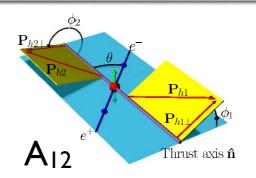
Lees et al., P.R. D**90** (14) 052003; Lees et al., P.R. D92 (15) 111101

BES data: $A_0^{UL,UC}(z_1, z_2, \mathbf{P}_{1T})$ Ablikim et al., P.R.L. 116 (16) 042001

Collins extractions

2 exp. frames:





problems with TMD factoriz. th. because of thrust

2 kinds of data:

$$A_0^{UL} \equiv \frac{A_0(\pi^{\pm} \, \pi^{\mp})}{A_0(\pi^{\pm} \, \pi^{\pm})}$$

$$A_0^{UL} \equiv \frac{A_0(\pi^{\pm} \pi^{\mp})}{A_0(\pi^{\pm} \pi^{\pm})}$$
 $A_0^{UC} \equiv \frac{A_0(\pi^{\pm} \pi^{\mp})}{A_0(\text{all }\pi)}$

and similarly for A₁₂

Belle data: $A_{0,12}^{UL,UC}(z_1, z_2)$ Abe et al., P.R.L. **96** (06) 232002; S Seidl et al., P.R. D**78** (08) 032011, D**86** (12) 039905(E)

 $A_{12}^{UL,UC}(z_1, z_2, \mathbf{P}_{1T}, \mathbf{P}_{2T})$ P.R. D**100** (19) 092008

BaBar data: $A_{0.12}^{UL,UC}(z_1,z_2), A_0^{UL,UC}(z_1,z_2,\mathbf{P}_{1T}), A_{12}^{UL,UC}(z_1,z_2,\mathbf{P}_{1T},\mathbf{P}_{2T})$

Lees et al., P.R. D90 (14) 052003; Lees et al., P.R. D92 (15) 111101

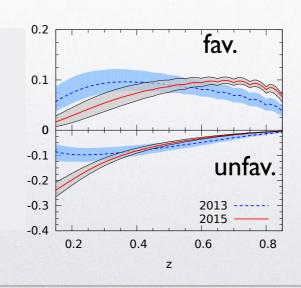
BES data: $A_0^{UL,UC}(z_1, z_2, \mathbf{P}_{1T})$ Ablikim et al., P.R.L. 116 (16) 042001

2 main fits:

Torino 2013

Torino 2015

Anselmino et al., P.R. D87 (13) 094019 Anselmino et al., P.R. D92 (15) 114023



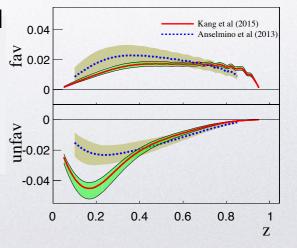
extended parton model

Torino 2013

KPSY 2015

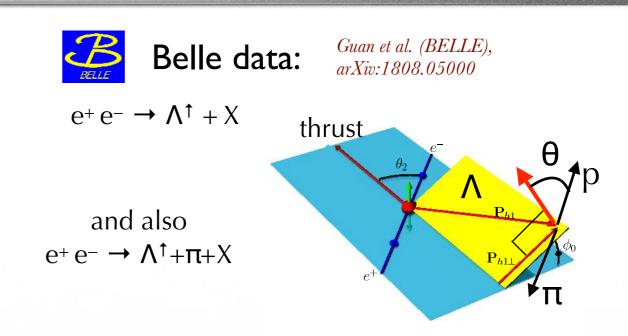
Kang et al., P.R. D93 (16) 014009

TMD framework



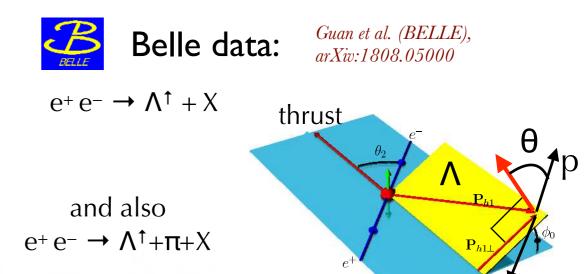
Polarizing Fragmentation Function

		Quark polarization								
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)						
on	C	D_1 •		H_1^{\perp} 8 - \circ						
Polarization	L		$G_{1L} \circ \rightarrow - \circ \rightarrow$	H_{1L}^{\perp} $\bullet \bullet - \bullet \bullet$						
Nucleon	Т	$D_{1\mathrm{T}}^{\perp}$ - \odot	$G_{1\mathrm{T}}$ \bullet - \bullet	H_1 \bullet - \bullet \bullet \bullet						



Polarizing Fragmentation Function

		Quark polarization							
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)					
on	U	D_1 •		H_1^{\perp} 8 - \mathbf{Q}					
Nucleon Polarization	L		$G_{1L} \circ \rightarrow - \circ \rightarrow$	H_{1L}^{\perp} $\bullet \bullet - \bullet \bullet$.					
Nucleon	Т	$D_{1\mathrm{T}}^{\perp}$ - \odot	G_{1T} \bullet - \bullet	H_1 \bullet - \bullet H_{1T}^{\perp} \bullet - \bullet					



2 fits:

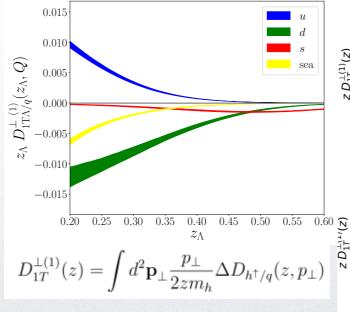
both based on extended parton model

TMD factorisation th. for single Λ + thrust

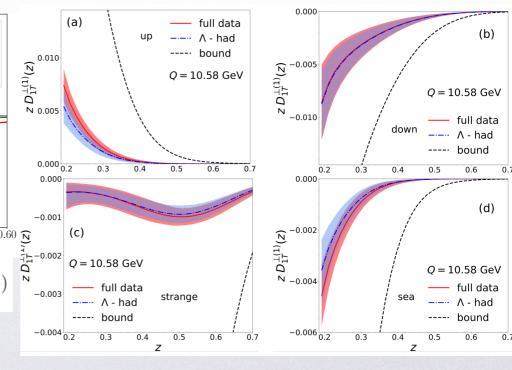
Gamberg et al., arXiv:2102.05553

work in progress for a fit within TMD factorization

Callos, Kang, Terry, arXiv:2003.04828



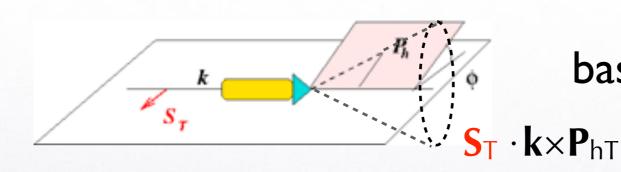
D'Alesio, Murgia, Zaccheddu, arXiv:2003.01128



Overview of current TMD phenomenology

$$A_{UT}^{\sin(\phi_h + \phi_S)} \propto \frac{F_{UT}^{\sin(\phi_h + \phi_S)}}{F_{UU}} \sim \frac{h_1 \otimes H_1^{\perp}}{f_1 \otimes D_1}$$

complicated convolution upon transverse momenta



based on Collins effect

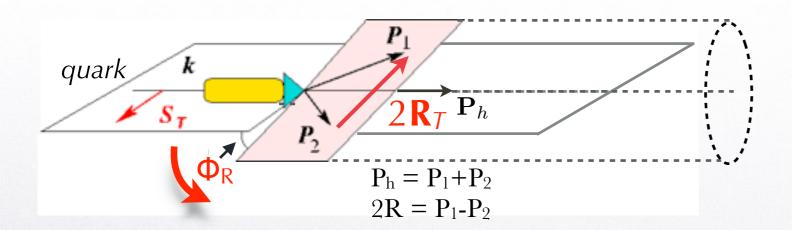
	Quark polarization							
	Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)					
U	D_1 •		H_1^{\perp} 8 - \mathbf{Q}					

non recent extractions

Anselmino et al., P.R. D87 (13) 094019 Anselmino et al., P.R. D92 (15) 114023 Martin, Bradamante, Barone, P.R. D91 (15) 014034 Kang et al., P.R. D93 (16) 014009 Lin et al., P.R.L. 120 (18) 152502 ...

But transversity is also a collinear PDF

$$A_{UT}^{\sin(\phi_R + \phi_S)} \propto \frac{h_1 H_1^{\blacktriangleleft}}{f_1 D_1}$$



di-hadron mechanism

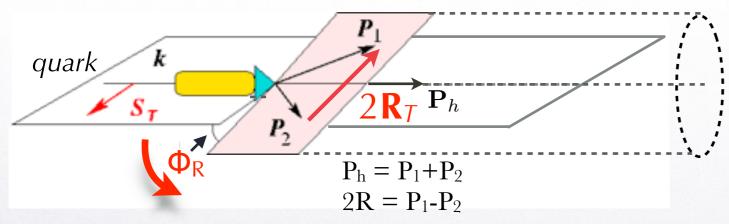
$$\mathbf{S}_{\mathsf{T}} \cdot \mathbf{P}_2 \times \mathbf{P}_1 = \mathbf{S}_{\mathsf{T}} \cdot \mathbf{P}_{\mathsf{h}} \times \mathbf{R}_{\mathsf{T}}$$

Collins, Heppelman, Ladinsky, N.P. **B420** (94)

But transversity is also a collinear PDF

$$A_{UT}^{\sin(\phi_R + \phi_S)} \propto \frac{h_1 H_1^{4}}{f_1 D_1}$$

requires knowledge of
$$H_1^{\triangleleft}$$
 from e+e- \rightarrow (h₁h₂)+X data



only for
$$R_T^2 \propto M_{h_1 h_2}^2 \ll Q^2$$

define Di-hadron Fragmentation Functions (DiFF)

DiFF
$$(z = z_1 + z_2, M_{h_1 h_2}^2; Q^2)$$

non recent extractions

di-hadron mechanism

$$\mathbf{S}_{\mathsf{T}} \cdot \mathbf{P}_2 \times \mathbf{P}_1 = \mathbf{S}_{\mathsf{T}} \cdot \mathbf{P}_{\mathsf{h}} \times \mathbf{R}_{\mathsf{T}}$$

Collins, Heppelman, Ladinsky, N.P. B420 (94)

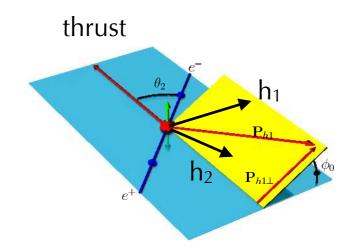
collinear: Ph | k

Jaffe, Jin, Tang, P.R.L. **80** (98) 1166 Radici, Jakob, Bianconi, P.R. D**65** (02) 074031 Bacchetta, Courtoy, Radici, P.R.L. **107** (11) 012001 Bacchetta, Courtoy, Radici, JHEP **03** (13) 119 Radici et al., JHEP **05** (15) 123

DiFF extraction

Belle data for Acosp

Vossen et al., P.R.L. 107 (11) 072004



"thrust-axis" frame

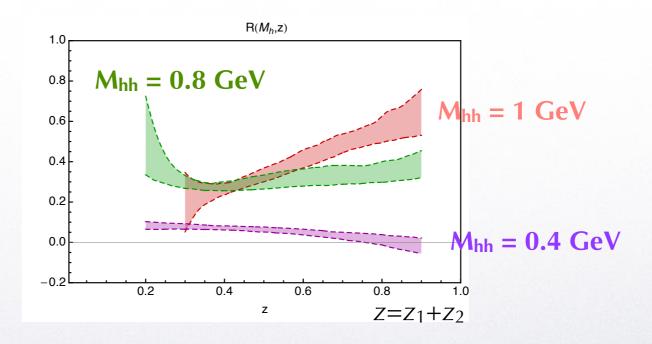
1 fit:

Pavia 2012

Courtoy et al., P.R. D85 (12) 114023

refined in

Radici et al., JHEP **05** (15) 123



based on predictions

Boer, Jakob, Radici, P.R.D67 (03) 094003

see also

Matevosyan, Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas, arXiv:1802.01578

	Mechanism	Framework	SIDIS	e+e-	p-p collisions	N of points
Pavia 2018 arXiv:1802.05212	collinear DiFF	LO	~	>	✓	78
JAM 2020 arXiv:2002.08384	TMD Collins effect	extended parton model	~	~	~	517
MEX 2019 arXiv:1912.03289	collinear DiFF	LO	~	~	×	68
CA 2020 arXiv:2001.01573	TMD Collins effect	extended parton model	~	~	×	76

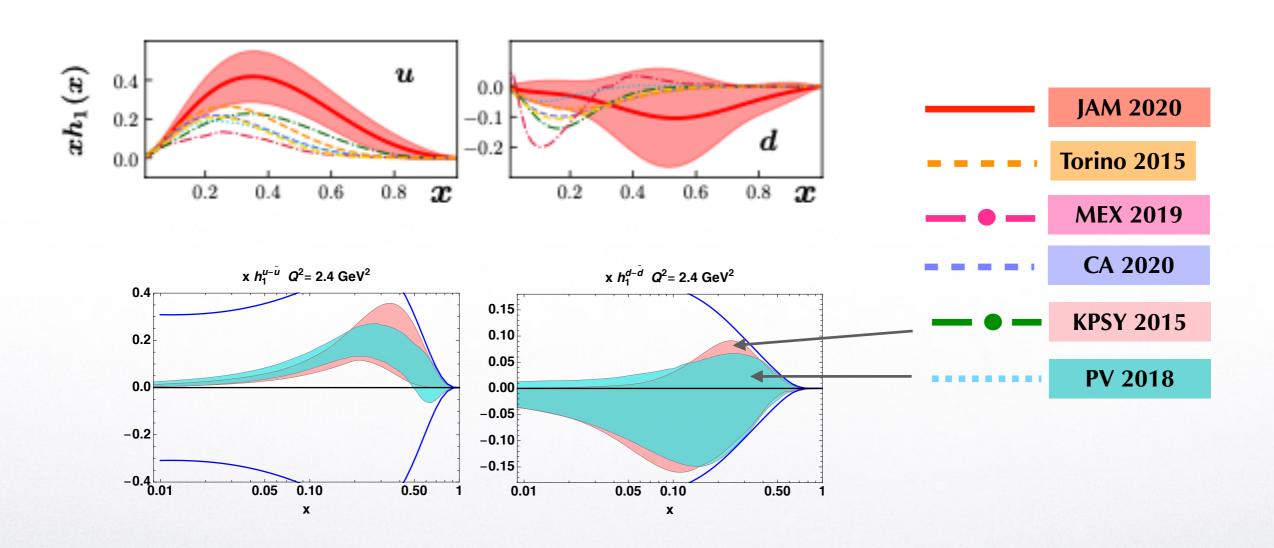
	Mechanism	Framework	SIDIS	e+e-	p-p collisions	N of points
Pavia 2018 arXiv:1802.05212	collinear DiFF	LO	✓	✓	✓	78
JAM 2020 arXiv:2002.08384	TMD Collins effect	First	First global fit		~	517
MEX 2019 arXiv:1912.03289	collinear DiFF	LO	~	~	×	68
CA 2020 arXiv:2001.01573	TMD Collins effect	extended parton model	~	~	×	76

	Mechanism	Framework	SIDIS	e+e-	p-p collisions	N of points
Pavia 2018 arXiv:1802.05212	collinear DiFF	LO	~	~	>	78
JAM 2020 arXiv:2002.08384	TMD Collins effect	extended parton model	~	✓	~	517
MEX 2019 arXiv:1912.03289	collinear DiFF	global fit	(but simpl	ified analy	sis) 🗶	68
CA 2020 arXiv:2001.01573	TMD Collins effect	extended parton model	~	✓	×	76

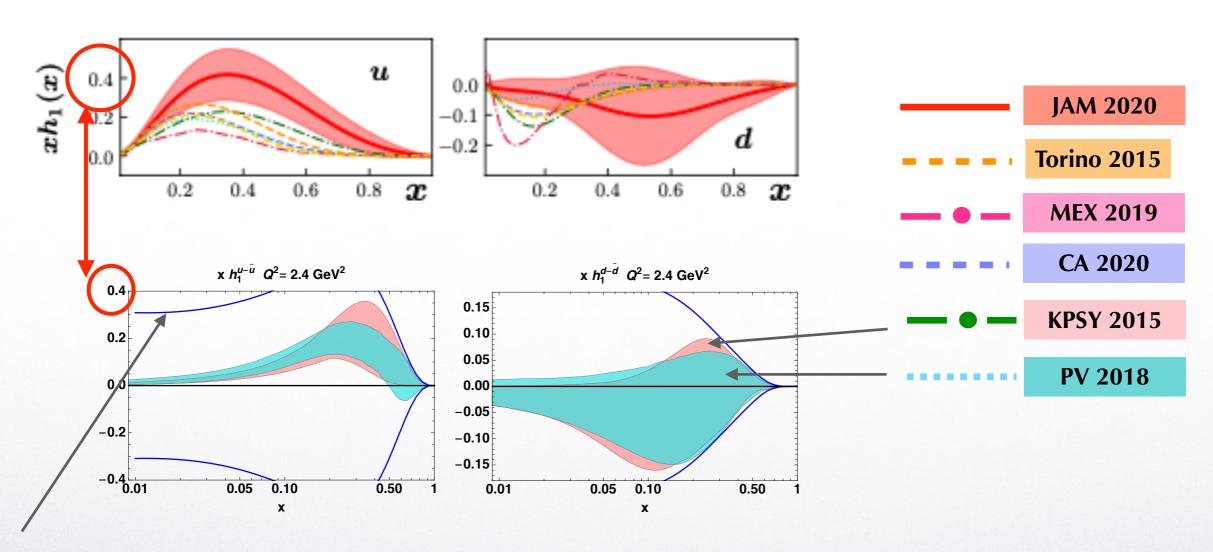
- very few data
- need to improve accuracy of formalism

Transversity extractions





Transversity extractions



 $|h_1(x, Q^2)| \le \frac{1}{2} |f_1(x, Q^2) + g_1(x, Q^2)|$ Soffer bound violated (Soffer bound ↔ positivity)

PV 2018 fullfils Soffer bound by construction

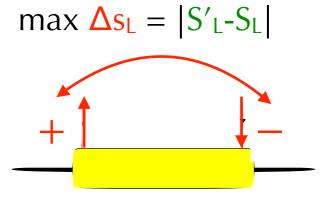
Why is transversity important?

- chiral-odd structure in spin-1/2 hadron no gluon transversity \rightarrow h₁ is a non-singlet object

$$\max \Delta s_L = |S'_L - S_L|$$

Why is transversity important?

- chiral-odd structure in spin-1/2 hadron no gluon transversity \rightarrow h₁ is a non-singlet object

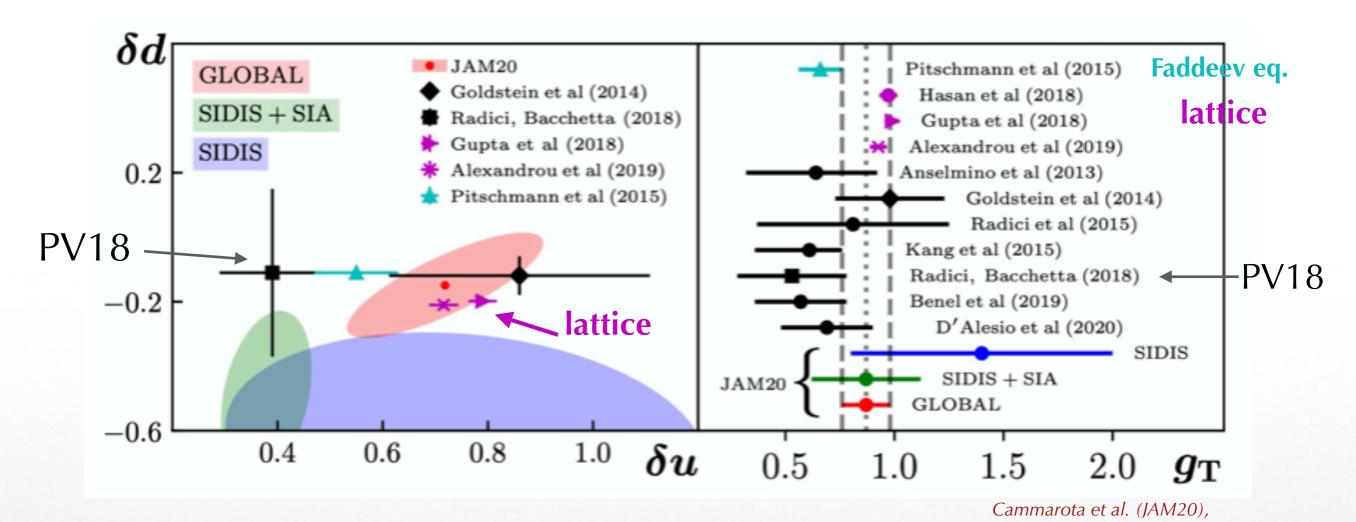


- doorway to BSM physics:
 - SM EFT of CP violation from neutron EDM d_n $d_n = \delta u d_u + \delta d d_d + \delta s d_s$ bounds from exp. tensor charge $\delta^q(Q^2) = \int_0^1 dx \, h_1^{q-\bar{q}}(x,Q^2)$ = 1st Mellin moment of h_1
 - SM EFT with tensor operators \rightarrow tensor coupling in nucleon β -decay

hadron level : n
$$\rightarrow$$
 p e- \mathbf{v}_e
$$\frac{\text{quark level} : d \rightarrow u \text{ e- } \mathbf{v}_e}{\langle p | \bar{u} \, \sigma^{\mu\nu} \, d \, | n \rangle} \cdot \epsilon_T \, \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_e$$
 bounds from exp. $\longrightarrow C_T \leftrightarrow g_T \epsilon_T \longleftarrow$ unknown
$$g_T = \delta u - \delta d \qquad \text{isovector tensor charge}$$

Tensions on tensor charge

PR D102 (20) 054002, arXiv:2002.08384

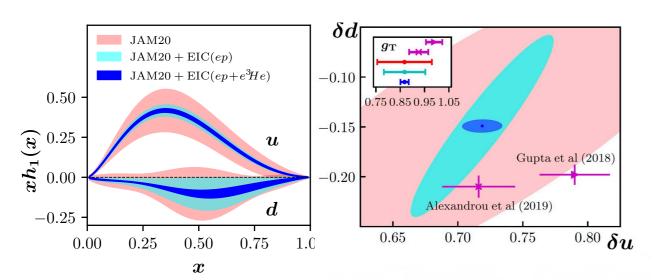


sometimes discrepancy with lattice

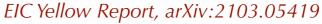
role of Soffer bound? D'Alesio et al., P.L. **B802** (20) 135347, arXiv:2001.01573

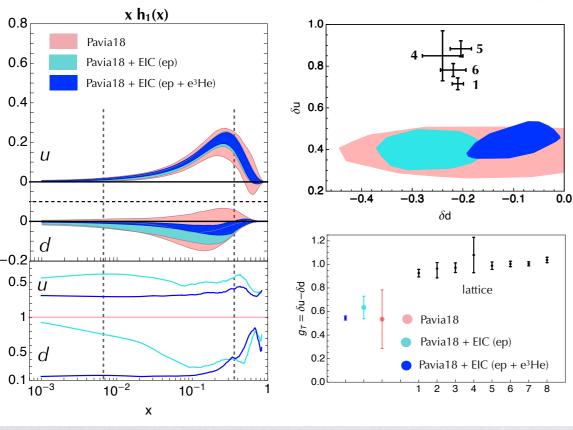
data in the $0.006 \lesssim x \lesssim 0.3$ range \rightarrow need to constrain extrapolation $\delta q = \int_0^x dx$.

EIC impact on tensor charge



using JAM20 parametrisation (Collins effect)

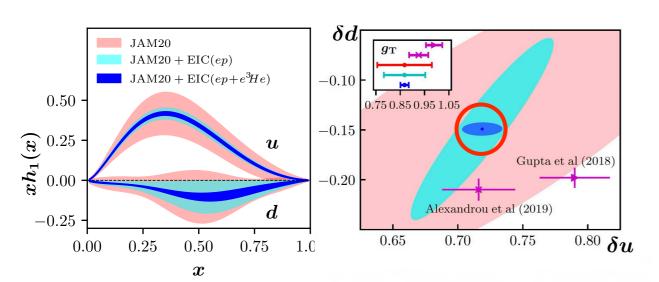




using PV18 parametrisation (DiFF mechanism)

- **ETMC '19** Alexandrou et al., arXiv:1909.00485 1)
- Harris et al., P.R. D100 (19) 034513 Mainz '19
- Hasan et al., P.R. D**99** (19) 114505 **LHPC '19**
- **ILOCD '18** Yamanaka et al., P.R. D98 (18) 054516
- PNDME '18 Gupta et al., P.R. D98 (18) 034503
- **ETMC '17** Alexandrou et al., P.R. D95 (17) 114514; (E) P.R. D96 (17) 099906
- RQCD '14 Bali et al., P.R. D91 (15) 054501
- LHPC '12 Green et al., P.R. D86 (12) 114509

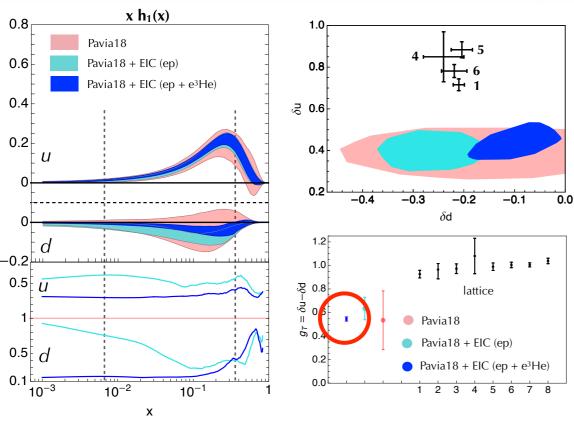
EIC impact on tensor charge



using JAM20 parametrisation (Collins effect)

expected precision close to (or higher than) lattice

EIC Yellow Report, arXiv:2103.05419



using PV18 parametrisation (DiFF mechanism)

- Alexandrou et al., arXiv:1909.00485 1) ETMC '19
- Mainz '19 Harris et al., P.R. D**100** (19) 034513
- **LHPC '19** Hasan et al., P.R. D**99** (19) 114505
- **ILOCD '18** Yamanaka et al., P.R. D98 (18) 054516
- PNDME '18 Gupta et al., P.R. D98 (18) 034503
- **ETMC '17** Alexandrou et al., P.R. D95 (17) 114514; (E) P.R. D96 (17) 099906
- RQCD '14 Bali et al., P.R. D91 (15) 054501
- LHPC '12 Green et al., P.R. D86 (12) 114509

gluon TMDs

Gluon TMDs are phenomenologically unknown. Why?

gluon TMDs

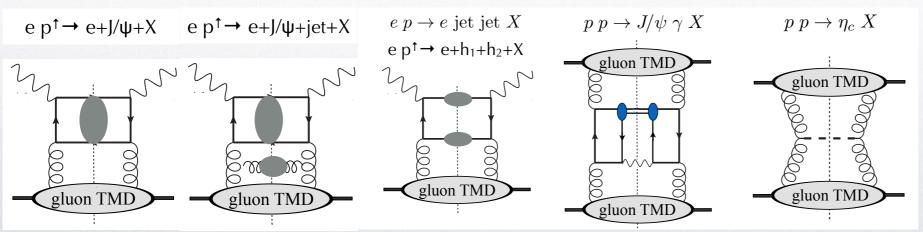
Gluon TMDs are phenomenologically unknown. Why?

- gluons carry no electric charge \rightarrow in SIDIS they appear only at higher orders
- gluons carries "two color charges" \rightarrow in general, difficult to neutralise them all
- in hadronic collisions, gluons appear at tree level, but :
 - factorisation theorem available only for Drell-Yan processes
 - for $H_1+H_2 \rightarrow h+X$ no factor. th. but also no counterexample disproving it

gluon TMDs

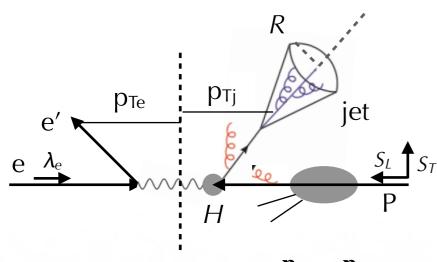
Gluon TMDs are phenomenologically unknown. Why?

- gluons carry no electric charge → in SIDIS they appear only at higher orders
- gluons carries "two color charges" \rightarrow in general, difficult to neutralise them all
- in hadronic collisions, gluons appear at tree level, but :
 - factorisation theorem available only for Drell-Yan processes
 - for $H_1+H_2 \rightarrow h+X$ no factor. th. but also no counterexample disproving it
- useful processes under study:



Boer et al., P.R.L. **108** (12) 032002 den Dunnen et al., P.R.L. 112 (14) 212001 Mukherjee & Rajesh, arXiv:1609.05596 Boer et al., arXiv:1605.07934 Godbole et al., arXiv:1703.01991 D'Alesio et al., arXiv:1705.04169 Rajesh et al., arXiv:1802.10359 Zheng et al., arXiv:1805.05290 Bacchetta et al., arXiv:1809.02056 D'Alesio et al., arXiv:1908.00446 D'Alesio et al., arXiv:1910.09640

TMDs with jets: SIDIS



$$\mathbf{q}_T = \mathbf{p}_{Te} + \mathbf{p}_{Tj} \ll \mathbf{p}_T = \frac{\mathbf{p}_{Te} - \mathbf{p}_{Tj}}{2}$$

$$F_{UU} \sim H(Q) J(p_T R, Q) \{f_1(x, q_T, Q)\}$$

hard jet "dressed" TMD
similarly for other F ..

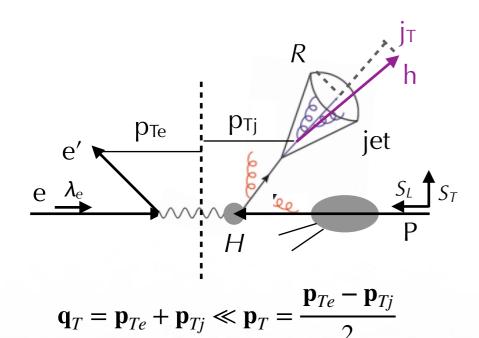
$$\frac{d\sigma}{dy_j d\mathbf{p}_T d\mathbf{q}_T} = F_{UU} +$$

$$\frac{g_{1L}}{\lambda_e S_L F_{LL}}$$

$$f_{1T}^{\perp} \\ + S_T \sin(\phi_j - \phi_S) F_{UT}^{\sin(\phi_j - \phi_S)} + \lambda_e S_T \cos(\phi_j - \phi_S) F_{LT}^{\cos(\phi_j - \phi_S)}$$

Kang et al., arXiv:2106.15624

TMDs with jets: SIDIS



$$F_{UU} \sim H(Q) \, {\rm TMDJFF}(z_h, p_T R, Q) \, \{f_1(x, q_T, Q)\}$$
 hard jet "dressed" TMD similarly for other F ..

"familiar" expression
$$\frac{d\sigma}{dy_{j}d\mathbf{p}_{T}d\mathbf{q}_{T}} = F_{UU} + \cos(\phi_{j} - \phi_{h})F_{UU}^{\cos(\phi_{j} - \phi_{h})} + \lambda_{e}S_{L}F_{LL}$$

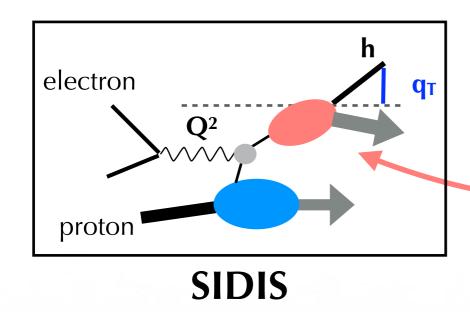
$$+S_{L}\sin(\phi_{j} - \phi_{h})F_{UL}^{\sin(\phi_{j} - \phi_{h})}$$

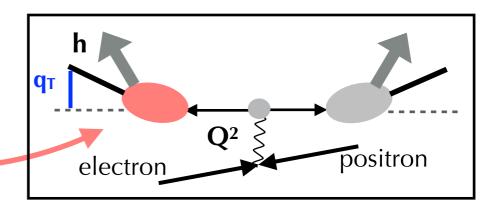
$$+S_{T}\sin(\phi_{j} - \phi_{S})F_{UT}^{\sin(\phi_{j} - \phi_{S})} + \lambda_{e}S_{T}\cos(\phi_{j} - \phi_{S})F_{LT}^{\cos(\phi_{j} - \phi_{S})}$$

 $\begin{array}{ccc} & h_{1} \ \mathcal{H}_{1}^{\perp} & & h_{1T}^{\perp} \mathcal{H}_{1}^{\perp} \\ + S_{T} \sin(\phi_{h} - \phi_{S}) \, F_{UT}^{\sin(\phi_{h} - \phi_{S})} + S_{T} \sin(2\phi_{i} - \phi_{h} - \phi_{S}) \, F_{UT}^{\sin(2\phi_{i} - \phi_{h} - \phi_{S})} \end{array}$

Kang et al., arXiv:2106.15624

TMDs with jets: hybrid factorisation





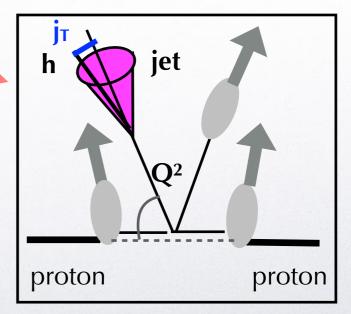
e+e- annihilation

hybrid scheme:

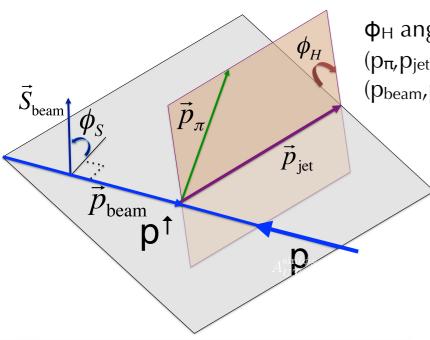
- TMD framework for TMD fragmentation
- collinear framework for PDF

Factorization theorem for $\mathbf{j}_T \ll \mathbf{Q}$ universality for TMD fragmentation

Kang, Liu, Ringer, Xing, JHEP 1711 (17), arXiv:1705.08443 Kang, Prokudin, Ringer, Yuan, P.L. B774 (17), arXiv:1707.00913



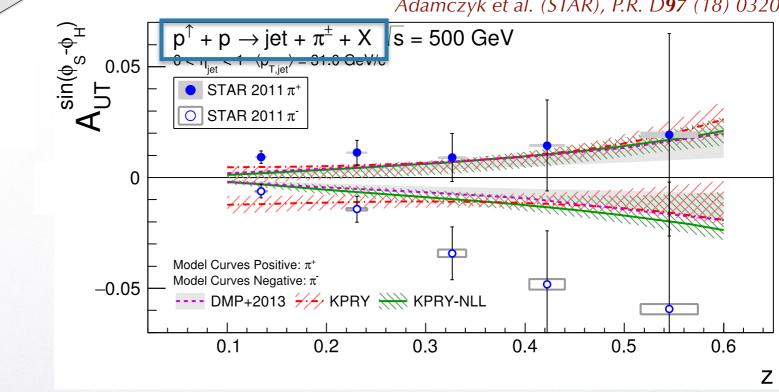
hadron-in-jet Collins effect



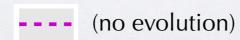
Φ_H angle of $(p_{\pi\!,}p_{jet})$ plane and (p_{beam}, p_{jet}) plane

$$A_T^{\sin(\phi_S - \phi_H)} \propto \frac{h_1^q \otimes f_1^{\bar{q}} \otimes H_1^{\perp q}}{f_1^q \otimes f_1^{\bar{q}} \otimes D_1^q}$$

Adamczyk et al. (STAR), P.R. D97 (18) 032004



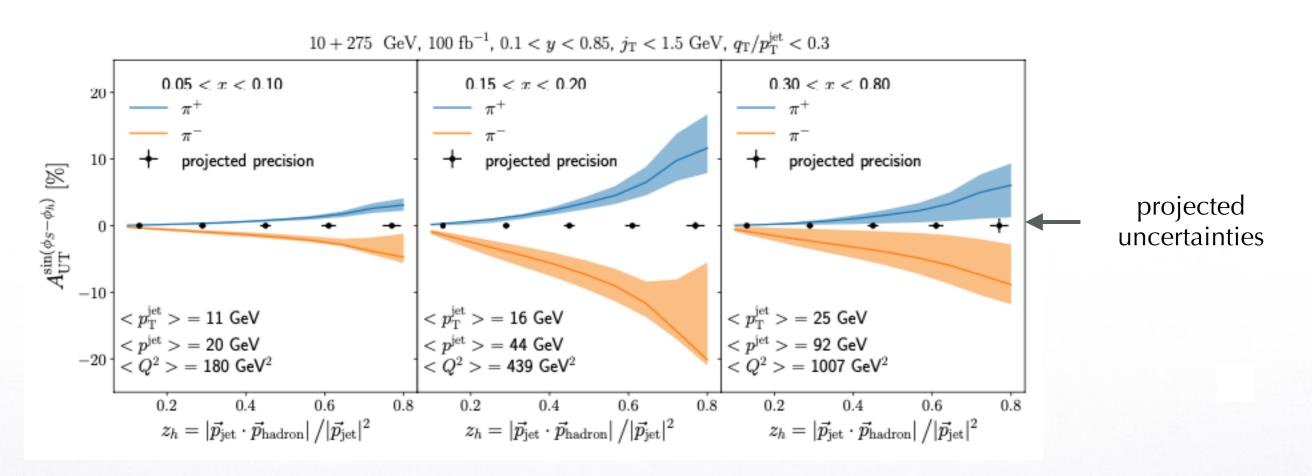
PDF & TMDFF from SIDIS + e⁺e⁻ analysis



D'Alesio et al., P.L. **B773** (17) 300

*** TMD evolution Kang et al., P.L. **B774** (17) 635

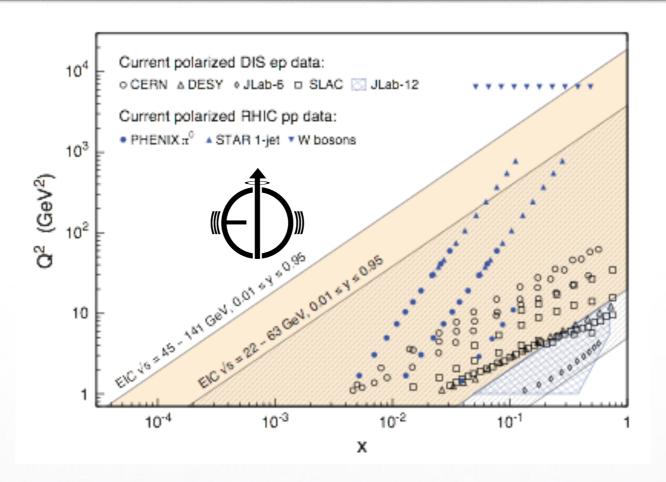
EIC impact on hadron-in-jet Collins effect



Arratia et al., P.R. D102 (20) 074015, arXiv:2007.07281

based on Kang et al., P.R. D93 (16) 014009

The EIC project and TMDs



The EIC from the TMD point of view:

- enlarging phase-space coverage
- high polarization
- high statistics

Benefits:

- deepening knowledge of all (un)polarized TMDs
- explore new channels involving jets in final state
- explore unknown territory of gluon TMDs