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Main takeaway

m Color Glass Condensate:

Hamiltonian is non-perturbative and unknown, so is the wavefunction
A model for proton wavefunction

proton) = > [v; pa) @ |8; pa, Ab)
Pa

Entanglement entropy Sg = — Tr(pr In(pr))

m Reduced density matrix diagonalized, and thermal
quasi-particle in certain momentum regime.
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Reduced density matrix
Density matrix p(A, B) — reduced density matrix

pa=Trpp(A, B)

m Here A can be probed in DIS partons of the parton model,
B is the unobserved part of the parton wavefunction.

m The property of interest: if p(A, B) is pure, non-pure reduced
density matrix p4 — entanglement

electron
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Quantum entropies

Common entropies in quantum information theory:
m Renyi entropy S& = ﬁln Tr{[)f,v}
m von Neumann entropy Sy = limy_1 Sg =—-Tr{p, Inp,}

Entropy of entanglement: entropy of the reduced density matrix
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Proton wave function

CGC model for Proton wavefunction,

lproton) = > [v; pa) @ |5; pa, Ab)
Pa
where
m |v) describes the valance dof
m |s) stands for soft gluons
m p,(x) is the color charge density of the valance modes

m Ay is the gluon field generated from the source p,
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Reduced density matrix for soft gluons in MV model

Our goal is the reduced density matrix for soft gluons

ps = Try(|v) (v] ©|s) (s])

In MV model
1= [ Dlpali I =c)
c—ew{i [iwarh o) =i +ai(-w
b (z) = - i\r T [T°U @)U ()] = 2 T [V @)av ()]
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Trace out the valance dof
p(o1, d2)

a (k) a(k) z *i bx
_\ / DlpaJe” e 2 H R AMOTL M= [ A (4 10y (0]5,)

and in MV model

(2m)°

g S, -
ab .74 = 2L pypab
sz =10 TGl ) = (o M R)

(2m)2 Y

(b (k)05 (—k)) =

where Weizsacker-Williams gluon distribution in the momentum
space has the following form

2Gil (@, k) = %@jajG(l)(x, k) — % (5ij - kk?) zh® (z, k)
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pr in field basis

(B1lrlda) = N (91]0) (0] a)e Jo 315 (61,09 —95, (KB (—h) 05—

where the vacuum wave function is
L 9
<0‘¢> = exp _Z¢

we have two independent modes

~ (27)? G + zp(M)
My = .
25 (N2 — 1) 2
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We derive the entanglement entropy for both eigenvalues of the
matrix M, we obtain

s NZ-1 - T 1 1 —
55— Ze— i;:/k[lan(k)Jr\/lJréu\L(k)l <1+72]\7I,;(k)+72191i(k) 1+4M1(k)>]

we noticed the result of the previous section can be rewritten in
the following form

2
Sp = <N3—1>SL2/(§W’§2
==

with the distribution function fi =

(1+ f)In(1+ fi) — filn fi]

exp ﬁwi) 7 and

ﬁwi =2In
2\/M>i V
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Thermal density matrix

A different perspective, consider the following reduced density
matrix

pr = (1= e750) 37 =30 [y

n=0

where n is the energy level, and define f = W+—1 The
corresponding von Neumann entropy is

Sy = (14 f)In(1+f) = fIn(f)

This indicates p, from CGC can be diagonalized in a new basis.
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After diagonalization

we found the following Bogoliubov transformation

clh) = 5(Va+—=) alk) + 5(va - 7) al(~#)
cH(k) = 5V + —72) al (k) + 5(v/a — =) a(=h)

we have again two independent modes

40é+ = \/1+4M+
4o =\/1+4M_

and
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Thermalized massless quasi-particle
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