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The Einstein-Hilbert Action

▶ The Einstein-Hilbert Action gives us the Einstein Field Equations:

S =
1

2κ

∫
d4x

√
−gR+ SM

↓ (Variation W.R.T gµν)

Rµν−
1

2
Rgµν = κTµν

▶ κ = 8πG = 8π/M2
p

▶ R is the only independent scalar which we can construct (up to
second derivatives) of the metric
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Motivating Modifications to General Relativity

▶ General Relativity (GR) is the simplest theory coupling spacetime
curvature to matter

▶ Can consider other theories by adding terms to the Hilbert action, as
long as they:

▶ Are diffeomorphism invariant, scalar, etc.
▶ Limit correctly to GR and Newtonian gravity

▶ Good reason to look at modified theories
▶ Quantum fluctuations, string theory

▶ What effect do these modifications have?
▶ Must look at strong gravity
▶ ⇒ Binary Systems are an ideal testing ground
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The Post-Newtonian Formalism
▶ The Post-Newtonian (PN) formalism is an iterative expansion

scheme in v/c, for arbitrarily precise solutions to Einstein field
equations

▶ Requires slow moving, weakly stressed sources (valid for inspiralling
binary black holes up to v/c = .5)

▶ Naturally includes non-linearity and higher multipole characteristics
▶ Convention is to just track 1/cn, and call those terms “n

2 PN order”
▶ 0PN order is called “Newtonian” order
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The Quadratic Action
▶ We will include in our action all independent terms up to 4th

derivatives of the metric:

S =

∫
d4x

√
−g

[
R

2κ
+ βR2 + γRµνRµν

]
+ SM

▶ These are unavoidable from one-loop renormalisation of matter with
semi-classical gravity

▶ Non-renormalizability of higher loops means these must be found
experimentally

▶ Consider gravitational waves (GWs) from a compact binary system:

SM =

2∑
a=1

∫
dt mac

√
(−gµν)av

µ
avνa

▶ By comparing our new gravitational wave solutions to LIGO
observations, we can constrain β and γ.
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Recasting Corrections as Massive Scalar and
Tensor Fields
We can recast both quadratic terms as massive spin-0 and spin-2 fields
with some clever manipulation:

S =

∫
d4x

√
−g
[ ≈
R

2κ
−1

2

(
∂µπ

αβ∂µπαβ +m2
ππ

αβπαβ

)
−1

2

(
∂µϕ∂

µϕ+m2
ϕϕ

2

)]
+

≈
SM

The mass terms are:

m2
ϕ =

1

12κ(β + γ/4)
m2

π =
1

2κγ

To linear order, the transformation to this frame is:
≈
gµν ≈ gµν+

√
2κηµνϕ+

√
4κπµν
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Quadratic Gravity as an Effective Field Theory
▶ We cutoff our Lagrangian at quadratic order to avoid

non-renormalizability at the 2-loop level
▶ Stelle1 noted the negative norm states of the massive spin-2 field

▶ We must interpret this as an effective field theory
▶ Quick and dirty calculation to show realm of validity:

M2
p R > αRquad ⇒ M2

p p2 > αp4 (In momentum space)
⇒ M2

p /r
2 > α/r4

mϕ,π ≈ M2
p /α ⇒ mϕ,πr > 1

▶ We can then see that far-field plane waves e−i(ωt−k⃗x⃗) are suppressed:
v2 ≈ GM/r < 1 < mϕ,πr ⇒ mϕ,π > Ω2 ≈ ω2

⇒ k2 = ω2 −m2
ϕ,π < 0

1K. S. Stelle (1978). “Classical Gravity with Higher Derivatives”. In: General
Relativity and Gravitation.
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Existing Constraints and Work

▶ Current constraints on deviations from gravity:
▶ Torsion-balance experiments (excluded in 10−5eV ≲ mϕ ≲ 10−3eV )
▶ Lunar ranging, satellite, and solar system tests (eg. Stelle’s estimate:

mϕ ≳ 10−16eV )
▶ Astrophysical distance measurements constrain f(R) gravities

(mϕ ≳ 10−30eV )
▶ To lowest order, these deviations look like Yukawa potentials

αGe−r/λ

▶ Usually constrain on the coupling strength α for fixed range λ
▶ We set α ≈ 1 and the instead constrain the mass mϕ,π ≈ 1/λ

▶ We follow the well-studied PN methodology for finding GWs,
specifically the formalism of Blanchet’s detailed review.2

2Luc Blanchet (2014). “Gravitational Radiation from Post-Newtonian Sources and
Inspiralling Compact Binaries”. In: Living Reviews in Relativity.
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Linearized Equations of Motion
▶ We can find the linearized field equations for ϕ and πµν :

▶ We also cut off the source terms at lowest PN order

□ϕ−m2
ϕϕ = −

2∑
a=1

√
κ

2
mac δ

3(x⃗− y⃗a(t))

□πµν −m2
ππµν =

2∑
a=1

√
κma

(
vµavνa +

c2

4
ηµν

)
δ3(x⃗− y⃗a(t))

▶ Which have Yukawa-like solutions:

ϕ(x) =

2∑
a=1

√
G

4π
mac

e−mϕc|x⃗−y⃗a(tr)|

|x⃗− y⃗a(tr)|

πµν(x) = −
2∑

a=1

√
G

2π

ma

c

(
vµavνa +

c2

4
ηµν

)
e−mπc|x⃗−y⃗a(tr)|

|x⃗− y⃗a(tr)|
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Introduction and Background Quadratic Gravity Calculating Constraints Conclusions Extras

Modified Binary Dynamics

▶ We can compute corrections to the geodesic equation by
transforming the conservation equation

≈
∇µ

≈
Tµν = 0 back into our

original gµν coordinates.
▶ Then we can calculate the relative acceleration to Newtonian order,

as well as the angular frequency:

ai = −G(m1 +m2)

r2
n̂
(
1+2e−mϕr (mϕr + 1)− 3e−mπr (mπr + 1)

)
Ω2 =

G(m1 +m2)

r3
(
1+2e−mϕr (mϕr + 1)− 3e−mπr (mπr + 1)

)
▶ where r = |y⃗1 − y⃗2|, and n̂ = (y⃗1 − y⃗2)/r

Zachary S. C. Picker, University of Sydney 11



Introduction and Background Quadratic Gravity Calculating Constraints Conclusions Extras

Energy-Balance Equations

▶ From the acceleration, we can find an effective Lagrangian for the
binary and therefore the energy:

E = −Gm1m2

r

(
1

2
+ 2e−mϕr − 3e−mπr

)
(1)

▶ The far-field flux will be highly suppressed for the massive fields, and
so we can use the usual GR flux

▶ Identifying flux and energy loss gives us a convenient way to
calculate the change in phase, without needing high PN terms:

dE

dt
= −F (2)
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Corrections to the Binary Phase

▶ It is possible to carefully subsitute (in a PN-sense) our angular
frequency Ω into the energy-balance equation

▶ Then use the definition of phase dφ
dt = Ω to solve an ODE in φ and r.

φ = − r5/2

32m1m2(G(m1 +m2))3/2

[
1+e−mϕr

(
5

2
− 5

3
mϕr

)
−e−mπr

(
15

4
− 5

2
mπr

)
+O

(
1

c2

)]
▶ There are both 0PN and -1PN terms

▶ We can get multipole moments lower than quadrupole from the
massive fields
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Using Observations to Constrain Corrections

▶ 90% upper bounds on the GR
violating parameter δφ̂

▶ GW observations allow us
constrain possible deviations
of phase from GR at each PN
order

▶ Then we can constrain our
spin-0 and spin-2 masses:

mϕ ⩾ 2.3× 10−11eV

mπ ⩾ 3.2× 10−11eV

(LIGO/Virgo Collaborations, 2019)
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Conclusions

▶ Recast quadratic gravity as a massive spin-0 and spin-2 field
alongside the usual graviton, and derived linear, lowest order field
equations

▶ To Newtonian order, they respectively act as attractive and repulsive
Yukawa potentials modifying gravity

▶ Found -1PN and 0PN corrections to GW phase of an inspiralling
binary system in quadratic gravity

▶ Placed constraints on quadratic gravity from real GW observations
from LIGO and Virgo Collaborations

Thanks to the 59th Cracow School of Theoretical Physics for inviting me
to give this seminar!
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Extras: Recasting the Lagrangian

S =

∫
d4x

√
−g

[
R

2κ
+ βR2 + γRµνRµν

]
+ SM

Setting Sµν = Rµν − 1
4gµνR and α = β + γ

4 ,

S =

∫
d4x

√
−g

[
R

2κ
+ αR2 + γSµνSµν

]
+ SM

Using Lagrange multipliers, and the following conformal transformation,

g̃µν = Ω2gµν Ω2 = (1 +
√
2κϕ)

S =

∫
d4x

√
−g

[
R̃

2κ
+ πµν S̃µν −

1

4γ
πµνπµν −

1

2

(
∂µϕ∂

µϕ+m2
ϕϕ

2
)]

+S̃M

(3)
Separating πµν from h̃µν we obtain the final result.
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Extras: Geodesic Equations
Taking the spatial component of

≈
∇µ

≈
Tµν = 0, we can find the geodesic

equations in our original frame:

dP i
GR

dt
= F i

GR+
√
16πG ∂iϕ−

√
32πG ∂iπµνv

µvν +O
(

1

c2

)
(4)

Here the linear momentum density P i
GR and the force density F i

GR are
given by

P i
GR = c

gGR
µi vµ√

−gGR
ρσ vρvσ

F i
GR =

c

2

∂ig
GR
µν vµvν√

−gGR
ρσ vρvσ

(5)
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Extras: Details on Binary Phase Calculations 1
Freq. parameter x, with M = m1 +m2, µ = m1m1/M, ν = µ/M :

x ≡
(
GMΩ

c3

) 2
3

⇒ r =
GM

xc2

(
1 + 2e−mϕ

GM
xc2

(
mϕ

GM

xc2
+ 1

)
− 3e−mπ

GM
xc2

(
mπ

GM

xc2
+ 1

)) 1
3

Then its possible to solve
dE

dx
= −µc2

[
1

2
+

1

3
e−mϕ

GM
xc2

(
5 + 5mϕ

GM

xc2
−
(
mϕ

GM

xc2

)2
)

−1

2
e−mπ

GM
xc2

(
5 + 5mπ

GM

xc2
−
(
mπ

GM

xc2

)2
)

+O
(

1

c2

)]
And we also have the usual GR flux in terms of x:

F =
32c5

5G
ν2x5

[
1 +O

(
1

c2

)]
Zachary S. C. Picker, University of Sydney 18
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Extras: Details on Binary Phase Calculations 2
Then we introduce a dimensionless time parameter, where tc is the binary
collision time:

Θ ≡ νc3

5GM
(tc − t)

dφ/dt = Ω ⇒ dφ

dΘ
= −5

ν
x3/2

Then our energy-balance equation becomes
dE

dx

dx

dφ

x3/2c3

GM
= −F (6)

Then we can write down the full differential equation for the phase:
dφ

dx
=

5x−7/2

32ν

[
1

2
+

1

3
e−mϕ

GM
xc2

(
5 + 5mϕ

GM

xc2
−
(
mϕ

GM

xc2

)2
)

−1

2
e−mπ

GM
xc2

(
5 + 5mπ

GM

xc2
−
(
mπ

GM

xc2

)2
)

+O
(

1

c2

)]
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Extras: Constraints on β and γ

mϕ ⩾ 2.3× 10−11eV

mπ ⩾ 3.2× 10−11eV

This corresponds to:

β/M2
p ≲ 1019eV −2

γ/M2
p ≲ 1020eV −2

Although these may seem like ’big’ numbers, we are in the weakly
stressed regime so curvature is small and we are still within the realm of
validity for our EFT: mϕ,πr ≳ 1

Zachary S. C. Picker, University of Sydney 20
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