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Motivation

To model the bulk evolution of the strongly interacting matter produced in
relativistic heavy-ion collisions, relativistic viscous hydrodynamics has become
the basic theoretical tool. 1, 2.
Concepts used in hydrodynamics: energy density and pressure, both are defined
locally – formally, the fluid cell has zero size.
Interestingly, hydro models which are successful in explaining the experimental
data can be used to conclude about the energy density attained in the collision
processes.
Is the energy density is a well defined concept for fluid cell of arbitrary size?
Does quantum fluctuation play any role?
Noether’s theorem does not give a unique choice for the energy-monetum tensor
→ pseudo gauge choices.
Possible pseudo gauge dependence?

1C. Gale, S. Jeon, B. Schenke, Int.J.Mod.Phys.A 28 (2013) 1340011
2S. Jeon, U. Heinz, Int.J.Mod.Phys.E 24 (2015) 10, 1530010.
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Scale dependence of quantum fluctuation
For a real scalar field the canonical energy-momentum tensor is :

T̂00 = πφ̇− L ≡ H. (1)

In the Natural units, ~ = c = 1, [T̂00] = [L] = [Md] = [H].
We define a smeared operator,

A(a) = (a
√
π)1−d

∫
dd−1xH(0, x)e−x2/a2

. (2)

Variance of the operator A(a),

var A = 〈A2〉 − 〈A〉2 =⇒ [var A] = [A]2 = [H]2 = [M]2d. (3)

If we set,

var A(a) ∼ aβ =⇒ β = −2d (4)

Therefore the fluctuations of the energy density grow rapidly at small distances 3.
3Quantum Field Theory: Lectures of Sidney Coleman
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SV

S

SV

Sa

S is closed/isolated system described
by microcanonical ensemble.
SV is a sub system of the closed
system in equilibrium, described by
the canonical ensemble. Fluctuation
in energy in SV (large volume limit):

σ2
H =

〈H2〉 − 〈H〉2

〈H〉2
=

T2CV

Vε2 → 0.

(5)

H is the Hamiltonian, T is
temperature, ε is energy density, CV

is specific heat.
Sa is a subsystem of SV which is
described by the "Gaussian box":
(a
√
π)3 exp(−x2/a2).

4

4Talk given by W. Florkowski at Workshop on QGP Phenomenology, Sharif University of Technology,
Teheran, Iran May 28,2021
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Quantum scalar field
We describe our system by a quantum scalar field in thermal equilibrium5.

φ(t, x) =

∫
d3k√

(2π)3 2ωk

(
ake−ik·x + a†keik·x

)
; [ak, a

†
k′ ] = δ(3)(k− k′) (6)

Single particle energy: ωk =
√

k2 + m2, aµbµ = a · b = a0b0 − a · b.
Hamiltonian density:

H =
1
2

(
φ̇2 + (∇φ)2 + m2φ2

)
. (7)

We define an operatorHa for a finite subsystem Sa placed at the origin of the
coordinate system,

Ha =
1

(a
√
π)3

∫
d3xH(x) exp

(
−x2

a2

)
. (8)

Our objective:

σ2(a,m,T) = 〈HaHa〉 − 〈Ha〉2, σn(a,m,T) =
(〈HaHa〉 − 〈Ha〉2)1/2

〈Ha〉
. (9)

5S. Coleman, Lectures of Sidney Coleman on Quantum Field Theory. WSP, Hackensack, 12, 2018.
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Normal ordering: Composite QFT operators→ Some "Normal ordering"
prescription required.

Ha →: Ha : (10)
HaHa →: Ha :: Ha : (11)

To perform thermal averaging, it is sufficient to know the thermal expectation
values of the products of two and four creation and/or annihilation operators 6,

7,8

〈a†kak′〉 = δ(3)(k− k′)f (ωk), (12)

〈a†ka†k′apap′〉 =

(
δ(3)(k− p) δ(3)(k′ − p′) + δ(3)(k− p′) δ(3)(k′ − p)

)
f (ωk)f (ωk′).

The Bose–Einstein distribution function, f (ωk) = 1/(exp[β ωk]− 1).
Any other combinations of two and four creation and/or annihilation operators
can be obtained through the commutation relation between ak and a†k.

6C. Cohen-Tannoudji, B. Diu, F. Lalo e, and S. R. Hemley, Quantum mechanics: Vol. 3, Wiley, New
York, 1977.

7T. Evans and D. A. Steer, Nucl. Phys. B 474 (1996) 481.
8C. Itzykson and J. Zuber, Quantum Field Theory. International Series In Pure and Applied Physics.

McGraw-Hill, New York, 1980.
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The thermal expectation value of the operatorHa is

〈: Ha :〉 =

∫
d3k

(2π)3 ωk f (ωk) ≡ ε(T) well known result (13)

Important new result: Fluctuation,

σ2(a,m,T) =

∫
dK dK′f (ωk)(1 + f (ωk′))

×
[
(ωkωk′ + k · k′ + m2)2e−

a2
2 (k−k′)2

+ (ωkωk′ + k · k′ − m2)2e−
a2
2 (k+k′)2

]
.

(14)

here dK = d3k/((2π)32ωk).
All the vacuum energy term coming from the composite operator may not be
removed by "Normal ordering".
〈: Ha :〉 is independent of the scale a, but the fluctuation σ2(a,m,T) depends on
the scale.
Degeneracy factor: ε→ gε, σ2 → gσ2.
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Temperature and mass dependence of σn
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With a possible interpretation of heavy-ion data in mind, we consider
temperatures in the range 0.1 GeV < T < 0.25 GeV, and particle masses:
m = 0, 0.3 and 1.0 GeV.
The value of g varies between 37 (for two quark flavor QGP) and 47.5 (for three
quark flavor QGP). g ∼ 400 for Hadron gas, but high mass hadronic contribution
is thermally suppressed.
For high T and m, σn is small, but the fluctuation σ is large.
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Thermodynamic limit

SV

Sa →
SV

Sa →
SV

Sa →

Gaussian representation of the three dimensional Dirac delta function

δ(3)(k− p) = lim
a→∞

a3

(2π)3/2 e−
a2
2 (k−p)2

. (15)

One obtains,

Vaσ
2
n =

T2cV

ε2 = V
〈H2〉 − 〈H〉2

〈H〉2
≡ Vσ2

H, (16)

Va = a3(2π)3/2 can be considered as the volume of the subsystem Sa — a
nontrivial factor of (2π)3/2 is an artifact of using the “Gaussian” box.
Vσ2

H can be identified as the normalized energy fluctuation in the system SV .
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Approach to the thermodynamic limit
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Variation of Vaσ
2
n/Vσ2

H with the size of the subsystem Sa in the case where
particles have a non vanishing mass and they obey Bose-Einstein statistics.
One expects that in the thermodynamic limit Vaσ

2
n/Vσ2

H should approach unity.
Quantum fluctuations agree with the thermodynamic ones already for a > 1 fm.
Quantum fluctuations become very important at the scale of 0.1 fm.
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System of fermions

We describe our system by a spin-1/2 field in thermal equilibrium. The field
operator has the standard form 9

ψ(t, x) =
∑

r

∫
d3k

(2π)3
√

2ωk

(
Ur (k)ar (k)e−ik·x + Vr (k)b†r (k)eik·x

)
, (17)

The canonical anti-commutation relations,

{ar (k), a†s (k′)} = (2π)3δrsδ
(3)(k− k′) (18)

{br (k), b†s (k′)} = (2π)3δrsδ
(3)(k− k′) (19)

Normalization of Dirac spinors,

Ūr (k)Us (k) = 2mδrs (20)

V̄r (k)Vs (k) = −2mδrs (21)

9L. Tinti and W. Florkowski, arXiv:2007.04029
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To perform thermal averaging:

〈a†r (k)as (k′)〉 = (2π)3δrsδ
(3)(k− k′)f (ωk), (22)

〈a†r (k)a†s (k′)ar′(p)as′(p′)〉

= (2π)6
(
δrs′δr′sδ

(3)(k− p′) δ(3)(k′ − p)

− δrr′δss′δ
(3)(k− p) δ(3)(k′ − p′)

)
f (ωk)f (ωk′). (23)

Here f (ωk) = 1/(exp[β (ωk − µ)] + 1) is the Fermi–Dirac distribution function
for particles.
Anti particle operators also satisfies similar relation.
For antiparticles, the Fermi–Dirac distribution function differs by the sign of the
chemical potential µ, i.e. f̄ (ωk) = 1/(exp[β (ωk + µ)] + 1)

We consider a case with zero baryon chemical potential.
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Contrary to the real scalar field, the canonical energy momentum tensor operator
is not symmetric,

T̂µνCan =
i
2
ψ̄γµ
←→
∂ νψ − gµνLD =

i
2
ψ̄γµ
←→
∂ νψ,

←→
∂ µ ≡

−→
∂ µ −

←−
∂ µ (24)

Here LD denotes the Lagrangian density of a spin-1/2 field, which can be
expressed as

LD =
i
2
ψ̄γµ
←→
∂µψ − mψ̄ψ, (25)

Mathematically, for any original energy-momentum tensor T̂µν satisfying
∂µT̂µν = 0 we can construct a different one by adding the divergence of an
antisymmetric object, namely 10

T̂ ′µν = T̂µν + ∂λÂνµλ; Âνµλ = −Âνλµ (26)

By construction, the new tensor is also conserved, i.e., ∂µT̂ ′µν = 0.
For spin 1/2 field the energy momentum tensor is "Pseudo-gauge" dependent.

10E. Speranza and N. Weickgenannt, “Spin tensor and pseudo-gauges: from nuclear collisions to
gravitational physics,” arXiv:2007.00138 [nucl-th].
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Belinfante-Rosenfeld framework (BR):

T̂µνBR =
i
2
ψ̄γµ
←→
∂ νψ − i

16
∂λ

(
ψ̄
{
γλ,
[
γµ, γν

]}
ψ
)
. (27)

de Groot-van Leeuwen-van Weert framework (GLW)11:

T̂µνGLW = − 1
4m

ψ̄
←→
∂ µ←→∂ νψ − gµνLD

=
1

4m

[
− ψ̄(∂µ∂νψ) + (∂µψ̄)(∂νψ) + (∂νψ̄)(∂µψ)

− (∂µ∂νψ̄)ψ
]
. (28)

Hilgevoord-Wouthuysen framework (HW)12:

T̂µνHW = T̂µνCan +
i

2m

(
∂νψ̄σµβ∂βψ + ∂αψ̄σ

αµ∂νψ
)

− i
4m

gµν∂λ
(
ψ̄σλα

←→
∂ αψ

)
, (29)

11S. R. De Groot, Relativistic Kinetic Theory. Principles and Applications. 1980.
12. Hilgevoord and S. Wouthuysen, Nucl. Phys. 40 (1963) 1-12; J. Hilgevoord and E. De Kerf, Physica

31 No.7 (1965) 1002-1016
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Energy density is pseudo-gauge independent
We define an operator, T̂00

a :

T̂00
a =

1
(a
√
π)3

∫
d3x T̂00(x) exp

(
−x2

a2

)
. (30)

We consider the variance

σ2(a,m,T) = 〈: T̂00
a :: T̂00

a :〉 − 〈: T̂00
a :〉2 (31)

and the normalized standard deviation

σn(a,m,T) =
(〈: T̂00

a :: T̂00
a :〉 − 〈: T̂00

a :〉2)1/2

〈: T̂00
a :〉

. (32)

Mean/thermal averaged T̂00
a :

〈: T̂00
Can,a :〉 = 4

∫
d3k

(2π)3 ωk f (ωk) ≡ εCan(T) (33)

= 〈: T̂00
BR,a :〉 = 〈: T̂00

GLW,a :〉 = 〈: T̂00
HW,a :〉 (34)
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Energy density fluctuation– pseudo-gauge dependent
Contrary to energy density the energy density fluctuation is pseudo-gauge
dependent, e.g.
For the Canonical framework:

σ2
Can(a,m,T) = 2

∫
dK dK′f (ωk)(1− f (ωk′))

×
[
(ωk + ωk′)

2(ωkωk′ + k · k′ + m2)e−
a2
2 (k−k′)2

− (ωk − ωk′)
2(ωkωk′ + k · k′ − m2)e−

a2
2 (k+k′)2

]
, (35)

For the de Groot-van Leeuwen-van Weert framework:

σ2
GLW(a,m,T) =

1
2m2

∫
dK dK′f (ωk)(1− f (ωk′))

×
[
(ωk + ωk′)

4 (ωkωk′ − k · k′ + m2) e−
a2
2 (k−k′)2

− (ωk − ωk′)
4 (ωkωk′ − k · k′ − m2) e−

a2
2 (k+k′)2

]
. (36)
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A comparison of the normalized standard deviation of fluctuations obtained for
three different pseudo-gauges (Can=BR, GLW, HW).
For a < 0.5 fm, we observe that the results obtained with various pseudo-gauges
differ, with differences growing as a decreases.
Irrespective of the choice of pseudo-gauges with growing system size the
normalized standard deviation of fluctuations (σn) decreases.
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What about thermodynamic limit??
Using the Gaussian representation of the Dirac delta function it can be shown
that, in the large a limit,

σ2
Can =

4 g
(2π)3/2a3

∫
d3k

(2π)3 ω
2
k f (ωk)(1− f (ωk)) = σ2

BR = σ2
GLW = σ2

HW. (37)

In the large a limit we find,

Vaσ
2
n =

T2cV

ε2 = V
〈E2〉 − 〈E〉2

〈E〉2
≡ Vσ2

E; Va = a3(2π)3/2. (38)
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Conclusions

We have derived the formula characterizing the quantum fluctuation of energy in
subsystems of a hot relativistic gas.
It agrees with the expression for thermodynamic fluctuations, if the size of the
subsystem is sufficiently large.
For smaller sizes the effects of quantum fluctuations become relevant and the
classical description with “well defined energy density” makes sense only after
coarse graining over sufficiently large scale.
For fermions quantum fluctuation of energy density does depend on the choice of
the pseudo-gauge.
On the practical side, the results of our calculations can be used to determine a
scale of coarse graining for which the choice of the pseudo-gauge becomes
irrelevant.
This may be useful, in particular, in the context of hydrodynamic modeling of
high-energy collisions.
These results might be relevant for small systems.
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Thank You!
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Normal ordering: alternative approach
For a composite operator we considered the following normal ordering method:
HaHa →: Ha :: Ha :.
Therefore we are first normal ordering first then then multiplying to construct the
composite operator.
Alternatively one can also argue about different method of normal ordering:

If we consider such a normal ordering then:

σ2(a,m,T) = 〈: HaHa :〉 − 〈: Ha :〉2 =

∫
dK dK′f (ωk)f (ωk′)

×
[
(ωkωk′ + k · k′ + m2)2e−

a2
2 (k−k′)2

+ (ωkωk′ + k · k′ − m2)2e−
a2
2 (k+k′)2

]
.

(39)
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