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Motivation

o To model the bulk evolution of the strongly interacting matter produced in
relativistic heavy-ion collisions, relativistic viscous hydrodynamics has become
the basic theoretical tool. ' 2.

@ Concepts used in hydrodynamics: energy density and pressure, both are defined
locally — formally, the fluid cell has zero size.

@ Interestingly, hydro models which are successful in explaining the experimental
data can be used to conclude about the energy density attained in the collision
processes.

@ Is the energy density is a well defined concept for fluid cell of arbitrary size?
@ Does quantum fluctuation play any role?

@ Noether’s theorem does not give a unique choice for the energy-monetum tensor
— pseudo gauge choices.

@ Possible pseudo gauge dependence?

IC. Gale, S. Jeon, B. Schenke, Int.J.Mod.Phys.A 28 (2013) 1340011
28. Jeon, U. Heinz, Int.J.Mod.Phys.E 24 (2015) 10, 1530010.
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Scale dependence of quantum fluctuation

@ For a real scalar field the canonical energy-momentum tensor is :
™ =np—L=1H. (1)

In the Natural units, i = ¢ = 1, [T%] = [£] = [M?] = [H].

@ We define a smeared operator,

Ala) = (ay/7)" / A x H(0,x)e /. )
@ Variance of the operator A(a),
var A = (A%) — (A = [var A] = [A]? = [H] = [M]*. 3)
o If we set,
varA(a) ~a® = = —-2d )

@ Therefore the fluctuations of the energy density grow rapidly at small distances .

3Quantum Field Theory: Lectures of Sidney Coleman
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Sy

NO

S is closed/isolated system described
by microcanonical ensemble.

Sy is a sub system of the closed
system in equilibrium, described by
the canonical ensemble. Fluctuation
in energy in Sy (large volume limit):

(H?) — (H)? _ 1°C
(H)? o V62V =0

®)

of =

H is the Hamiltonian, T is
temperature, ¢ is energy density, Cy
is specific heat.

S, is a subsystem of Sy which is
described by the "Gaussian box":

(ay/)* exp(—x*/a?).

4Talk given by W. Florkowski at Workshop on QGP Phenomenology, Sharif University of Technology,

Teheran, Iran May 28,2021
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Quantum scalar field
@ We describe our system by a quantum scalar field in thermal equilibrium?.

(ake_ik"‘ + a,teik"‘) ; [ak,a,t,] =k —-k') (6)

dk
e [P
(271')3 Zwk
Single particle energy: wy = VK> +m?, a*b, = a-b = a"b’ —a - b.
@ Hamiltonian density:
_ Ll 2, 2.2
H—z "+ (Vo) +m¢”). @)

@ We define an operator H, for a finite subsystem S, placed at the origin of the
coordinate system,

1 3 x?
Ho= 7= [ @xH(x) exp | —— | (8)
(ay/T) a
@ Our objective:
(<HaHa> — <Ha>2)1/2
(Ha)
5S. Coleman, Lectures of Sidney Coleman on Quantum Field Theory.-WSP,-Hackensack, 12, 2018.
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@ Normal ordering: Composite QFT operators — Some "Normal ordering"
prescription required.

Hy —: Hy (10)
HHo —: Ha s Hy : a1

@ To perform thermal averaging, it is sufficient to know the thermal expectation

values of the products of two and four creation and/or annihilation operators 6
7,8

(afay) =0 (k — k' )f (wr), (12)
(g ayay) = <5<3> (k= p) §V (K —p') + 58 (k — p) 6O (K —p>)f<wk>f<wk,)

The Bose—Einstein distribution function, f(wy) = 1/(exp[B8 wi] — 1).

@ Any other combinations of two and four creation and/or annihilation operators
can be obtained through the commutation relation between a, and a,t.
6C, Cohen-Tannoudji, B. Diu, F. Lalo e, and S. R. Hemley, Quantum mechanics: Vol. 3, Wiley, New
York, 1977.
7T. Evans and D. A. Steer, Nucl. Phys. B 474 (1996) 481.

8C. Itzykson and J. Zuber, Quantum Field Theory. International Series In Pure and Applied Physics.
McGraw-Hill, New York, 1980.
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The thermal expectation value of the operator H,, is

3
(Hy:) = / (;iTk)S wi f (wi) = &(T) well known result (13)

Important new result: Fluctuation,

o*(a,m,T) = /dK dK'f (wie) (1 + f (wi))

aZ ’ az ’
X [(wkwk/ +k-K+ m2)2677(k7k ’ 4 (wrwpr +k -k — m2)2677(k+k ’].

(14)

here dK = dk/((27)*2wy).

All the vacuum energy term coming from the composite operator may not be
removed by "Normal ordering".

(: H, :) is independent of the scale a, but the fluctuation o*(a, m, T) depends on
the scale.

Degeneracy factor: ¢ — ge, o> — go>.
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Temperature and mass dependence of o,

5 — T =0.1 GeV s ‘\‘ — m=0.0
; T =0.15 GeV i m=0.3 eV
=== T =025 GeV Y ----m =10 GeV

[g=10 | [7=015Gev

m = 0.3 GeV

03 04 05 06 07 08 09 10 03 04 05 06 07 08 09 10
a [fm] a [fm]

@ With a possible interpretation of heavy-ion data in mind, we consider
temperatures in the range 0.1 GeV < T < 0.25 GeV, and particle masses:
m = 0, 0.3 and 1.0 GeV.

@ The value of g varies between 37 (for two quark flavor QGP) and 47.5 (for three
quark flavor QGP). g ~ 400 for Hadron gas, but high mass hadronic contribution
is thermally suppressed.

@ For high T and m, o, is small, but the fluctuation o is large.
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Thermodynamic limit

SV SV SV
. . .

@ Gaussian representation of the three dimensional Dirac delta function

3

. a — @ (k—p)?
=P = Jim e T as

@ One obtains,

T2 H?) — (H)?
Vot = v _ )= )

_ 2
n 82 <H> = VUH& (16)

o V, = a’(2m)3/? can be considered as the volume of the subsystem S, — a
nontrivial factor of (27)%/2 is an artifact of using the “Gaussian” box.

@ Vo2 can be identified as the normalized energy fluctuation in the system Sy.
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Approach to the thermodynamic limit

40 40
— T =0.1GeV — m=00
35 T =0.15 GeV 35 m = 0.3 GeV
----T =0.25 GeV ----m = 1.0 GeV
N/E 3.0
S
= 25|
| [T=055Ge ]
52 % T =0.15 GeV
20
=osh
10
05 05
01 02 03 04 05 06 07 08 09 1.0 01 02 03 04 05 06 07 08 09 1.0
a [fm] a [fm]

@ Variation of V,02/Vo? with the size of the subsystem S, in the case where
particles have a non vanishing mass and they obey Bose-Einstein statistics.

@ One expects that in the thermodynamic limit V,02/Vo? should approach unity.
@ Quantum fluctuations agree with the thermodynamic ones already for a > 1 fm.

@ Quantum fluctuations become very important at the scale of 0.1 fm.
10/20



System of fermions

@ We describe our system by a spin-1/2 field in thermal equilibrium. The field
operator has the standard form °

3
(1) :Z / (277;—5%([]’ (e, ()™ +V, ()bl (R)e*),  (7)

@ The canonical anti-commutation relations,

1K)} = (2m)%0,,0%) (k — k') (18)
{b, (k), bl (k")} = (2m)*6,,6®) (k — k') (19)

U, (k)U, (k) = 2md,, (20)
V, (k)V, (k) = —2md,, Q1)

9L. Tinti and W. Florkowski, arXiv:2007.04029
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@ To perform thermal averaging:

(af (k)a, (k') = (27)*8,,0©) (k — k')f (wk), 22)
(a} (k)al (K')a,, (p)ay ("))

=(2 ) 5r5’5rs5 ( )5(3)(]‘/_1’)

— G B8 (k = p) 6O (K — p') ) (i) (). (23)

Here f(wi) = 1/(exp[8 (wk — p)] + 1) is the Fermi-Dirac distribution function
for particles.

@ Anti particle operators also satisfies similar relation.

o For antiparticles, the Fermi-Dirac distribution function differs by the sign of the
chemical potential y, i.e. f(wy) = 1/(exp[B (wr + p)] + 1)
@ We consider a case with zero baryon chemical potential.
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@ Contrary to the real scalar field, the canonical energy momentum tensor operator
is not symmetric,

Tt = é%“?”w — "Ly = %%“%}”w, Gr=Tr_9r (4

Here Lp denotes the Lagrangian density of a spin-1/2 field, which can be
expressed as

Lo = 597" Ty — mi, (25)

@ Mathematically, for any original energy-momentum tensor TH satisfying
0,T" = 0 we can construct a different one by adding the divergence of an
antisymmetric object, namely '°

ri/p,t/ _ T,u,u + a}\Auu)\; Auu)\ — 71&1})\;1, (26)

@ By construction, the new tensor is also conserved, i.e., 8MT’ HY =,

@ For spin 1/2 field the energy momentum tensor is "Pseudo-gauge" dependent.

10E. Speranza and N. Weickgenannt, “Spin tensor and pseudo-gauges: from nuclear collisions to
gravitational physics,” arXiv:2007.00138 [nucl-th].
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o Belinfante-Rosenfeld framework (BR):
Ti = %%“ﬁ”w - %c‘h (15{7\ [’y”,ﬂ }w) (27)
o de Groot-van Leeuwen-van Weert framework (GLW)!!:
Ty = 0 0Ty gLy

m

= ﬁ { — (310 Y) + (9")(9) + (8" ) (9"4))

- (3”6”15)1#]. (28)
e Hilgevoord-Wouthuysen framework (HW)'2:
Tl = Tl + 5 (97607030 + Babr™ 9" )

— ﬁgm/aA (1/_)(7)@(5)047#) ’ 29)

11S. R. De Groot, Relativistic Kinetic Theory. Principles and Applications. 1980.
12 Hilgevoord and S. Wouthuysen, Nucl. Phys. 40 (1963) 1-12; J. Hilgevoord and E. De Kerf, Physica
31 No.7 (1965) 1002-1016
T



-
Energy density is pseudo-gauge independent

e We define an operator, 7%:

3 1 . 2
T = ENGE /d3x T%(x) exp <—%> . (30)

@ We consider the variance

Uz(a,m,T) =(: Tgo : Tgo D= Tgo :)2 31
and the normalized standard deviation

((: TOO 2 OO 2y — (- 700 y2y1/2

ou(a,m,T) = T (32)
@ Mean/thermal averaged T%°:
. &k
(78009 =4 [ s fle) = () 63
= (: TR ) = ¢ Tatwa ) = ( Tiw,a 9 (34)
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Energy density fluctuation— pseudo-gauge dependent

o Contrary to energy density the energy density fluctuation is pseudo-gauge
dependent, e.g.
@ For the Canonical framework:

Frulam, T) =2 [ AR dK 7)1~ fen)
X [(wk + wpr ) (wrwpr + k- K+ mz)e_é(k_k,)2
— (wk — wi ) (o +k -k — mz)e_%(k"'kl)2 , (35)
@ For the de Groot-van Leeuwen-van Weert framework:
Fhuwlam,T) = 55 [ dK dK f(1 - fen)
x | (wi + wi)* (wewr — k- K+ m?) o= 5 kK
— (w — wi)* (wrewr — k- K —m?) o~ S U] (36)

ARPAN DAS (ifj) 16/20



= Can, m = 1.0 GeV
v GLW, me= 1.0 GeV
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@ A comparison of the normalized standard deviation of fluctuations obtained for
three different pseudo-gauges (Can=BR, GLW, HW).

@ For a < 0.5 fm, we observe that the results obtained with various pseudo-gauges
differ, with differences growing as a decreases.

@ Irrespective of the choice of pseudo-gauges with growing system size the
normalized standard deviation of fluctuations (o,,) decreases.
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What about thermodynamic limit??
@ Using the Gaussian representation of the Dirac delta function it can be shown
that, in the large a limit,

4¢g Pk
2 2 2 2 2
N wi flwr)(1 —flwk)) = oggr =0 = ogw- (37
Can (271_)3/2(13 (271')3 kf( k)( f( k)) BR GLW HW ( )
@ In the large a limit we find,
T?c (E*) — (E)?
2 \4 — 2 3 3/2
Vioy = ——=V - =Voi Ve=d(2m)2 (38)
€ (E)
1.4 10 =
% T=015GV |— Can/BR % T=015GeV | — Can/BR
135) % m=10GeV [ GLW O 5 m=015GeV | e GLW
I --- HW g} % og=10 i
5125 5
= = 6
> 12 ’\/V\? 5
Sk
Y
T
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Conclusions

@ We have derived the formula characterizing the quantum fluctuation of energy in
subsystems of a hot relativistic gas.

o It agrees with the expression for thermodynamic fluctuations, if the size of the
subsystem is sufficiently large.

@ For smaller sizes the effects of quantum fluctuations become relevant and the
classical description with “well defined energy density” makes sense only after
coarse graining over sufficiently large scale.

@ For fermions quantum fluctuation of energy density does depend on the choice of
the pseudo-gauge.

@ On the practical side, the results of our calculations can be used to determine a
scale of coarse graining for which the choice of the pseudo-gauge becomes
irrelevant.

o This may be useful, in particular, in the context of hydrodynamic modeling of
high-energy collisions.

@ These results might be relevant for small systems.
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Thank You!




Normal ordering: alternative approach
@ For a composite operator we considered the following normal ordering method:

HHo —: Ha s He -

@ Therefore we are first normal ordering first then then multiplying to construct the
composite operator.

@ Alternatively one can also argue about different method of normal ordering:

PHYSICAL REVIEW D VOLUME 47, NUMBER 10 15 MAY 1993

Semiclassical gravity theory and quantum fluctuations

Chung-T Kuo and L. H. Ford
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(Received 9 December 1992)

(:Tuoz(z): y=~G TUO(I): )2
(: Too%(z):)

Alz) =

o If we consider such a normal ordering then:

P T) = s HaHa ) = ¢ Moo = [ dR dK P (o)
| (e +k K + mz)ze—é(k_k/)z (e + kK — mz)ze—é(kﬂa)z .

(39)
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