Calculation of the axion mass based on high-temperature lattice quantum chromodynamics

Dynamical case

Z. Fodor

November 20, 2020, 60 Cracow School

Phys. Lett. B752 (2016) 175; quenched results Nature 539 (2016) 69; dynamical case

Outline

Motivation

- Motivation
- Quenched study
- Oynamical case
- Summary

Dynamical case

Strong CP problem

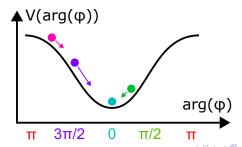
- CP is violated in the Standard Model
- ullet QCD may have a CP violating $rac{\Theta}{32\pi^2}F_{\mu
 u} ilde{F}^{\mu
 u}$ term
- Experiments constrain Θ≤10⁻¹⁰
- Possible solutions
 - $m_u = 0$ (ruled out by lattice results)
 - Axion
- Axion: promote Θ to a dynamical field
- Elegant solution: Peccei-Quinn mechanism
 Complex scalar field with a U(1) symmetric "Mexican hat"
- Spontaneous symmetry breaking \rightarrow axion is the (pseudo) Goldstone-boson $m_A^2 = \chi_t/f_A^2$

Dynamical case

Motivation

- alignment of misaligned neighbouring patches
 - → axion radiation
- when χ_t becomes relevant, θ_{eff} "rolls" down to $\theta = 0$
- → axion radiation

 χ_t influences field dynamics, needed as input for total axion production

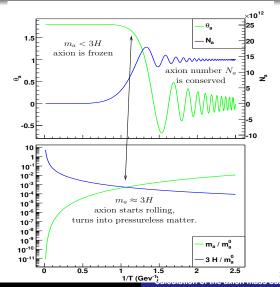


Axion: rolldown mechanism

Motivation

0000000

Evolution in the expanding universe



Cosmological Models

Both production mechanisms

• depend on χ_t

Motivation

- depend on the dynamics over cosmological time scales
- \Rightarrow need $\chi_t(t)$ over cosmological time scales
 - χ_t is temperature dependent (not explicitly on time)
 - the equation of state of QCD gives T(t) for cosmology
- \Rightarrow need $\chi_t(T)$, p(T) for cosmologically relevant temperatures as we will see T up to few GeV is required: lattice QCD

Quenched Study

Motivation

How far can we go with conventional brute force?

- → test it in the "cheap" quenched case
 - learn how to control all errors and apply it for full QCD
 - test bed to improve on the brute force strategy
 - roughly the same temperature scaling as for full QCD
 - estimate the costs for the full result

Quenched Lattice ↔ DIGA

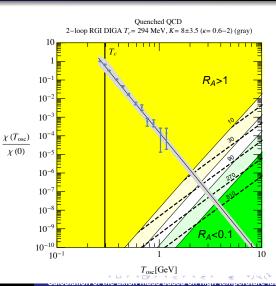
correct T dependence normalization off by $\mathcal{O}(10)$ fixed by comparison to lattice

how $\chi_t(T)$ determines m_A ? start with an m_A e.g. $30\mu eV$ $m_A(T=0)$ gives the value of f_A

known: Hubble constant H(T) fix T_{osc} by $3H(T_{\rm osc}) = m_A(T_{\rm osc})$

using T_{osc} calculate the amount of dark matter

if it is too much/little iterate



About costs: guenched case from T=0 (or T_c) to $4T_c$

Dynamical case

Cost of the conventional algorithm at relative error $\delta \chi_t$

$$costs \propto \frac{1}{(\delta \chi_t)^2 \chi_t(T)}$$

relative cost $(4T_c)/(1T_c)$ (our highest T was $4T_c$: not enough)

from measured
$$\chi_t(T)$$
 | $4^{7.1} \approx 2 \times 10^4$
from measured $\delta \chi_t$ | $10^5 - 10^6$

- quenched $\chi_t(T=0)$ calculated ~ 20 years ago
- Moores law leads to a factor of $\sim 10^5$ in 24 years
 - ⇒ Just possible to do (dynamical case is probably hard)

About costs: dynamical QCD

Dynamic relative cost $(7T_c)/(1T_c)$ $(7T_c \sim 1200 MeV)$

from estimated
$$\chi_t(T)$$
 | $7^{7-8} \approx 10^6 - 10^7$ increasing τ_{int} with T | $10^7 - 10^9$

Dynamical case

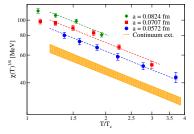
- dynamic $\chi_t(T=0)$ in 2010, Moore factor of ~ 30
 - ⇒ conventional dynamical study not possible (needs 35 years)

Literature: full QCD

Motivation

C.Bonati, M.d'Elia, G.Martinelli et al. JHEP 229 03, 155 (2016)

ullet brute force fully dynamic in the continuum up to $pprox 4\,T_c$



Result: $b \sim 3$ unexpected (DIGA etc. $b \sim 8$) for T>2 GeV is larger than DIGA by 7-8 orders of magnitude one order of magnitude shift for the axion dark matter window crosses quenched result at $4T_c$ (for quenched $\chi_t^{1/4}(4T_c)=17$ MeV)

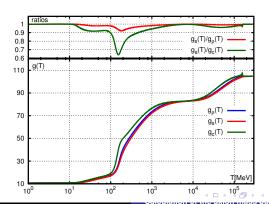
⇒ further study is obviously necessary

The equation of state

Motivation

Effective number of degrees of freedom including all SM particles

$$ho = rac{\pi^2}{30} g_
ho T^4 \qquad s = rac{2\pi^2}{45} g_s T^3 \qquad c = rac{2\pi^2}{15} g_c T^3$$

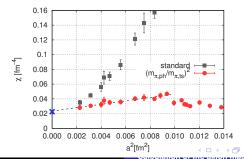


The challenge of computing the susceptibility

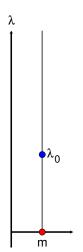
• large autocorrelation of Q on fine lattices (algorithmic problem)

Dynamical case

- $\chi(T)$ decreases strongly with temperature \rightarrow very few $Q \neq 0$ configurations (physical problem) E.g. $\langle Q^2 \rangle = 10^{-6}$ means one $Q = \pm 1$ configuration per million. Even $\mathcal{O}(\text{million})$ configurations can lead to large statistical errors
- $\chi(T)$ has large lattice artefacts



T=0 instanton on the lattice: physical units





Dynamical case

T=0 instanton on the lattice

Motivation

Goal: compute QCD topological susceptibility $\chi(T)$

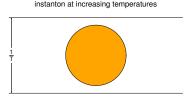
Dynamical case

- Temperature range: 0 < T < 2 GeV
- Physical quark masses (m_u, m_d, m_s, m_c)
- Continuum limit

- Using
 - $N_f = 2 + 1 + 1$, with isospin splitting correction
 - staggered and overlap quarks
 - Lattices with $N_t = 8, 10, 12, 16, 20$

Physics to be captured

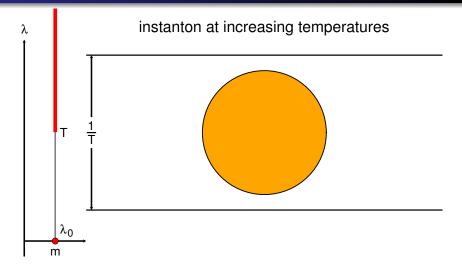
Typical instanton size 1/T



Dynamical case

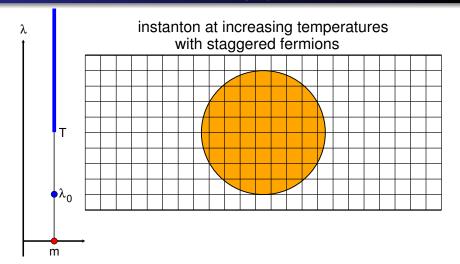
- Dilute gas of small $(r \approx 1/T)$ instantons remain
- Zero modes in the light quark det suppress topology
- $\bullet \Rightarrow \chi(T)$ falls sharply above T_c

T>0 instanton in the continuum



T>0 instanton in the continuum

T>0 instanton on the lattice: physical units



T>0 instanton on the lattice: physical units

Challenge #1: large cut-off effects

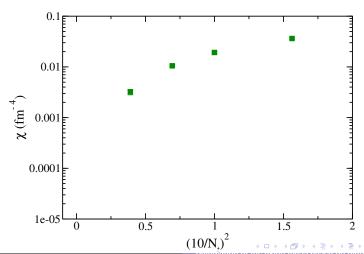
 Small-instanton zero modes badly captured by lattice Dirac operator

Dynamical case

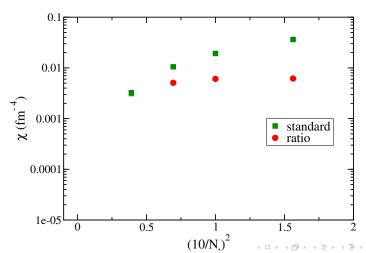
- Higher Q sectors not properly suppressed
- Cut-off effects much larger at higher T
- Solution: identify would-be zero eigenvalues and shift them to zero \rightarrow reweighting

$$w[U] \sim \frac{m}{m+\lambda_0}$$

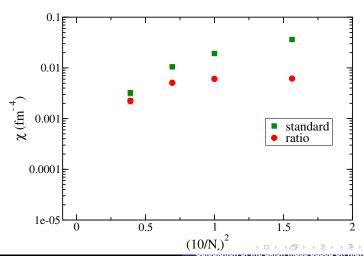
Topological susceptibility at T=300 MeV



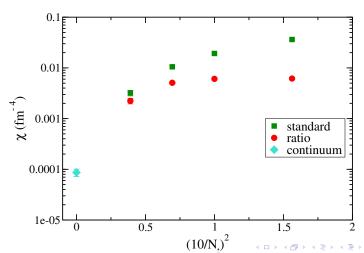
Topological susceptibility at T=300 MeV



Topological susceptibility at T=300 MeV



Topological susceptibility at T=300 MeV



Dynamical case

Reason for bad scaling

- Would-be zero eigenvalues too big
- Weight in det is

Lattice:
$$\lambda_0 + m_f$$

Instead of continuum: m_f

• Even if $a \propto 1/T$ (fix N_t , increase β)

 λ_0/m increases with T

Reweighting

Strong cut-off effects are related to the lack of exact zero-modes.

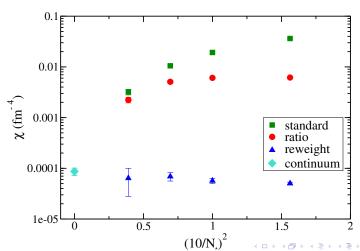
Dynamical case

- In the continuum non-trivial sectors are suppressed by the contribution of zero-modes to the fermion determinant, ie. by the quark mass.
- On the lattice the suppression is altered: $m \to m + \lambda_0$, where λ_0 is a would be zero-mode. Weaker suppression $\rightarrow \chi(T)$ overestimated.
- To improve 1. identify would be zero-modes 2. restore the continuum weight → reweight

$$w[U] \sim \frac{m}{m+\lambda_0}$$

T=300 MeV: susceptibility after reweighting

Topological susceptibility at T=300 MeV



Challenge #2: tiny χ hard to measure

• No statistics for $Q \neq 0$ sectors (dictated by physics)

Dynamical case

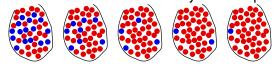
- Topology change slow on fine lattices (algorithmic)
- Solution: Derivative of $\chi(T)$ much easier to measure than χ
- Measure $\chi(T_0)$ at low enough T_0
- Using $d\chi/dT$ integrate up to $T \rightarrow \text{integral method}$ Also suggested for the quenched case by [Frison et al '16]

Determine topological susceptibility/axion potential

Challenge

Dynamical case

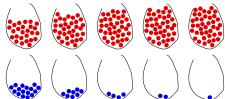
Determine the blue/red ratio by random pick!



getting very difficult with T

Solution

Separate colors and determine the rate of change with *T*!



Fixed sector integral

Instead of waiting for tunneling events. we make simulations in fixed Q sectors. How to get

$$Z_1/Z_0 = ?$$

Dynamical case

First calculate derivative of $\log Z_1/Z_0$:

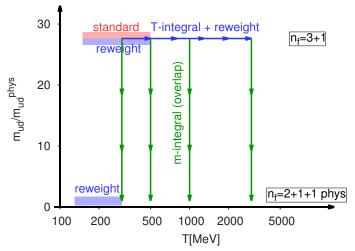
$$b_1(T) \equiv \frac{d \log Z_1/Z_0}{d \log T}$$

Use fixed N_t -approach, ie. $T = (aN_t)^{-1}$ is changed by β :

$$b_1(T) = \frac{d\beta}{d\log a} \left(\langle S_g \rangle_1 - \langle S_g \rangle_0 \right)$$

Map of simulations

Motivation



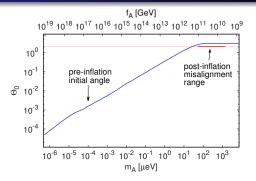
Topological susceptibility at the physical point

very few topology changes (hard): S. Borsanyi et al. Nature 539 (2016) 69



absolute lower limit (all DM from misalignment): $m_A \gtrsim 28(2) \mu eV$ assuming 50-99% other (e.g. strings): $m_A = 50 - 1500 \mu eV$

Constraints on the axion mass



- Pre-inflation scenario: m_A unambiguously determines the Θ_0 initial condition of our Universe
- Post-inflation: Θ_0 average equivalent to $\Theta \approx 2.15$ absolute lower limit (all DM from misalignment): $m_A \gtrsim 28(2) \ \mu eV$ assuming 50-99% other (e.g. strings): $m_A = 50 1500 \ \mu eV$

Summary: results

- Axion: a solution to a) strong CP b) dark matter problems
- Calculating axion production in the early universe requires the EoS and $\chi(T)$

Dynamical case

- Brute force approach expensive: estimates using pure SU(3)
- Both were determined using lattice calculations up to high T
- Axion mass in the post-inflation scenario: lower bound: 28(2) μ eV estimated mass range: $m_A = 50 - 1500 \ \mu eV$

Summary: methods

Motivation

Calculated T-dependence of the QCD topological susceptibility

- Temperature range: $0 \le T \le 2 \text{ GeV}$ (follow change of χ over 10 orders of magnitude)
- Physical quark masses
- Continuum limit

Main lesson: keep in mind the physics of the problem

- Large cut-off effects due to instanton zero-modes
- At high T: tiny $\chi \rightarrow$ ideal instanton gas

