Exploring the QCD phase diagram with fluctuations

- Why fluctuations
- Making the connection between experiment and theory (Lattice QCD)

60. Jubilee Cracow School of Theoretical Physics

Collaborators:
A. Bzdak, D. Oliinychenko, A. Sorensen (Wergieluk), J. Steinheimer, V. Vovchenko

The phase diagram

Increase chemical potential by lowering the beam energy
In reality, we add baryons (nucleons) from target and projectile to mid-rapidity

What we know about the Phase Diagram

Figure from HotQCD coll., PRD '14

What we are looking for

We are dealing with small system of finite lifetime
NO real singularities!

Cumulants and Phase structure

What we always see....

What it really means....
" T_{c} " $\sim 155 \mathrm{MeV}$

Derivatives

How to measure derivatives

$$
\begin{gathered}
Z=\operatorname{tr} e^{-\hat{E} / T+\mu / T \hat{N}_{B}} \\
\langle E\rangle=\frac{1}{Z} \operatorname{tr} \hat{E} e^{-\hat{E} / T+\mu / T \hat{N}_{B}}=-\frac{\partial}{\partial 1 / T} \ln (Z) \\
\left\langle(\delta E)^{2}\right\rangle=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=\left(-\frac{\partial}{\partial 1 / T}\right)^{2} \ln (Z)=\left(-\frac{\partial}{\partial 1 / T}\right)\langle E\rangle \\
\left\langle(\delta E)^{n}\right\rangle=\left(-\frac{\partial}{\partial 1 / T}\right)^{n-1}\langle E\rangle
\end{gathered}
$$

Cumulants of Energy measure the temperature derivatives of the EOS

Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

Derivatives 101

$\frac{K_{3}}{K_{2}}$ change sign at transition
Negative "above" transition
Asakawa et al, arXiv:0904.2089

Model calculation by Agnieszka Sorensen (Wergieluk) arXiv:2011.06635

Cumulants have been measured

HADES arXiv:2002.08701

$$
\frac{K_{3}}{K_{2}}<0!!!!!
$$

STAR arXiv:2001.02852

Close to $\mu=0$

$$
\left.\frac{\partial^{2}}{\partial \mu^{2}} F(T, \mu)\right|_{\mu=0}=\frac{a}{T} \frac{\partial}{\partial T} F(T, \mu=0) \sim\langle E\rangle
$$

Needs higher order cumulants (derivatives) at $\mu \sim 0$

Cumulants at small μ

- Baryon number cumulants can be calculated in Lattice QCD
- possible test of chiral criticality

Friman et al, '11

- Lattice:
- Baryon number cumulants
- grand canonical ensemble
- fixed volume
- Experiment
- Total baryon number is conserved Bzaaket, '13, Rustamove eal, 17
- Proton cumulants Asakawa, Kitazawa, 12
- Volume ($\mathrm{N}_{\text {part) }}$) fluctuates Gorenstein etal, 11, Skokov et al, 13
- dynamical: memory effect, hadronic phase Mukheriee etal, 15

HotQCD, arXiv:2001.08530

Cumulants at small μ

- Baryon number cumulants can be calculated in Lattice QCD
- possible test of chiral criticality

Friman et al, '11

- Lattice:
- Baryon number cumulants
- grand canonical ensemble
- fixed volume
- Experiment
- Total baryon number is conserved Bzaaket, '13, Rustamove eal, 17
- Proton cumulants Asakawa, Kitazawa, 12
- Volume ($\mathrm{N}_{\text {part) }}$) fluctuates Gorenstein etal, 11, Skokov et al, 13
- dynamical: memory effect, hadronic phase Mukheriee etal, 15

HotQCD, arXiv:2001.08530

Baryon number conservation and lattice susceptibilities

- Charges (baryon number, strangeness, electric charge) are conserved globally in HI collisions
- Lattice (and most other calculations) work in the grand canonical ensemble: charges may fluctuate
- Effect of charge conservation have been calculated in the ideal gas/HRG limit. NON-neglibile corrections especially for higher order cumulants (Bzdak et al 2013, Rustamov et al. 2017,...)
- Wouldn't it be nice to know what the effect of charge conservation on real QCD (aka lattice) susceptibilities is?

This can actually be done!

Subensemble acceptance method (SAM)

Partition a thermal system with a globally conserved charge B (canonical ensemble) into two subsystems which can exchange the charge

$$
V=V_{1}+V_{2}
$$

Assume thermodynamic limit:

$$
\begin{aligned}
& V, V_{1}, V_{2} \rightarrow \infty ; \frac{V_{1}}{V}=\alpha=\text { const } ; \frac{V_{2}}{V}=(1-\alpha)=\text { const } ; \\
& V_{1}, V_{2} \gg \xi^{3} \quad \xi=\text { correlation length }
\end{aligned}
$$

The canonical partition function then reads:

$$
Z^{c e}(T, V, B)=\sum_{B_{1}} Z^{c e}\left(T, V_{1}, B_{1}\right) Z^{c e}\left(T, V-V_{1}, B-B_{1}\right)
$$

The probability to have charge B_{1} in V_{1} is:

$$
P\left(B_{1}\right) \sim Z^{c e}\left(T, \alpha V, B_{1}\right) Z^{c e}\left(T,(1-\alpha) V, B-B_{1}\right), \quad \alpha \equiv V_{1} / V
$$

Subensemble acceptance method (SAM)

In the thermodynamic limit, $V \rightarrow \infty, Z^{c e}$ expressed through free energy density

$$
Z^{c e}(T, V, B) \stackrel{V \rightarrow \infty}{\simeq} \exp \left[-\frac{V}{T} f\left(T, \rho_{B}\right)\right]
$$

Cumulant generating function for B_{1} :

$$
G_{B_{1}}(t) \equiv \ln \left\langle e^{t B_{1}}\right\rangle=\ln \left\{\sum_{B_{1}} e^{t B_{1}} \exp \left[-\frac{\alpha V}{T} f\left(T, \rho_{B_{1}}\right)\right] \exp \left[-\frac{\beta V}{T} f\left(T, \rho_{B_{2}}\right)\right]\right\}+\tilde{C}
$$

Cumulants of B_{1} :

$$
\kappa_{n}\left[B_{1}\right]=\left.\left.\frac{\partial^{n} G_{B_{1}}(t)}{\partial t^{n}}\right|_{t=0} \equiv \tilde{\kappa}_{n}\left[B_{1}(t)\right]\right|_{t=0} \quad \text { or } \quad \kappa_{n}\left[B_{1}\right]=\left.\frac{\partial^{n-1} \tilde{\kappa}_{1}\left[B_{1}(t)\right]}{\partial t^{n-1}}\right|_{t=0}
$$

All κ_{n} can be calculated by determining the t-dependent first cumulant $\widetilde{\kappa}_{1}\left[B_{1}(t)\right]$

Making the connection...

$$
\tilde{\kappa}_{1}\left[B_{1}(t)\right]=\frac{\sum_{B_{1}} B_{1} \tilde{P}\left(B_{1} ; t\right)}{\sum_{B_{1}} \tilde{P}\left(B_{1} ; t\right)} \equiv\left\langle B_{1}(t)\right\rangle \quad \text { with } \quad \tilde{P}\left(B_{1} ; t\right)=\exp \left\{t B_{1}-V \frac{\alpha f\left(T, \rho_{B_{1}}\right)+\beta f\left(T, \rho_{B_{2}}\right)}{T}\right\} .
$$

Thermodynamic limit: $\widetilde{P}\left(B_{1} ; t\right)$ highly peaked at $\left\langle B_{1}(t)\right\rangle$
$\left\langle B_{1}(t)\right\rangle$ is a solution to equation $d \widetilde{P} / \mathrm{d} B_{1}=0$:

$$
t=\hat{\mu}_{B}\left[T, \rho_{B_{1}}(t)\right]-\hat{\mu}_{B}\left[T, \rho_{B_{2}}(t)\right] \quad \text { with } \quad \hat{\mu}_{B} \equiv \mu_{B} / T, \quad \mu_{B}\left(T, \rho_{B}\right)=\partial f\left(T, \rho_{B}\right) / \partial \rho_{B}
$$

$\mathrm{t}=\mathbf{0}$:

$$
\rho_{B_{1}}=\rho_{B_{2}}=B / V, B_{1}=\alpha B,
$$

i.e. conserved charge uniformly distributed between the two subsystems

Second order cumulant

Differentiate condition for maximum of $\widetilde{P}\left(B_{1} ; t\right)$,

$$
\begin{gathered}
\left.t=\hat{\mu}_{B}\left[T, \rho_{B_{1}}(t)\right]-\hat{\mu}_{B}\left[T, \rho_{B_{2}}(t)\right] \quad{ }^{*}\right) \\
\frac{\partial(*)}{\partial t}: \quad 1=\left(\frac{\partial \hat{\mu}_{B}}{\partial \rho_{B 1}}\right)_{T}\left(\frac{\partial \rho_{B 1}}{\partial\left\langle B_{1}\right\rangle}\right)_{V} \frac{\partial\left\langle B_{1}\right\rangle}{\partial t}-\left(\frac{\partial \hat{\mu}_{B}}{\partial \rho_{B 2}}\right)_{T}\left(\frac{\partial \rho_{B 2}}{\partial\left\langle B_{2}\right\rangle}\right)_{V} \frac{\partial\left\langle B_{2}\right\rangle}{\partial\left\langle B_{1}\right\rangle} \frac{\partial\left\langle B_{1}\right\rangle}{\partial t} \\
\left(\frac{\partial \hat{\mu}_{B}}{\partial \rho_{B 1,2}}\right)_{T} \equiv\left[\chi_{2}^{B}\left(T, \rho_{B_{1,2}}\right) T^{3}\right]^{-1}, \quad \rho_{B_{1}} \equiv \frac{\left\langle B_{1}\right\rangle}{\alpha V}, \quad \rho_{B_{2}} \equiv \frac{\left\langle B_{2}\right\rangle}{(1-\alpha) V}, \quad\left\langle B_{2}\right\rangle=B-\left\langle B_{1}\right\rangle,
\end{gathered} \frac{\partial\left\langle B_{1}\right\rangle}{\partial t} \equiv \tilde{\kappa}_{2}\left[B_{1}(t)\right] \quad .
$$

Solve the equation for $\widetilde{\kappa}_{2}$:

$$
\tilde{\kappa}_{2}\left[B_{1}(t)\right]=\frac{V T^{3}}{\left[\alpha \chi_{2}^{B}\left(T, \rho_{B_{1}}\right)\right]^{-1}+\left[(1-\alpha) \chi_{2}^{B}\left(T, \rho_{B_{2}}\right)\right]^{-1}}
$$

$$
\mathbf{t}=\mathbf{0}: \quad \kappa_{2}\left[B_{1}\right]=\alpha(1-\alpha) V T^{3} \chi_{2}^{B}
$$

Higher-order cumulants: iteratively differentiate $\widetilde{\kappa}_{2}$ w.r.t. t

Full result up to sixth order

$$
\begin{array}{ll}
\kappa_{1}\left[B_{1}\right]=\alpha V T^{3} \chi_{1}^{B} & \beta=1-\alpha \\
\kappa_{2}\left[B_{1}\right]=\alpha V T^{3} \beta \chi_{2}^{B} \\
\kappa_{3}\left[B_{1}\right]=\alpha V T^{3} \beta(1-2 \alpha) \chi_{3}^{B} & \\
\kappa_{4}\left[B_{1}\right]=\alpha V T^{3} \beta\left[\chi_{4}^{B}-3 \alpha \beta \frac{\left(\chi_{3}^{B}\right)^{2}+\chi_{2}^{B} \chi_{4}^{B}}{\chi_{2}^{B}}\right] \\
\kappa_{5}\left[B_{1}\right]=\alpha V T^{3} \beta(1-2 \alpha)\left\{[1-2 \beta \alpha] \chi_{5}^{B}-10 \alpha \beta \frac{\chi_{3}^{B} \chi_{4}^{B}}{\chi_{2}^{B}}\right\} \\
\kappa_{6}\left[B_{1}\right]=\alpha V T^{3} \beta[1-5 \alpha \beta(1-\alpha \beta)] \chi_{6}^{B}+5 V T^{3} \alpha^{2} \beta^{2}\left\{9 \alpha \beta \frac{\left(\chi_{3}^{B}\right)^{2} \chi_{4}^{B}}{\left(\chi_{2}^{B}\right)^{2}}-3 \alpha \beta \frac{\left(\chi_{3}^{B}\right)^{4}}{\left(\chi_{2}^{B}\right)^{3}}\right. \\
\left.\quad-2(1-2 \alpha)^{2} \frac{\left(\chi_{4}^{B}\right)^{2}}{\chi_{2}^{B}}-3[1-3 \beta \alpha] \frac{\chi_{3}^{B} \chi_{5}^{B}}{\chi_{2}^{B}}\right\}
\end{array}
$$

[^0]
Cumulant ratios

Some common cumulant ratios:
scaled variance $\quad \frac{\kappa_{2}\left[B_{1}\right]}{\kappa_{1}\left[B_{1}\right]}=(1-\alpha) \frac{\chi_{2}^{B}}{\chi_{1}^{B}}$,
skewness $\quad \frac{\kappa_{3}\left[B_{1}\right]}{\kappa_{2}\left[B_{1}\right]}=(1-2 \alpha) \frac{\chi_{3}^{B}}{\chi_{2}^{B}}$,
kurtosis

$$
\frac{\kappa_{4}\left[B_{1}\right]}{\kappa_{2}\left[B_{1}\right]}=(1-3 \alpha \beta) \frac{\chi_{4}^{B}}{\chi_{2}^{B}}-3 \alpha \beta\left(\frac{\chi_{3}^{B}}{\chi_{2}^{B}}\right)^{2} .
$$

- Global conservation (α) and equation of state $\left(\chi_{n}^{B}\right)$ effects factorize in cumulants up to the 3 rd order, starting from κ_{4} not anymore
- $\alpha \rightarrow 0$: Grand canonical limit
- $\alpha \rightarrow$ 1: canonical limit
- $\chi_{2 n}=\langle N\rangle+\langle\bar{N}\rangle$; $\chi_{2 n+1}=\langle N\rangle-\langle\bar{N}\rangle$: recover known results for ideal gas

Net baryon fluctuations at LHC and top RHIC ($\mu_{\mathrm{B}}=0$)

$$
\left(\frac{\kappa_{4}}{\kappa_{2}}\right)_{L H C}=(1-3 \alpha \beta) \frac{\chi_{4}^{B}}{\chi_{2}^{B}} \quad\left(\frac{\kappa_{6}}{\kappa_{2}}\right)_{L H C}=[1-5 \alpha \beta(1-\alpha \beta)] \frac{\chi_{6}^{B}}{\chi_{2}^{B}}-10 \alpha(1-2 \alpha)^{2} \beta\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right)^{2}
$$

Lattice data for $\chi_{4}^{B} / \chi_{2}^{B}$ and $\chi_{6}^{B} / \chi_{2}^{B}$ from Borsanyi et al., 1805.04445

- $\alpha>0.2$ difficult to distinguish effects of the EoS and baryon conservation in $\chi_{6}^{B} / \chi_{2}^{B}$
- $\alpha \leq 0.1$ is a sweet spot where measurements are mainly sensitive to the EoS
- Estimate: $\alpha \approx 0.1$ corresponds to $\Delta Y_{\text {acc }} \approx 2(1)$ at LHC (RHIC)

Multiple conserved charges

(Vovchenko, R.Poberezhnyuk, V.K, arXiv:2007.03850)
Key findings:

- Ratios of second and third order cumulants are NOT sensitive to charge conservation
- This is also true for so called "strongly intensive quantities"
- Requires that acceptance fraction α is the same for both particles (or Q and S)

- For order $n>3$ charge cumulants "mix". Effect in HRG is tiny

$$
\kappa_{4}\left[B^{1}\right]=\alpha V T^{3} \beta\left[(1-3 \alpha \beta) \chi_{4}^{B}-3 \alpha \beta \frac{\left(\chi_{3}^{B}\right)^{2} \chi_{2}^{Q}-2 \chi_{21}^{B Q} \chi_{11}^{B Q} \chi_{3}^{B}+\left(\chi_{21}^{B Q}\right)^{2} \chi_{2}^{B}}{\chi_{2}^{B} \chi_{2}^{Q}-\left(\chi_{11}^{B Q}\right)^{2}}\right]
$$

Multiple conserved charges

(Vovchenko, R.Poberezhnyuk, V.K, arXiv:2007.03850)

Also works for non-conserved quantities such as protons, K and \wedge

- Mixed cumulants involving one conserved charge such as $\sigma_{1,1}^{p, Q}$ scale like second order charge cumulants
- Again, same acceptance fraction α for both p and Q , or k and Q

Does NOT work for two non-conserved charges, such as $\sigma_{1,1}^{p, K}$

Thermal smearing

- Subensemble Acceptance Method (SAM) works in configuration space
- Experiment measures momentum space
- OK if perfect space momentum correlations a la Bjorken
- However there is thermal smearing

Protons vs Baryons

- Proton are subset of all baryons
- dilutes the signal
- need to do binomial unfolding
- Kitazawa, Asakawa PRC ‘12
- Otherwise Apples vs. Oranges
- For example

$$
\left.\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right|_{T=160 \mathrm{MeV}} ^{\mathrm{GCE}} \simeq 0.67 \neq\left.\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right|_{\Delta Y_{\mathrm{acc}=1}} ^{\mathrm{HIC}} \simeq 0.56 \neq\left.\frac{\chi_{4}^{p}}{\chi_{2}^{p}}\right|_{\Delta Y_{\mathrm{acc}}=1} ^{\mathrm{HIC}} \simeq 0.83
$$

- Unfolding requires factorial moments not directly accessible in Lattice QCD
- Only experiment can ans should do proper corrections
V. Vovchenko, VK in prep.

Applicability and limitations

- Argument is based on partition in coordinate space; experiments partition in momentum space
- Best for high energies where we have Bjorken flow
- Thermal smearing interpolates between "binomial" and true corrections
- So far limited applicability for lower energies. Under invenstigation.
- Thermodynamic limit i.e. $V_{1}, V_{2} \gg \xi^{3}$:
- Lattice calculations work with $V_{\text {lattice }} \simeq(5 \mathrm{fm})^{3}=125 \mathrm{fm}^{3}$.

Chemical freeze out Volume at LHC $\sim 4500 \mathrm{fm}^{3}$

- Not addressed: local charge conservation

Summary

- Fluctuations are a powerful tool to explore QCD phase diagram
- critical point
- nuclear liquid gas transition
- remnants of chiral criticality at $\mu \sim 0$
- HADES reports negative K_{3} / K_{3}. Do they see the nuclear liquid gas transition?
- Corrections for global (multiple) charge conservation in terms of grand canonical susceptibilities for ANY equation of state not just ideal gas
- connection to lattice results
- Applicable at top RHIC and LHC
- Ratios of second and third order cumulants insensitive to conservation effects as long as acceptance fraction is the same
- Proton cumulants cannot be directly compared to baryon cumulants
- unfolding needed which can only done by experiment.

Thank You

Multiple conserved charges

(Vovchenko, R.Poberezhnyuk, V.K, arXiv:2007.03850)

- Allows for corrections due to electric charge (protons) or strangeness (\wedge) in addition to baryon number conservation.

Truth lies in between the "naive" corrections. Likely bigger effect for higher orders.

Subensemble acceptance: van der Waals fluid

Calculate cumulants $\kappa_{n}[N]$ in a subvolume directly from the partition function

$$
P(N) \propto Z_{\mathrm{vdW}}^{\mathrm{ce}}\left(T, x V_{0}, N\right) Z_{\mathrm{vdW}}^{\mathrm{ce}}\left(T,(1-x) V_{0}, N_{0}-N\right)
$$

and compare with the subensemble acceptance results

Results agree with subsensemble acceptance in thermodynamic limit ($N_{0} \rightarrow \infty$)
Finite size effects are strong near the critical point: a consequence of large

Binomial acceptance vs actual acceptance

Binomial acceptance: accept each particle (charge) with probability α independently from all other particle $\sqrt{ }$.

The binomial acceptance will not provide the correct result (except for a gas of uncorrelated particles)

What we really need is

No QCD phase transition

V. Vovchenko et al, 1906.01954

Model by A. Sorensen

Cumulants of (baryon) number distribution

$$
K_{n}=\frac{\partial^{n}}{\partial(\mu / T)^{n}} \ln Z=\frac{\partial^{n-1}}{\partial(\mu / T)^{n-1}}\langle N\rangle
$$

$K_{1}=\langle N\rangle, \quad K_{2}=\langle N-\langle N\rangle\rangle^{2}, \quad K_{3}=\langle N-\langle N\rangle\rangle^{3}$

Cumulants scale with volume (extensive): $K_{n} \sim V$

Volume not well controlled in heavy ion collisions

Cumulant Ratios: $\quad \frac{K_{2}}{\langle N\rangle}, \frac{K_{3}}{K_{2}}, \frac{K_{4}}{K_{2}}$

Baryon number cumulants measure derivatives of the EOS w.r.t chemical potential

Latest STAR result on net-proton cumulants

X. Luo, NPA 956 (2016) 75

$\mathrm{K}_{4} / \mathrm{K}_{2}$ above baseline $\mathrm{K}_{3} / \mathrm{K}_{2}$ below baseline

Shape of probability distribution

$$
\begin{array}{ll}
K_{3}<\langle N\rangle & K_{3}=\langle N-\langle N\rangle\rangle^{3} \\
K_{4}>\langle N\rangle & K_{4}=\langle N-\langle N\rangle\rangle^{4}-3\langle N-\langle N\rangle\rangle^{2}
\end{array}
$$

Simple two component model

Weight of small component: $\sim 0.3 \%$

Simple two component model

Analyse data for $\mathrm{N}_{\mathrm{p}}<20$

- Is flow etc different?
- "Inspect by eye (<1\% of all events)

Two component model

$$
\begin{aligned}
& P(N)=(1-\alpha) P_{(a)}(N)+\alpha P_{(b)}(N) \\
& \bar{N}=\left\langle N_{(a)}\right\rangle-\left\langle N_{(b)}\right\rangle>0
\end{aligned}
$$

For $\mathrm{P}_{(\mathrm{a})}, \mathrm{P}_{(\mathrm{b})}$ Poisson, or (to good approximation) Binomial

$$
C_{n}=(-1)^{n} K_{n}^{B} \bar{N}^{n} \quad n \geq 2 \quad C_{n}: \text { Factoral cumulant }
$$

K_{n}^{B} : Cumulant of Bernoulli distribution
$\alpha \ll 1, K_{n}^{B}=\alpha \Rightarrow C_{n} \simeq \alpha(-1)^{n} \bar{N}^{n}$

$$
\Rightarrow\left|C_{n}\right| \sim\langle N\rangle^{n} \text { as seen by STAR (i.e. "infinite" correlation length) }
$$

predict: $\frac{C_{4}}{C_{3}}=\frac{C_{5}}{C_{4}}=\frac{C_{n+1}}{C_{n}}=-\bar{N} \quad \bar{N} \simeq 15$
Clear and falsifiable prediction: $\quad C_{5} \approx-2650 \quad C_{6} \approx 41000$

Hades see similar trend (arXiv:2002.08701)

$$
\frac{C_{n+1}}{C_{n}} \simeq-10
$$

Caveat: rather significant $N_{\text {part }}$ fluctuations to be corrected for

Multiplicity distribution @ 7.7 GeV

Now we need to figure out what this means....

First question: How does it look in the revised data?
> STAR: arXiv: 2001.02852
> A. Bzdak, V. Koch, D. Oliinychenkov, and
J. Steinheimer, Phys. Rev. C98, 054901(2018).

Given the nt, we can also predict the tactorial cumulants, $\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{6}$ and we obtain

$$
\begin{aligned}
& C_{2} \approx-3.85, \\
& C_{5} \approx-2645, \\
& C_{6} \approx 40900,
\end{aligned}
$$

> For the 7.7 GeV collisions, after cleaning up the spoiled events, the $2^{\text {nd }}$ bump is gone, C5 becomes close to zero;
$>$ We made scan of the DCAXY vs. run number for all collisions. All systematic uncertainties are also reevaluated
"Phase Boundary" vs. Spoiled Events

[^0]: Details: Vovchenko, et al. arXiv:2003.13905

