Jet production efficiency in a sample of the youngest radio galaxies

Anna Wójtowicz
Astronomical Observatory of the Jagiellonian University (AOUJ)
in a collaboration with Ł., Stawarz (AOUJ); C.C., Cheung (Naval Reasearch Center);
L., Ostorero (University of Turin); E., Kosmaczewski (AOUJ)
and A., Siemiginowska (CfA Harvard)

CSO- compact symmetric object

- Radio morphology
- No flux variation
- Young?
- Overabundance \rightarrow short-lived

name	size (pc)	age (yrs)
$1718-649$	2.0	91
$1843+356$	22.3	180
$2021+614$	16.1	368
$0035+227$	21.8	450
$0116+319$	70.1	501
$0710+439$	87.7	932
$1946+708$	39.4	1261
$1943+546$	107.1	1308
$1934-638$	85.1	1603
$1607+26$	240	2200
$1511+0518$	7.3	300
$1245+676$	9.6	188
$\mathrm{OQ}+208$	7.0	219
$0108+388$	22.7	404
$1031+567$	109.0	1836
$2352+495$	117.3	3003

High quality X-ray observations of Chandra

Siemiginowska et al. 2016

How to decribe AGN?

Extracting spectra...

- SDSS - 4 objects (spectrum quality)
- In literature - 7 more

STARLIGHT
Spectral Synthesis Code

Green line: mixed population synthetic stellar spectra (Bruzual \& Charlot 2003)+AGN continuum (assuming Calzetti 2000 extincion law)

Extracted emission spectrum of AGN

How to derrive BH mass?

Disk luminosity estimate
$\log L_{b o l}=\log L\left(H_{\beta}\right)+3.48+\max \left[0 ., 0.31\left(\log \frac{[O I I I]}{H_{\beta}}-0.6\right)\right]$

Bolometric luminosities estimate

Table 1
Measured velocity dispersion and narrow $H \beta$ fluxes for objects with available SDSS spectra.

name	Ref.	$\sigma_{\star}\left[\mathrm{kms}^{-1}\right]$	$F_{H \beta}\left[\frac{\mathrm{erg}}{\mathrm{scm}}{ }^{2}\right]$	comments
$1607+26$	SDSS	255.33	$1.39 \mathrm{E}-15$	Type-2 AGN
$1511+0518$	SDSS	199.75	$8.33 \mathrm{E}-17$	Type-1 AGN
OQ+208	SDSS	259.95	$4.85 \mathrm{E}-17$	Type-1 AGN
$1031+567$	SDSS	217.55	$2.01 \mathrm{E}-16$	Type-2 AGN

Table 2
Bolometric luminosities estimated from measured $H \beta$ luminosities in the literature.

name	method	$H \alpha / H \beta$	$L_{H \beta-c o r}$ $[\mathrm{erg} / \mathrm{s}]$	$L_{\text {bol }}$ $[\mathrm{erg} / \mathrm{s}]$
$0035+227$	averaged	2.73	$1.98 \mathrm{E}+041$	$5.97 \mathrm{E}+044$
$1245+676$	averaged	1.84	$1.36 \mathrm{E}+041$	$4.11 \mathrm{E}+044$
$2352+496$	$H \alpha / H \beta$	4.57	$2.65 \mathrm{E}+041$	$8.00 \mathrm{E}+044$
$1031+567$	averaged	2.75	$3.53 \mathrm{E}+041$	$1.06 \mathrm{E}+045$
$0710+439$	averaged	-	$1.54 \mathrm{E}+042$	$4.65 \mathrm{E}+045$
$1718-649$	$H \alpha / H \beta$	3.4	$1.25 \mathrm{E}+41$	$3.77 \mathrm{E}+044$
$1934-634$	$H \alpha / H \beta$	5	$1.45 \mathrm{E}+041$	$7.88 \mathrm{E}+045$

Jet power estimate

- Classical Willott et al. 1999 scaling relation

$$
P_{j}\left[\text { ergs s }^{-1}\right]=5.0 \times 10^{22}(f / 10)^{3 / 2}\left(L_{1.4 G \mathrm{~Hz}[\mathrm{~W} \mathrm{~Hz}}{ }^{-11}\right)^{6 / 7}
$$

- Kinetic jet power

$$
\begin{gathered}
P_{j}=\frac{4 p V}{\tau_{j}}=\frac{16 \pi R^{3}}{3}\left(u_{B}+u_{e}\right) / \tau_{j}=\frac{32}{3} \pi R^{3} \frac{B_{e q}^{2}}{8 \pi \tau_{j}} \\
\frac{4}{3} \pi R^{3}=\pi a b^{2} \quad R=0.18 L S
\end{gathered}
$$

25 / 21

is in the HID are very important during the system's evolution (see t

Summary:

- Sample of 17 confirmed GPS were studied and accretion properties have been derived
- Accretion properties characteristic for quasars- standard, radiatively efficient disk in the early stages of jet formation
- Normalized jet power seems to correlate with accretion rate
- Jet production efficiency doesn't reach maximum level (no-MAD disk)
- Broad lines \rightarrow clumpy torus?

Thank you!

