Particle Acceleration in Astrophysics 1. General descriptions and Formalisms

Vahe Petrosian

Stanford University

Work based on several PhD theses and collaborations with post doctoral fellows and colleagues

I. Observations of Acceleration In the Universe

1. Direct Observations

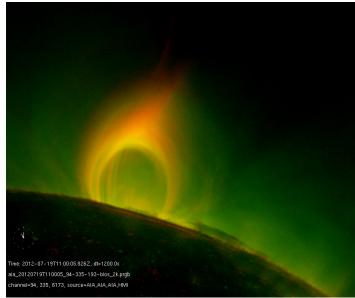
A. Galactic Cosmic Rays (Hess 1912)B. Solar Energetic Particles

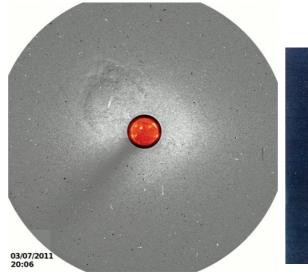
2. Observations of Non-thermal Radiation Long Wave Radio to TeV Gamma-rays

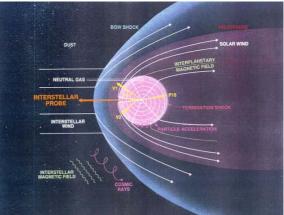
General Observational Features

Where: Planets to Clusters of Galaxies
Spatial scales: 10⁸ to 10²⁵ cm and beyond
Temporal scales: Milliseconds to Gigayears
Energy scales: 10³ to 10²⁰ eV

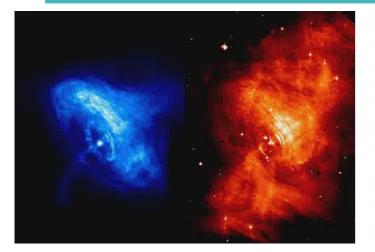
Places: Solar System

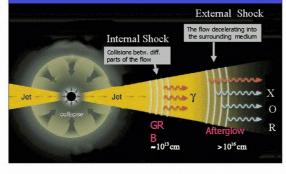


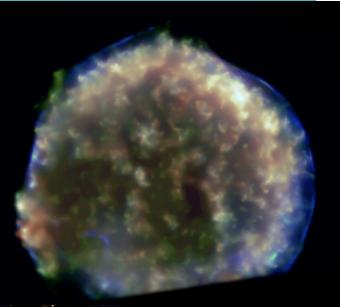


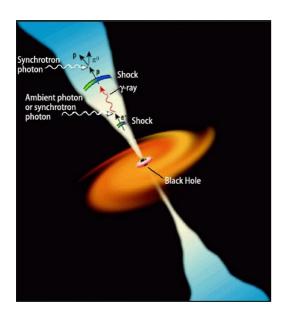


Places: Galactic and Extragalactic

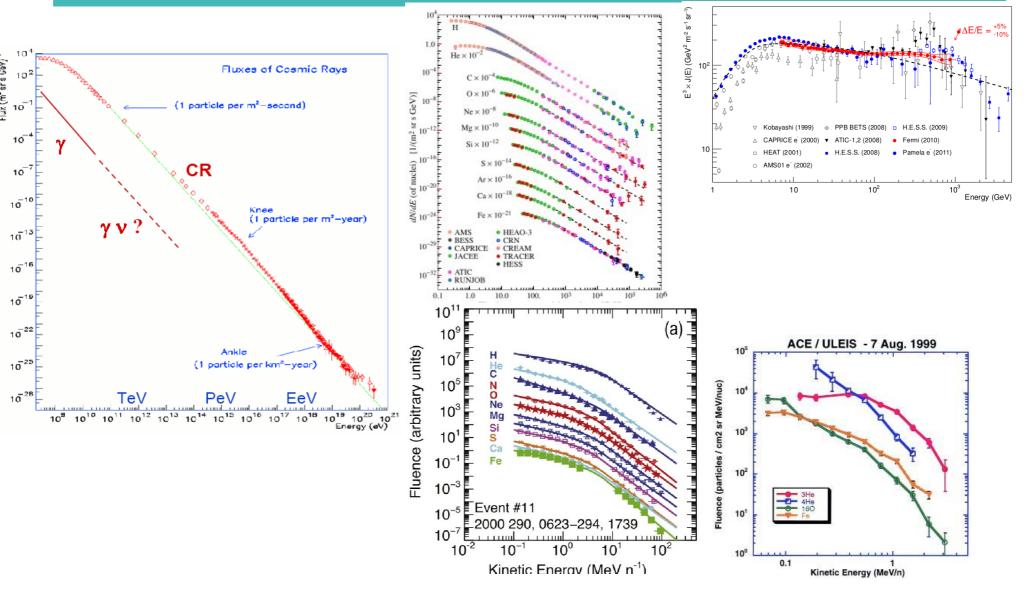




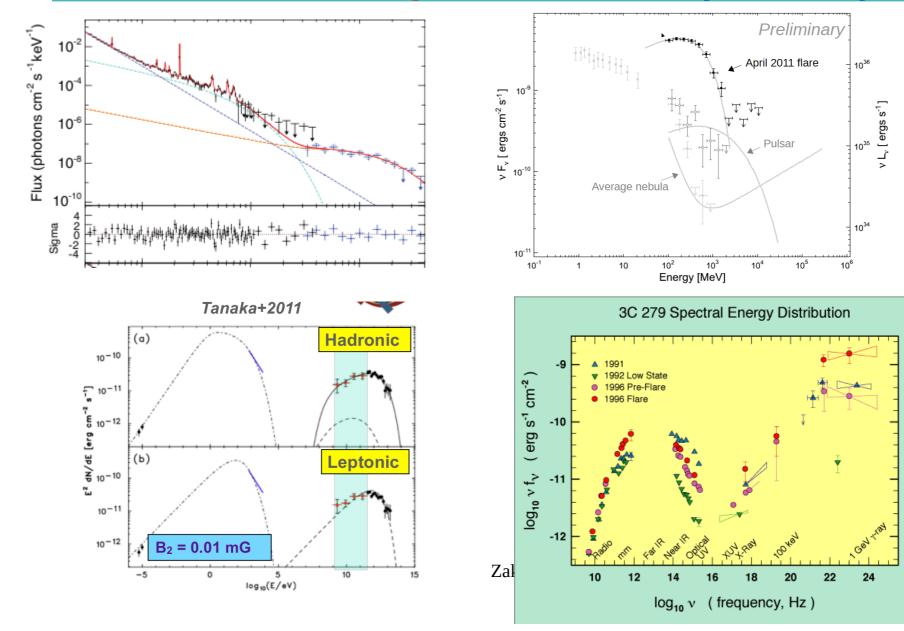




Spectra: Direct Observations Cosmic Rays and Solar Energetic Particles



Spectra: Non-thermal Radiation Producing Particles (RPPs)



Outline

- I. Acceleration Mechanisms: General Remarks
- II. Turbulence: General Remarks
- III. Kinetic Equations of Transport and Acceleration

Different forms of the Fokker-Planck equation

- IV. Transport and Acceleration Coefficients Energy losses and gains; Scatterings and diffusion
- V. Some Solutions: *Analytic and Numerical*

I. Acceleration Mechanisms Electric Fields and Turbulence "1^{st"} and 2nd Order Fermi Magnetized Plasmas

<u>A. ELECTRIC FIELDS:</u> \mathcal{E} (parallel to **B** field)

Acceleration Rate: $dp/dt = e\mathcal{E}$

Astrophysical Plasmas Highly Conductive: $\ensuremath{\mathcal{E}} \to 0$

Dricer Field: $\mathcal{E}_D = kT/(e\lambda_{\text{Coul}})$

 $\mathcal{E} < \mathcal{E}_D$: Energy Gain $\Delta E < kT(L/\lambda_{\text{Coul}})$

 $\mathcal{E} > \mathcal{E}_D$: Runaway Unstable Distribution Leads to

PLASMA TURBULENCE

1. Double Layers (DLs) in Earth's Magnetosphere

Multiple DLs: Difussive Process like

PLASMA TURBULENCE

2. Unipolar Induction in High *B* field of Neutron Stars Extreme Relativistic Energies: Pair Cascade

B. FERMI ACCELERATION

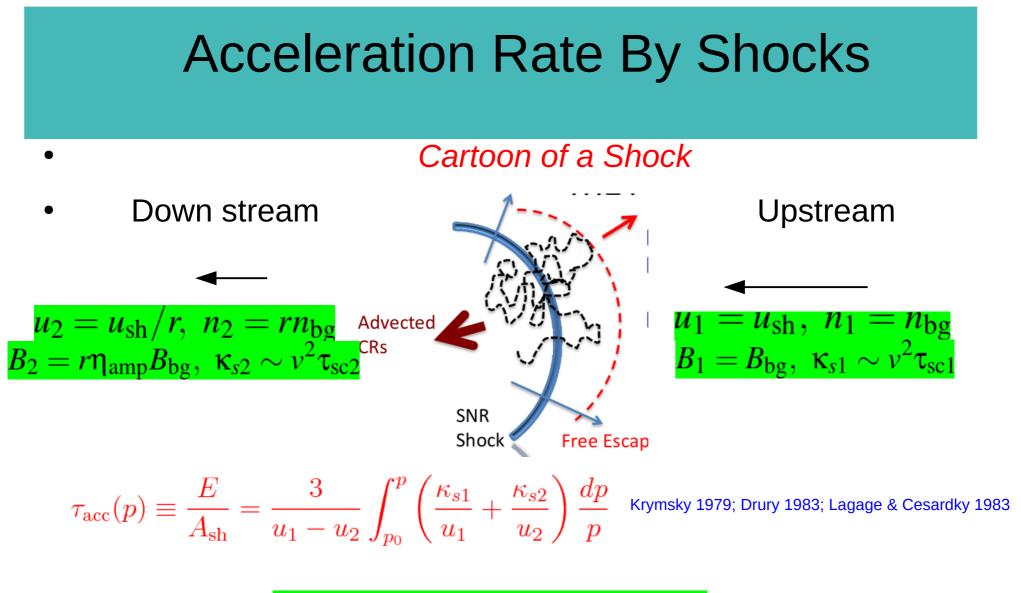
Random scattering by moving scattering centers. Diffusive Process: Why Acceleration? More headon than trailing scatterings Phase space availability

$$\frac{1}{p^2}\frac{\partial}{\partial p}(p^2 D_{pp}\frac{\partial f}{\partial p}) \to \frac{\partial}{\partial E}(D(E)\frac{\partial N}{\partial E}) - \frac{\partial}{\partial E}(A(E)N)$$
(1)

Fermi Acceleration Mechanisms General Remarks

1. Second order or Stochastic Acceleration (Fermi 1949) Second order Fermi: Scattering by TURBULENCE $D_{\mu\mu}, D_{pp}$ Energy Gain rate: $\dot{E}_G = A_{SA} = ED_{pp}/p^2 = ED_{\mu\mu}(v_A/v)^2$ [First order accel. in contracting magnetic bottle: Fermi 1953] 2. Acceleration in converging flows: For example Shocks Momentum Change First Order $\delta p / p \sim u_{sh} / v$ But need repeated passages across the shock Most likely scattering agent is TURBULENCE Energy Gain rate $\dot{E}_{gain} = \delta p / \delta t_c$ $\delta t_c \sim \zeta(\lambda_s / u_{sh}) \sim \zeta(v / u_{sh}) D_{\mu\mu}^{-1}$

$$\dot{E}_G \equiv A_{\rm sh} = E D_{\mu\mu} (u_{\rm sh}/v)^2$$



$$A_{\rm sh} = \zeta E (u_{\rm sh}/v)^2 \tau_{\rm sc1}^{-1}$$

Comparison of Stochastic and Shock Acceleration Rates

Define $R_1 = (D_{pp}/p^2)/D_{\mu\mu} = \tau_{sc}/\tau_{ac}$ Rate Ratio $A_{SA}/A_{sh} \sim R_1(v/u_{sh})^2$ At relativistic energies $R_1 = (v_A/v)^2 \ll 1$ so that $A_{SA}/A_{sh} \sim (v_A/u_{sh})^2 = \mathcal{M}_A^{-2} \ll 1$

But at High Fields and Low energies $R_1 \gg 1$ and $A_{SA}/A_{sh} \sim R_1 (v/u_{\rm sh})^2 \gg 1$

(Pryadko and Petrosian 1997)

II. Turbulence Required for all Acceleration Models

II. PLASMA TURBULENCE

- 1. Turbulence Generation
- 2. Turbulence Cascade
- 3. Turbulence Damping
- 4. Interactions with Particles
- 5. Spectrum of the Accelerated Particles

1. TURBULENCE GENERATION

Turbulence is Very Common in Astrophysics

Hydrodynamic: Ordinary Reynolds number

 $R_e = Lv/\nu \gg 1, \ \eta = \text{Viscousity}$

In MHD: Magnetic Reynolds number

 $R_m = Lv/\eta \gg 1, \ \eta = \text{Mag. Diff. Coeff.}$

Thus most flows or fluctuations lead to generation of turbulence on scales around L (or waves with k-vector k_{min}= 1/L)

2. TURBULENCE CASCADE

HD: Large eddies breaking into small ones Eddy turnover or *cascade* time

 $au_{
m cas} \sim 1/[kv(k)] < L/u_{
m sound}$

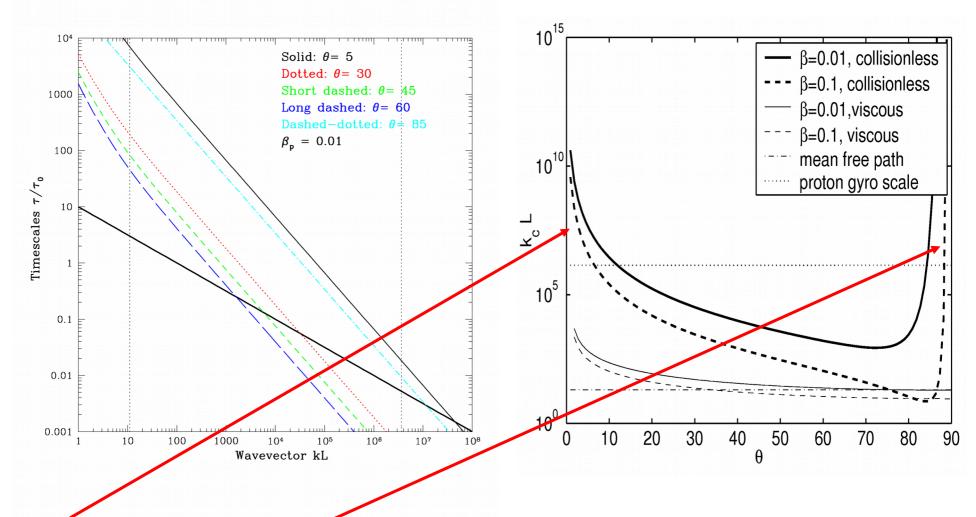
MHD: Nonlinear wave-wave interactions $\omega(k_1) = \omega(k_2) + \omega(k_3); \quad k_1 = k_2 + k_3$ $\frac{\tau_{cas}/V_{Alfven}}{V_{Alfven}}$

Dispersion Relation: (Low Beta Plasma, $V_{Alfven} >> V_{Sound}$) $\omega(k) = k_{||}V_{Alfven}, kV_{Alfven}, k_{||}V_{Sound}$ For Alfven, Fast and Slow Modes

3. TURBULENCE DAMPING

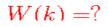
Viscous or Collisional Damping: $k^{-1} \gg \lambda_{coll}$ Collisonless Damping: $k^{-1} \ll \lambda_{coll}$ Thermal: *Heating of Plasma* Nonthermal: Particle Acceleration Turbulence is damped for $k > k_{max}$ where $\tau_{damb} (\propto k^{-1}) = \tau_{cas} (\propto k^{-1/2})$ Inertial Range $k_{\min} < k < k_{\max}$

3. Turbulence Damping



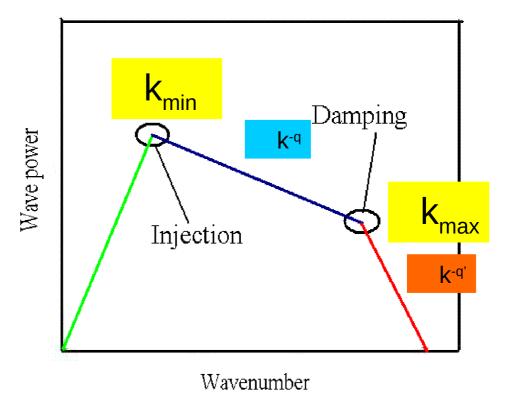
Parallel (and perpendicular) wayes are not damped

Turbulence Spectrum



General Features:

- Injection scale: k_{\min}
- Cascade and index q
- Damping scale or k_{\max}

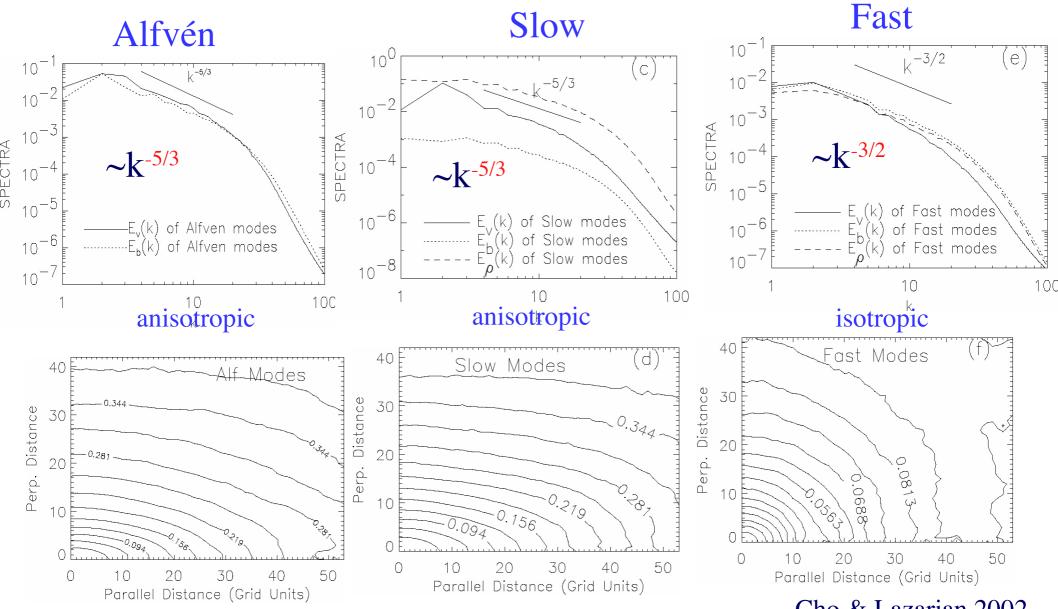


Kinetic Equation:

$$\frac{\partial W(\mathbf{k},t)}{\partial t} = \dot{Q}_{p}(\mathbf{k},t) - \gamma(\mathbf{k})W(\mathbf{k},t) + \nabla_{i}\left[D_{ij}\nabla_{j}W(\mathbf{k},t)\right] - \frac{W(\mathbf{k},t)}{T_{\text{esc}}^{W}(\mathbf{k})}$$

- $Q_p(\mathbf{k})$: Rate of wave generation.
- $T^W_{\scriptscriptstyle \mathsf{esc}}:$ Wave leakage timescale.
- $\gamma(k) = \gamma_e + \gamma_p$: The damping coefficients.
- D_{ij} : Wave diffusion tensor.

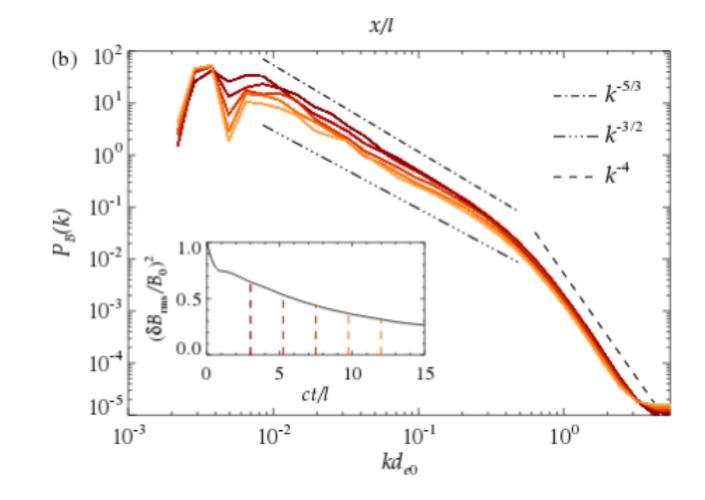
2. Cascade of MHD Turbulence



Cho & Lazarian 2002

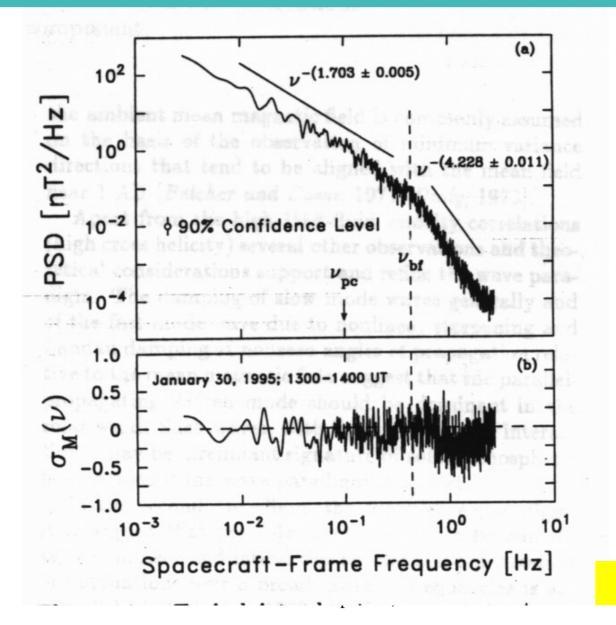
PIC Simulations of MHD Turbulence

2D simulation



Comisso and Sironi 2018; arXiv:1809.01168

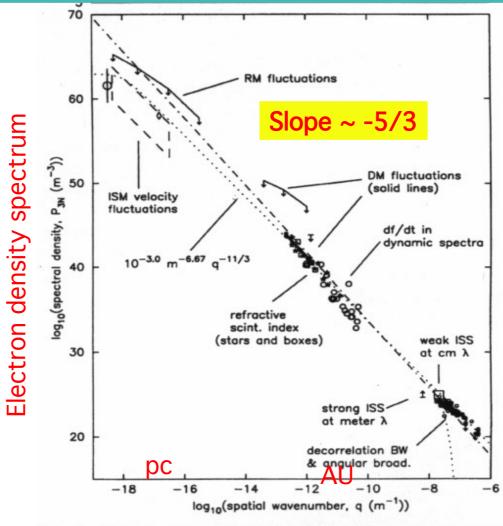
Magnetic fluctuations in Solar wind



Magnetic fluctuations in Solar wind

Leamon et al (1998)

Turbulence Spectrum in the ISM



4. Interactions with Particles: *Heating and Acceleration*

Resonant Wave-Particle Interactions

Interaction Rates Dispersion Relations Particle Kinetic Equation

Wave-Particle Interaction Rates

Dominated by Resonant Interactions

$$D_{ij} = \pi e^2 \sum_{n=-\infty}^{+\infty} \int d^3k \langle d_{ij} \rangle \delta \left(\boldsymbol{k} \cdot \boldsymbol{v} - \omega + \frac{n\eta_0}{\gamma} \Omega_0 \right),$$

Lower energy particles interacting with higher wavevectors or frequencies

Wave-Particle Interaction

$$\begin{split} D_{\mu\mu} &= \frac{\langle \Delta \mu \Delta \mu^* \rangle}{2i} = \frac{\pi \Omega^2 (1 - \mu^2)}{B_0^2} \sum_j \sum_{n=-\infty}^{\infty} \int d^3k \, \delta(k_{||} v_{||} - \omega_j + n\Omega) \Big\{ \frac{c^2}{v^2} (1 - \mu^2) \\ &\times J_n^2 \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) R_{||||}^j (k) + \frac{1}{2} J_{n+1}^2 \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) \Big(P_{RR}^j (k) + \mu^2 \frac{c^2}{v^2} R_{RR}^j (k) \\ &+ i\mu \frac{c}{v} \Big[T_{RR}^j (k) - Q_{RR}^j (k) \Big] \Big) + \frac{1}{2} J_{n-1}^2 \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) \Big(P_{LL}^j (k) + \mu^2 \frac{c^2}{v^2} R_{LL}^j (k) \\ &+ i\mu \frac{c}{v} \Big[Q_{LL}^j (k) - T_{LL}^j (k) \Big] \Big) - \frac{1}{2} J_{n+1} \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) J_{n-1} \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) \\ &\times \Big[e^{2i\psi} \Big(P_{RL}^j (k) + i\mu \frac{c}{v} \Big[Q_{RL}^j (k) + T_{RL}^j (k) \Big] - \mu^2 \frac{c^2}{v^2} R_{LR}^j (k) \Big) \\ &+ e^{-2i\psi} \Big(P_{LR}^j (k) - i\mu \frac{c}{v} \Big[Q_{LR}^j (k) + T_{LR}^j (k) \Big] - \mu^2 \frac{c^2}{v^2} R_{LR}^j (k) \Big) \Big] \\ &+ \frac{ic}{\sqrt{2}v} (1 - \mu^2)^{1/2} J_n \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) \Big[J_{n+1} \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) \\ &\times \Big(Q_{R\parallel}^j (k) e^{i\psi} - T_{\parallel R}^j (k) e^{-i\psi} + i\mu \frac{c}{v} \Big(R_{R\parallel}^j (k) e^{i\psi} + R_{\parallel R}^j (k) e^{-i\psi} \Big) \Big) \\ &+ J_{n-1} \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) \Big(Q_{L\parallel}^j (k) e^{-i\psi} + T_{\parallel L}^j (k) e^{i\psi} \\ &+ i\mu \frac{c}{v} \Big(R_{\parallel L}^j (k) e^{i\psi} - R_{\parallel \parallel}^j (k) e^{-i\psi} \Big) \Big) \Big] \Big\}. \end{split}$$

Wave-Particle Interaction

 $D_{\mu p} = \frac{(\Delta \mu \Delta p^{*})}{2t}$ $= \frac{\pi i \Omega^2}{B_0^2} (1 - \mu^2)^{1/2} \frac{pc}{v} \sum_{i} \sum_{n=-\infty}^{\infty} \int d^3k \, \delta(k_{\parallel} v_{\parallel} - \omega_j + n\Omega) \left[-i \frac{c}{v} \mu (1 - \mu^2)^{1/2} \right]$ $\times J_n^2 \left(\frac{k_\perp v_\perp}{\Omega}\right) R_{\parallel\parallel}^j(k) + \frac{(1-\mu^2)^{1/2}}{2} \left\{ J_{n+1}^2 \left(\frac{k_\perp v_\perp}{\Omega}\right) \left(Q_{\rm RR}^j(k)\right) \right\}$ $+\mathrm{i}\mu\frac{c}{v}R_{\mathrm{RR}}^{j}(k)\right) - J_{n-1}^{2}\left(\frac{k_{\perp}v_{\perp}}{0}\right)\left(Q_{\mathrm{LL}}^{j}(k) - \mathrm{i}\mu\frac{c}{v}R_{\mathrm{LL}}^{j}(k)\right)$ $+ J_{n+1} \left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) J_{n-1} \left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \left[e^{2i\psi} \left(Q_{\text{RL}}^{j}(k) + i\mu \frac{c}{v} R_{\text{RL}}^{j}(k) \right) \right]$ $= e^{-2i\psi} \left(Q_{LR}^j(k) - i\mu \frac{c}{v} R_{LR}^j(k) \right) \right] \left\{ + \frac{1}{\sqrt{2}} J_n \left(\frac{k_\perp v_\perp}{\Omega} \right) J_{n-1} \left(\frac{k_\perp v_\perp}{\Omega} \right) \right\}$ $\times \left[\mu \mathrm{e}^{-\mathrm{i}\psi} \left(-Q_{\mathrm{L}\parallel}^{j}(\boldsymbol{k}) + \mathrm{i}\mu \frac{\mathrm{c}}{v} R_{\mathrm{R}\parallel}^{j}(\boldsymbol{k}) \right) - \mathrm{i}\frac{\mathrm{c}}{v} (1-\mu^{2}) \mathrm{e}^{\mathrm{i}\psi} R_{\parallel\mathrm{L}}^{j}(\boldsymbol{k}) \right]$ $+\frac{1}{\sqrt{2}}J_n\left(\frac{k_{\perp}v_{\perp}}{\Omega}\right)J_{n+1}\left(\frac{k_{\perp}v_{\perp}}{\Omega}\right)\left[\mu e^{\mathrm{i}\psi}\left(Q_{\mathrm{R}\parallel}^j(k)+\mathrm{i}\mu\frac{c}{v}R_{\mathrm{R}\parallel}^j(k)\right)\right]$ $-\mathrm{i}\frac{\mathrm{c}}{\mathrm{v}}(1-\mu^2)\mathrm{e}^{-\mathrm{i}\psi}R^j_{\parallel \mathrm{R}}(k)\Big|\Big|\,.$ Jaekel & Schlickeiser

Wave-Particle Interaction action

$$\begin{split} D_{pp} &= \frac{\langle \Delta p \Delta p^* \rangle}{2t} \\ &= \frac{\pi \Omega^2 p^2 c^2}{B_0^2 v^2} \sum_j \sum_{n=-\infty}^{\infty} \int \mathrm{d}^{3k} \,\delta(k_{\parallel} v_{\parallel} - \omega_j + n\Omega) \Big\{ \mu^2 J_n^2 \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) R_{\parallel\parallel}^j(k) \\ &+ \frac{1 - \mu^2}{2} \Big[J_{n-1}^2 \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) R_{\mathrm{LL}}^j(k) + J_{n+1}^2 \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) R_{\mathrm{RR}}^j(k) \\ &+ J_{n-1} \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) J_{n+1} \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) \Big[R_{\mathrm{LR}}^j(k) \mathrm{e}^{-2i\psi} + R_{\mathrm{RL}}^j(k) \mathrm{e}^{2i\psi} \Big] \Big] \\ &+ \frac{\mu (1 - \mu^2)^{1/2}}{\sqrt{2}} \Big[J_n \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) J_{n-1} \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) \Big[R_{\parallel\mathrm{L}}^j(k) \mathrm{e}^{i\psi} + R_{\mathrm{L}}^j \Big] &= \mathrm{e}^{-i\psi} \Big] \\ &+ J_n \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) J_{n+1} \Big(\frac{k_{\perp} v_{\perp}}{\Omega} \Big) \Big[R_{\parallel\mathrm{R}}^j(k) \mathrm{e}^{-i\psi} + R_{\mathrm{R}}^j(\kappa) \mathrm{e}^{i\psi} \Big] \Big] \end{split}$$

Cold plasma dispersion relation (Propagating Along Field Lines)

$$(ck)^2 = \omega^2 \left[1 - \sum_i \frac{\omega_{pi}^2}{\omega(\omega - q_i/|q_i|\Omega_i)}
ight]$$

Plasma Parameter:

$$\alpha = \frac{\omega_{pe}}{\Omega_e} = 1.0 \left(\frac{n}{10^9 \text{cm}^{-3}}\right)^{1/2} \left(\frac{B_0}{100 \text{G}}\right)^{-1}$$

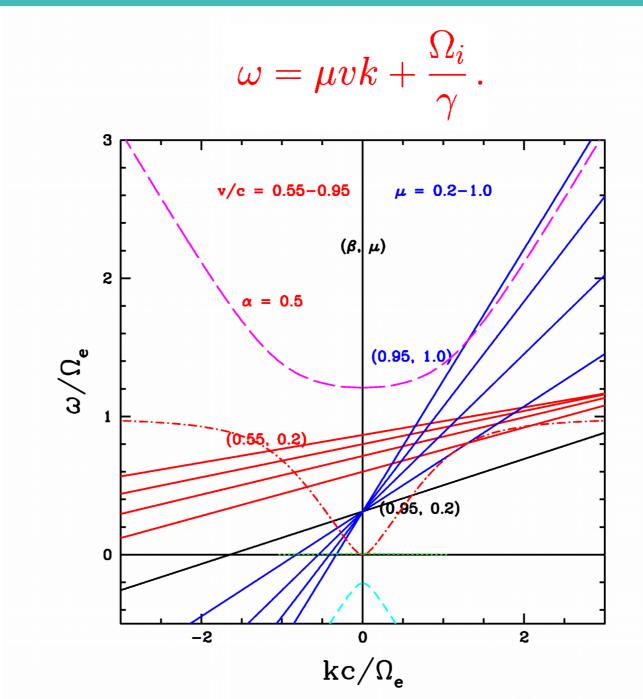
Abundances: Electrons, protons and alpha particles

Wave-Particle Interaction Parallel Propagating Waves

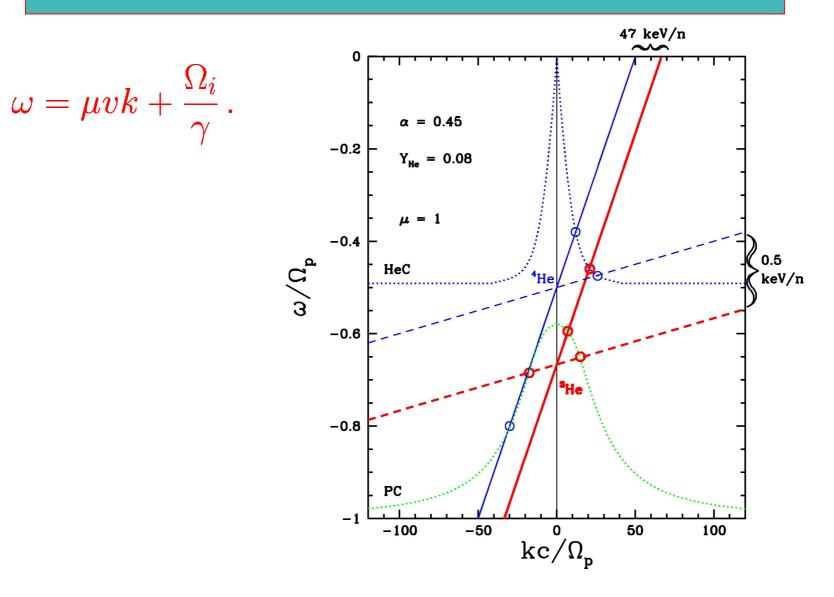
$$D_{ab} = rac{(\mu^{-2}-1)}{ au_{\mathrm{p}i}\gamma^2} \sum_{j=1}^N \chi(k_j) egin{cases} \mu\mu(1-x_j)^2, & ext{for } ab = \mu\mu; \ \mu p x_j(1-x_j), & ext{for } ab = \mu p; \ p^2 x_j^2, & ext{for } ab = pp, \end{cases}$$

$$\chi(k_j) = rac{|k_j|^{-q}}{|eta \mu - eta_{\mathrm{g}}(k_j)|} \quad ext{and} \quad x_j = \mu \omega_j / eta k_j \,.$$

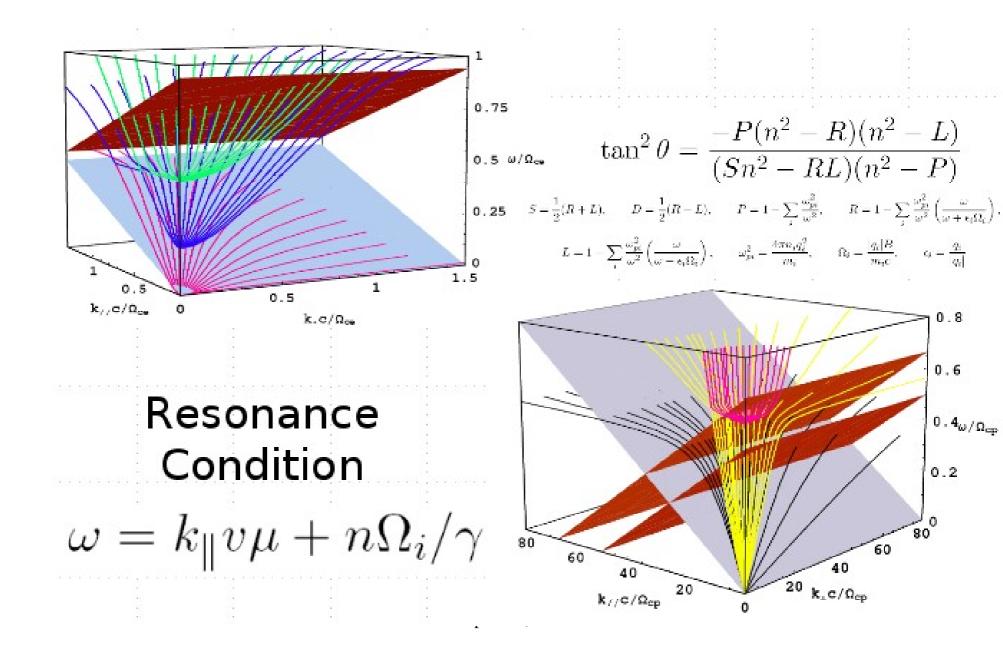
Resonant Interaction *electrons*



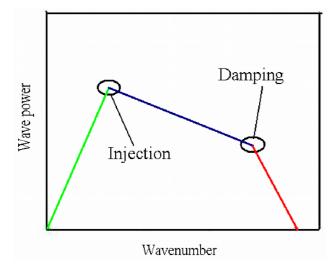
Resonant Wave-Particle Interactions 4He and 3He

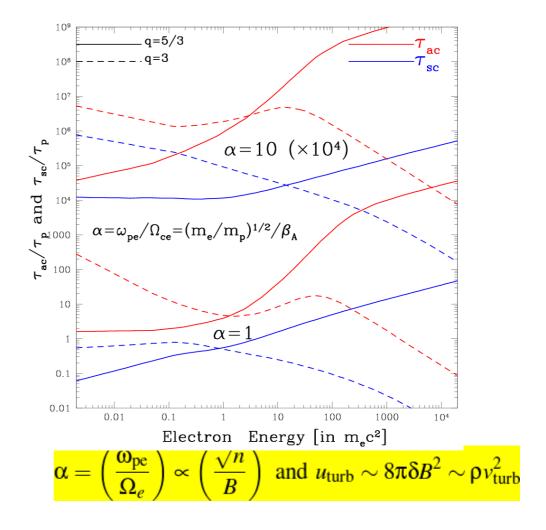


2D Dispersion realation

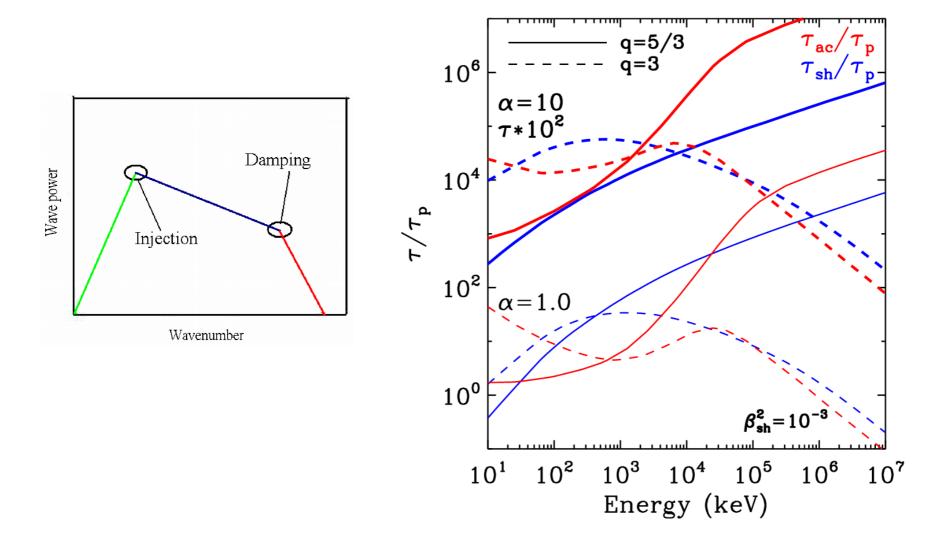


Model Scattering and Acceleration Times *Pryadko and Petrosian 1997*





Shock and Stochastic Acceleration Times *Pryadko and Petrosian 1997*



Zakopane-1, 2019

Comparison of Stochastic and Shock Acceleration Rates

Define

Rate Ratio

so that

Define
$$\begin{array}{l} R_1 = (D_{pp}/p^2)/D_{\mu\mu} = \tau_{sc}/\tau_{ac} \\ Rate Ratio \\ A_{SA}/A_{sh} \sim R_1(v/u_{sh})^2 \\ At relativistic energies \\ R_1 = (v_A/v)^2 \ll 1 \end{array}$$

$$A_{SA}/A_{sh} \sim (v_A/u_{\rm sh})^2 = \mathcal{M}_A^{-2} \ll 1$$

But at High Fields and

$$R_1 \gg 1$$

Low energies $A_{SA}/A_{sh} \sim R_1 (v/u_{sh})^2 \gg 1$ and we have an Hybrid Mechanism

(Petrosian 2012)

III. Kinetic Equation for Acceleration and Transport in Magnetized Plasmas

Many Faces of the Fokker-Planck Equation

Particle Acceleration and Transport The Kinetic Equation

Fokker-Planck Equation for Gyrophase Average Dist. $\frac{f(t, s, \mu, p)}{\frac{\partial f}{\partial t} + v\mu \frac{\partial f}{\partial s}} = \frac{1}{p^2} \frac{\partial}{\partial p} p^2 \left[D_{pp} \frac{\partial f}{\partial p} + D_{p\mu} \frac{\partial f}{\partial \mu} \right] + \frac{\partial}{\partial \mu} \left[D_{\mu\mu} \frac{\partial f}{\partial \mu} + D_{\mu p} \frac{\partial f}{\partial p} \right] - \frac{1}{p^2} \frac{\partial}{\partial p} (p^2 \dot{p} f) + \dot{S}$

1. ISOTROPIC if
$$\tau_{sc} \sim 1/D_{\mu\mu} \ll \tau_{cross} = L/v$$
 (and if $D_{\mu\mu} \gg D_{pp}/p^2$)
Can Define
$$F(t,s,p) = \frac{1}{2} \int_{-1}^{1} d\mu f(t,s,p,\mu), \quad \dot{S}(t,s,p) = \frac{1}{2} \int_{-1}^{1} d\mu \dot{S}(t,s,p,\mu)$$

$$\frac{\partial F}{\partial t} = \frac{\partial}{\partial s}\kappa_{ss}\frac{\partial F}{\partial s} + \frac{1}{p^2}\frac{\partial}{\partial p}\left(p^4\kappa_{pp}\frac{\partial F}{\partial p} - p^2\langle\dot{p}\rangle F\right) + p\frac{\partial\kappa_{sp}}{\partial s}\frac{\partial F}{\partial p} - \left(\frac{1}{p^2}\frac{\partial F}{\partial s}\frac{\partial}{\partial p}(p^3\kappa_{sp})\right) + \dot{S}(s,t,p)$$

$$\kappa_{ss} = \frac{v^2}{8} \int_{-1}^{1} d\frac{(u1-\mu^2)^2}{D_{\mu\mu}}, \quad \kappa_{sp} = \frac{v}{4p} \int_{-1}^{1} d\mu (1-\mu^2) \frac{D_{\mu p}}{D_{\mu\mu}}, \quad \kappa_{pp} = \frac{1}{2p^2} \int_{-1}^{1} d\mu (D_{pp} - D_{\mu p}^2/D_{\mu\mu})$$

Particle Acceleration and Transport Shock acceleration

Fokker-Planck Equation for Gyrophase Average Dist.
$$f(t, s, \mu, p)$$

 $\frac{\partial f}{\partial t} + v\mu \frac{\partial f}{\partial s} = \frac{1}{p^2} \frac{\partial}{\partial p} p^2 \left[D_{pp} \frac{\partial f}{\partial p} + D_{p\mu} \frac{\partial f}{\partial \mu} \right] + \frac{\partial}{\partial \mu} \left[D_{\mu\mu} \frac{\partial f}{\partial \mu} + D_{\mu p} \frac{\partial f}{\partial p} \right] - \frac{1}{p^2} \frac{\partial}{\partial p} (p^2 \dot{p} f) + \dot{S}$
If there is flow convergence (e.g. SHOCK) $\frac{1}{3} \frac{\partial u}{\partial s} \frac{1}{p^2} \frac{\partial}{\partial p} (p^3 f) - u \frac{\partial f}{\partial s}$
1. ISOTROPIC if $\tau_{sc} \sim 1/D_{\mu\mu} \ll \tau_{cross} = L/v$ (and if $D_{\mu\mu} \gg D_{pp}/p^2$)
Can Define $F(t, s, p) = \frac{1}{2} \int_{-1}^{1} d\mu f(t, s, p, \mu), \quad \dot{S}(t, s, p) = \frac{1}{2} \int_{-1}^{1} d\mu \dot{S}(t, s, p, \mu)$
 $\frac{\partial F}{\partial t} = \frac{\partial}{\partial s} \kappa_{ss} \frac{\partial F}{\partial s} + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^4 \kappa_{pp} \frac{\partial F}{\partial p} - p^2 \langle \dot{p} \rangle F \right) + p \frac{\partial \kappa_{sp}}{\partial s} \frac{\partial F}{\partial p} - \left(\frac{1}{p^2} \frac{\partial F}{\partial s} \frac{\partial}{\partial p} (p^3 \kappa_{sp}) \right) + \dot{S}(s, t, p)$
 $K_{ssc} = \frac{v^2}{8} \int_{-1}^{1} d\frac{(u1 - \mu^2)^2}{D_{\mu\mu}}, \quad \kappa_{sp} = \frac{v}{4p} \int_{-1}^{1} d\mu (1 - \mu^2) \frac{D_{\mu p}}{D_{\mu \mu}}, \quad \kappa_{pp} = \frac{1}{2p^2} \int_{-1}^{1} d\mu (D_{pp} - D_{\mu p}^2/D_{\mu \mu})$

Particle Acceleration and Transport Magnetic Field Variation

Fokker-Planck Equation for Gyrophase Average Dist. $f(t, s, \mu, p)$

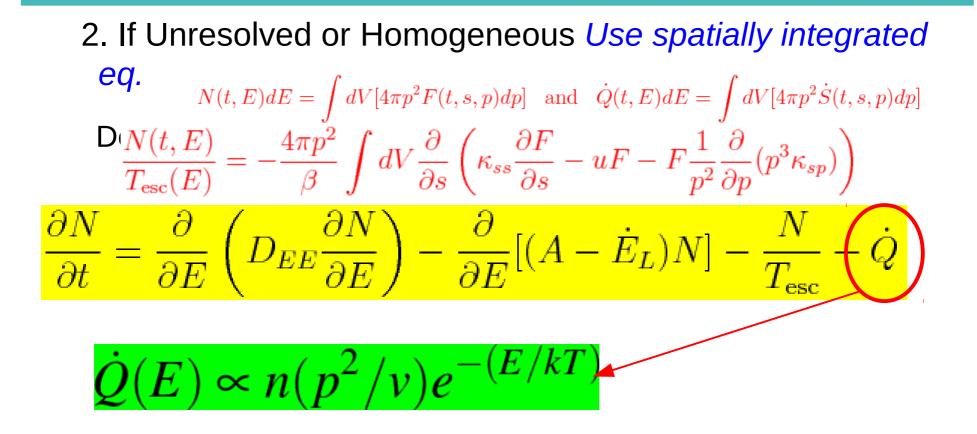
$$\frac{\partial f}{\partial t} + v\mu \frac{\partial f}{\partial s} = \frac{1}{p^2} \frac{\partial}{\partial p} p^2 \left[D_{pp} \frac{\partial f}{\partial p} + D_{p\mu} \frac{\partial f}{\partial \mu} \right] + \frac{\partial}{\partial \mu} \left[D_{\mu\mu} \frac{\partial f}{\partial \mu} + D_{\mu p} \frac{\partial f}{\partial p} \right] - \frac{1}{p^2} \frac{\partial}{\partial p} (p^2 \dot{p} f) + \dot{S} \frac{\partial}{\partial \mu} \frac{\partial}{\partial \mu} \left[(1 - \mu^2) f \right] \frac{\partial}{\partial \mu} \left[(1 - \mu^2) f \right] \frac{\partial}{\partial \mu} \left[\tau_{sc} \sim 1/D_{\mu\mu} \ll \tau_{cross} = L/v \quad (\text{and if} \quad D_{\mu\mu} \gg D_{pp}/p^2) \right] \frac{\partial}{\partial \mu} \left[Can \text{ Define} \quad F(t, s, p) = \frac{1}{2} \int_{-1}^{1} d\mu f(t, s, p, \mu), \quad \dot{S}(t, s, p) = \frac{1}{2} \int_{-1}^{1} d\mu \dot{S}(t, s, p, \mu) \right] \frac{\partial}{\partial t} = \frac{\partial}{\partial s} \kappa_{ss} \frac{\partial}{\partial s} + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^4 \kappa_{pp} \frac{\partial}{\partial p} - p^2 \langle \dot{p} \rangle F \right) + p \frac{\partial \kappa_{sp}}{\partial s} \frac{\partial}{\partial p} - \left(\frac{1}{p^2} \frac{\partial}{\partial s} (p^3 \kappa_{sp}) \right) + \dot{S}(s, t, p) \frac{\partial}{\partial s} \kappa_{ss} = \frac{v^2}{8} \int_{-1}^{1} d\mu \left(\frac{u(1 - \mu^2)^2}{D_{\mu\mu}} \right), \quad \kappa_{sp} = \frac{v}{4p} \int_{-1}^{1} d\mu (1 - \mu^2) \frac{D_{\mu p}}{D_{\mu \mu}}, \quad \kappa_{pp} = \frac{1}{2p^2} \int_{-1}^{1} d\mu (D_{pp} - D_{\mu p}^2/D_{\mu \mu}) \frac{\partial}{\partial t} \frac$$

Particle Acceleration and Transport

2. If Unresolved or Homogeneous Use spatially integrated eq. Define $N(t, E)dE = \int dV[4\pi p^2 F(t, s, p)dp]$ and $\dot{Q}(t, E)dE = \int dV[4\pi p^2 \dot{S}(t, s, p)dp]$ $\frac{N(t, E)}{T_{esc}(E)} = -\frac{4\pi p^2}{\beta} \int dV \frac{\partial}{\partial s} \left(\kappa_{ss} \frac{\partial F}{\partial s} - uF - F \frac{1}{p^2} \frac{\partial}{\partial p} (p^3 \kappa_{sp})\right)$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E}\right) - \frac{\partial}{\partial E} [(A - \dot{E}_L)N] - \frac{N}{T_{esc}} + \dot{Q}$ Diffusion Accel. Loss Escape Source

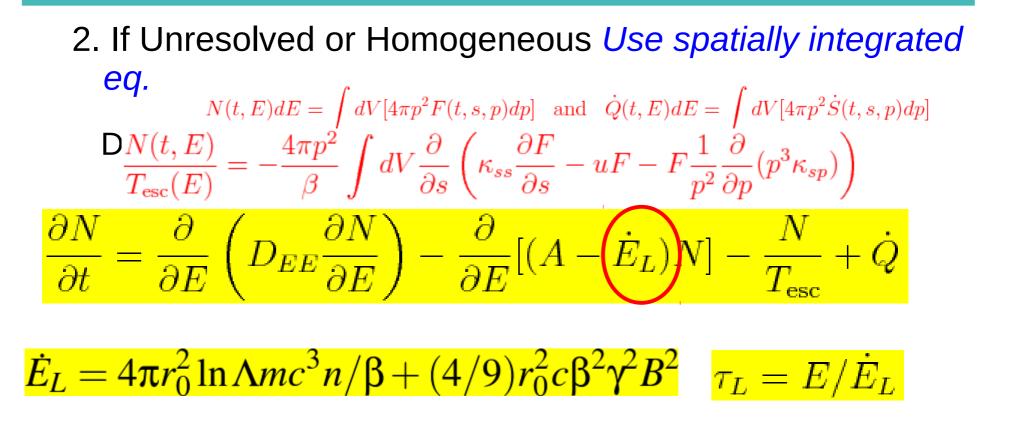
Known as the Leaky Box Model

The Source Terms



Need density *n* and temperature *T*: Assume we know these

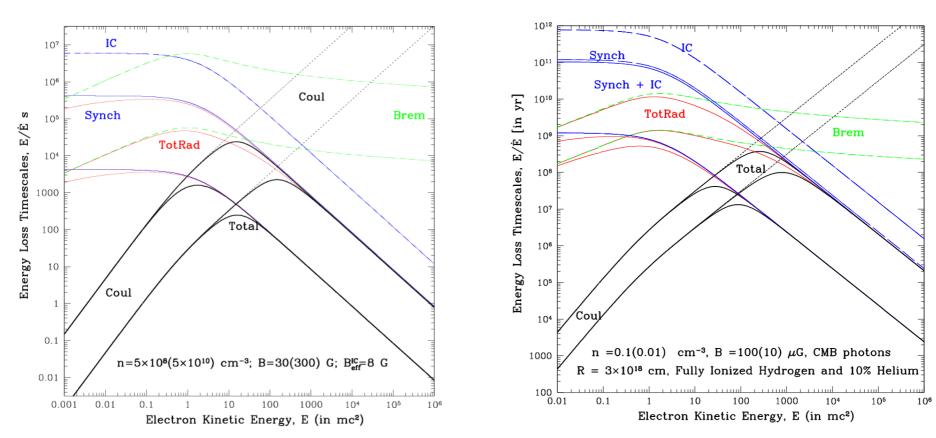
Energy Loss Terms



Need density *n*, temperature *T* and magnetic field *B* (+soft photon) energy densities: Assume we know these.

Energy Loss Terms: *Electrons Cold Target; E>kT*

Coulomb, Bremsstrahlung, Synchrotron and Inverse Compton

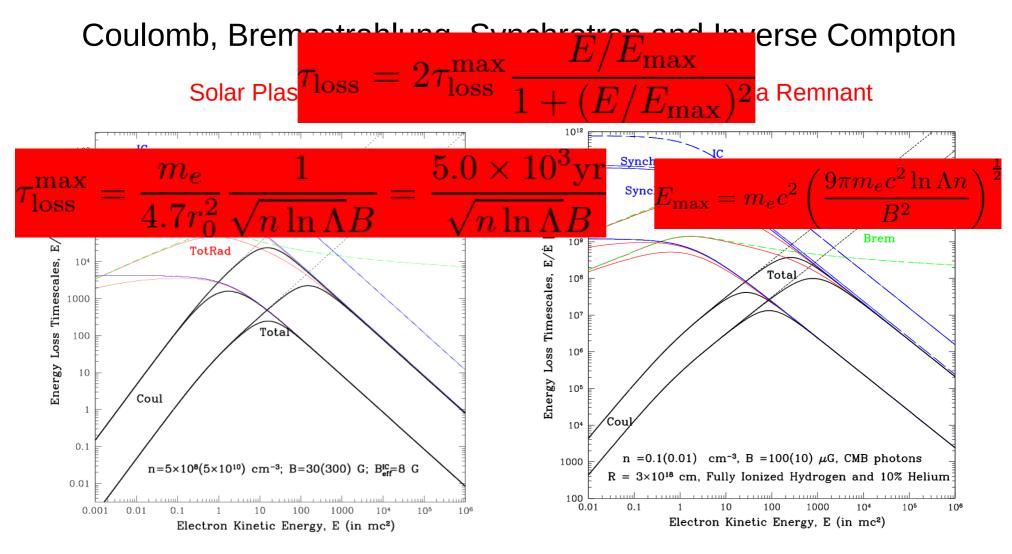


Solar Plasma

Supernova Remnant

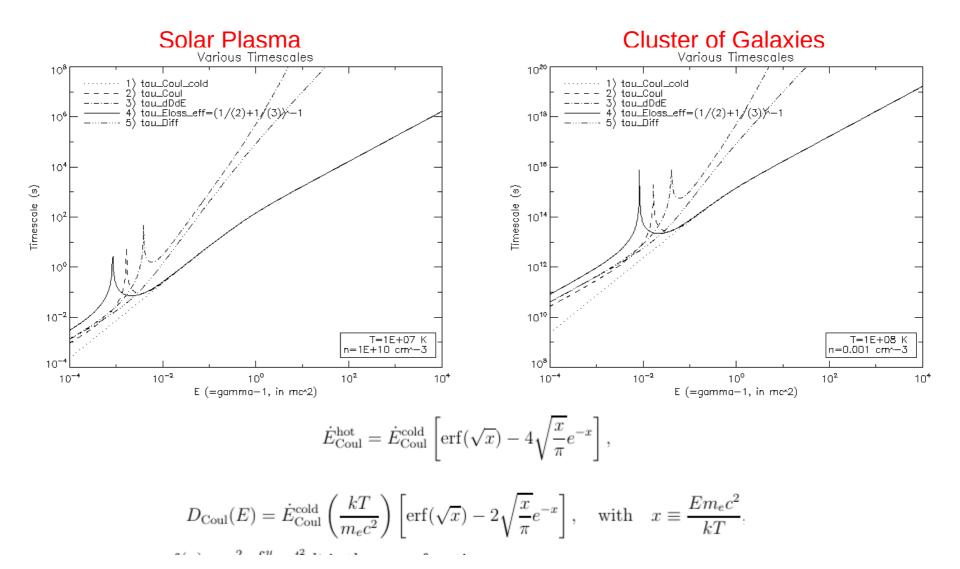
Zakopane-1, 2019

Energy Loss Terms: *Electrons Cold Target; E>kT*



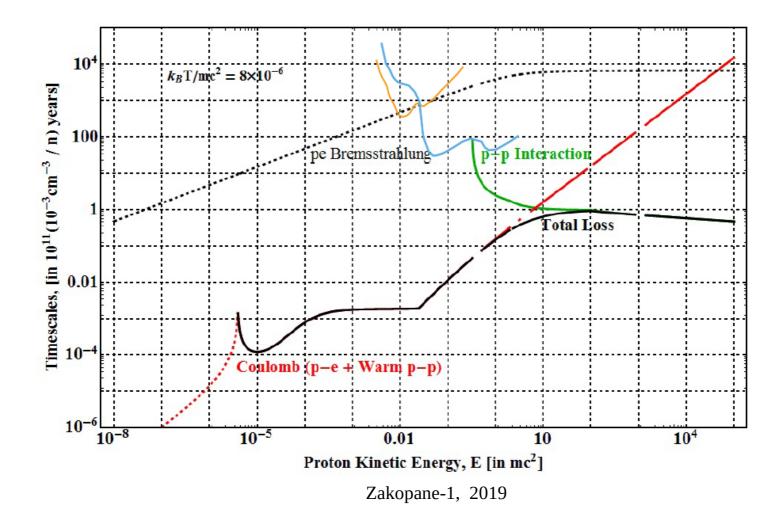
Energy Loss Terms: *Electrons Warm Target; E~kT*

Coulomb Loss and Diffusion rates



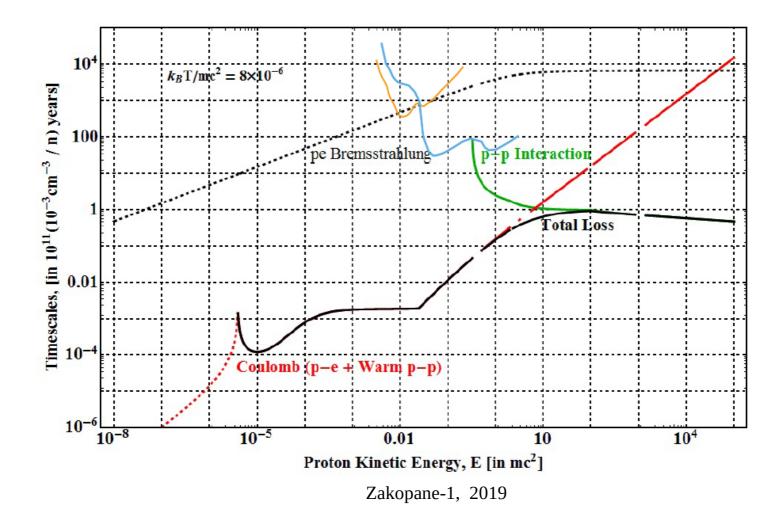
Energy Loss Terms: Protons Warm Target; E~kT

Coulomb, Bremsstrahlung; Pion, neutron and line production



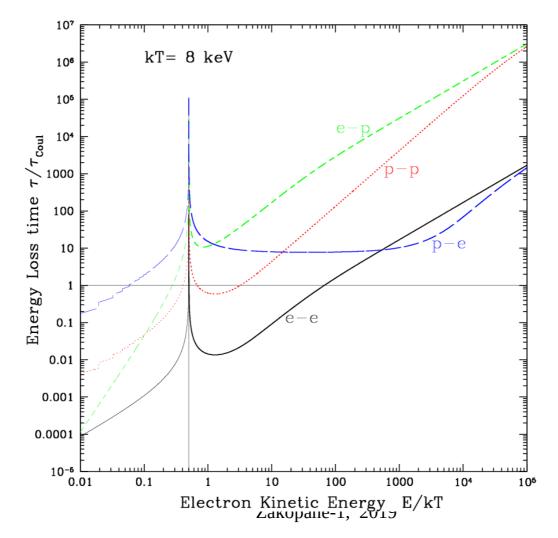
Energy Loss Terms: Protons Warm Target; E~kT

Coulomb, Bremsstrahlung; Pion, neutron and line production

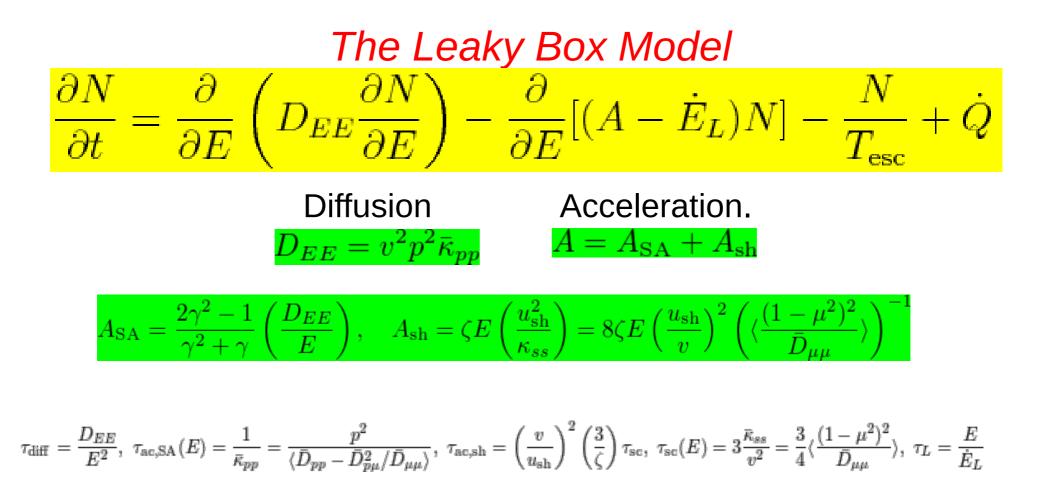


Energy Loss Terms: Protons and Electrons Warm Target

Coulomb collisions only

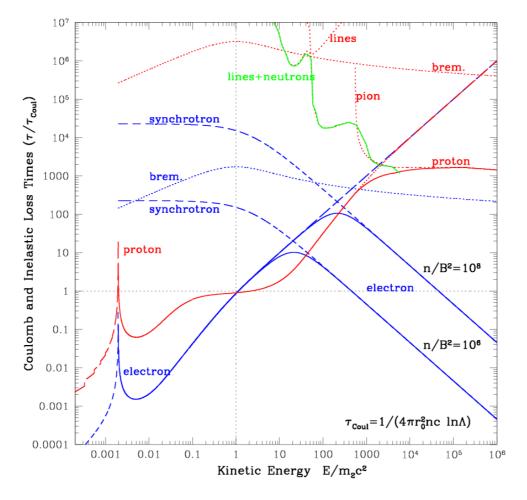


Acceleration Coefficients *Pitch angle averaged; Spatially integrated*

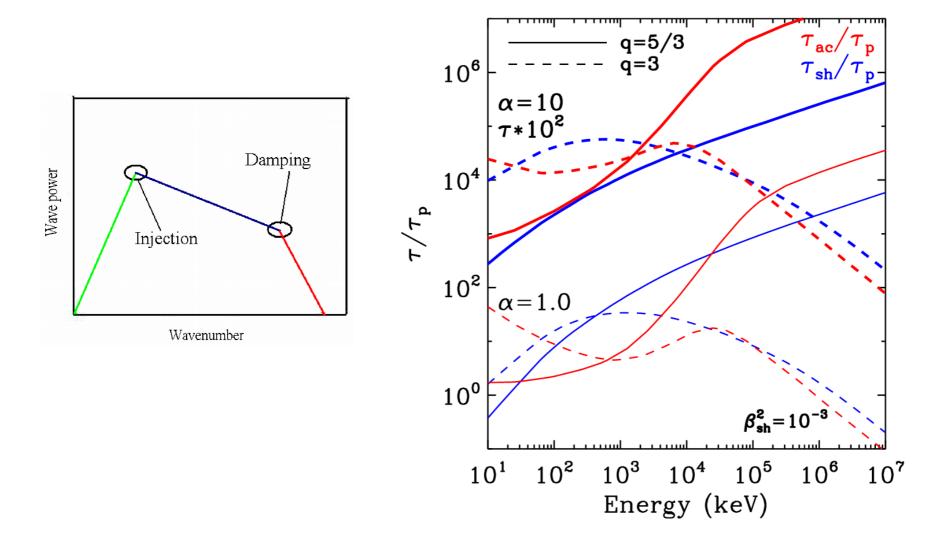


Energy Loss Terms: Protons and Electrons Warm Target

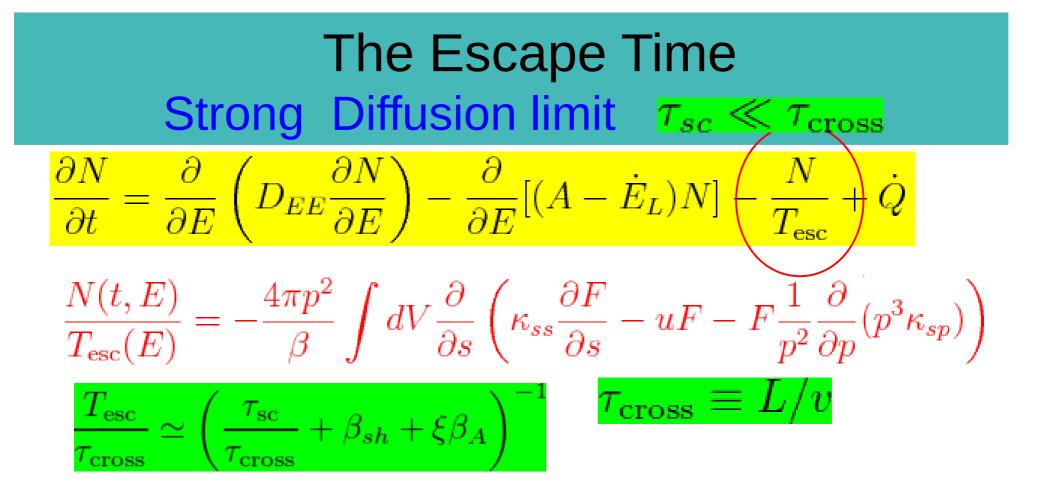
Coulomb, Bremsstrahlung and Synchrotron (IC)

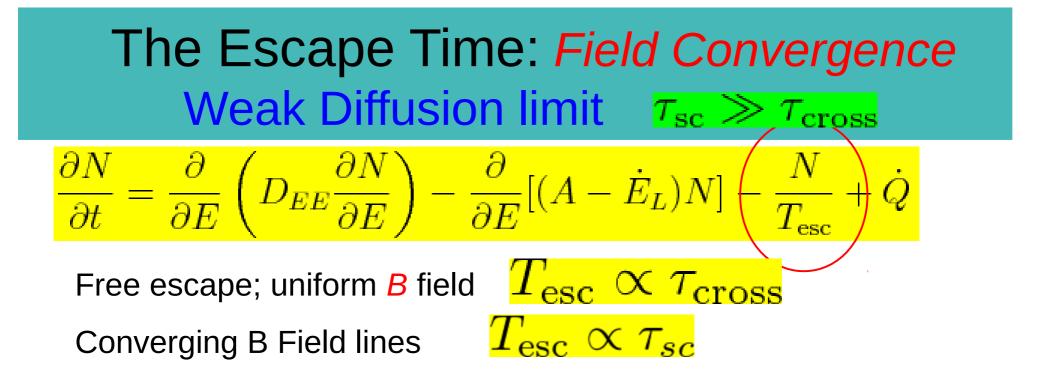


Shock and Stochastic Acceleration Times *Pryadko and Petrosian 1997*



Zakopane-1, 2019





The Escape Time *Combined equation*

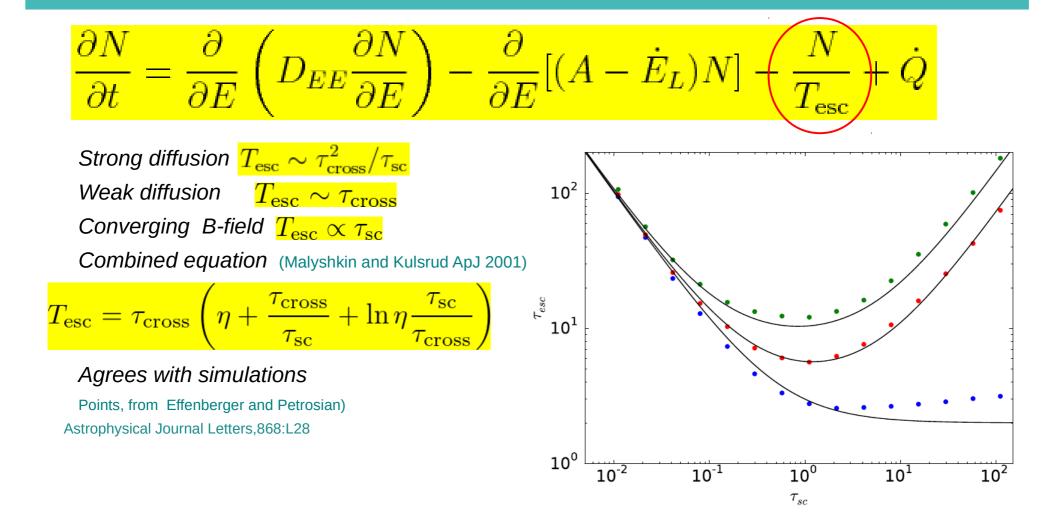
$$\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right) - \frac{\partial}{\partial E} \left[(A - \dot{E}_L) N \right] + \frac{\dot{N}}{T_{\text{esc}}} + \dot{Q}$$

Strong diffusion $T_{esc} \sim \tau_{cross}^2 / \tau_{sc}$ Weak diffusion $T_{esc} \sim \tau_{cross}$ Converging B-field $T_{esc} \propto \tau_{sc}$

Combined equation (Malyshkin and Kulsrud 2001)

$$T_{\rm esc} = \tau_{\rm cross} \left(\eta + \frac{\tau_{\rm cross}}{\tau_{\rm sc}} + \ln \eta \frac{\tau_{\rm sc}}{\tau_{\rm cross}} \right)$$

The Escape Times Numerical Simulations

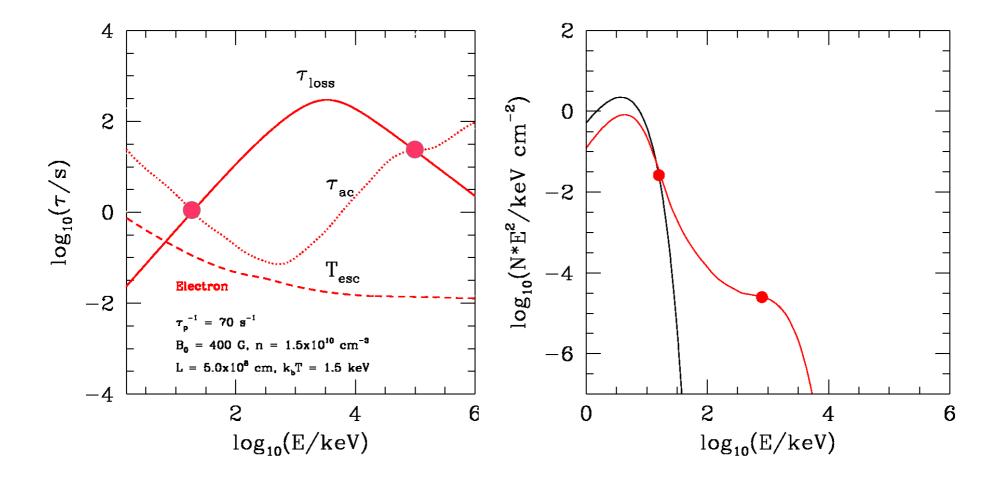


The Parameters and Solutions Characteristics of the plasma and turbulence

The required parameters of the Problem Density, Temperature, Magnetic Field (soft photons) Turbulence energy density, spectral index and kmax

Some Numerical Solutions Assumed turbulence spectrum

Including acceleration energy loss and escape



An important distinction

between Accelerated and Escaping Spectra

Particles in the acceleration site; N(E)

Particles in radiating or observing sites; $\dot{Q}(E) = N(E)/T_{esc}(E)$

A. Closed; no escape $T_{\rm esc} = \infty$, Q(E) = 0

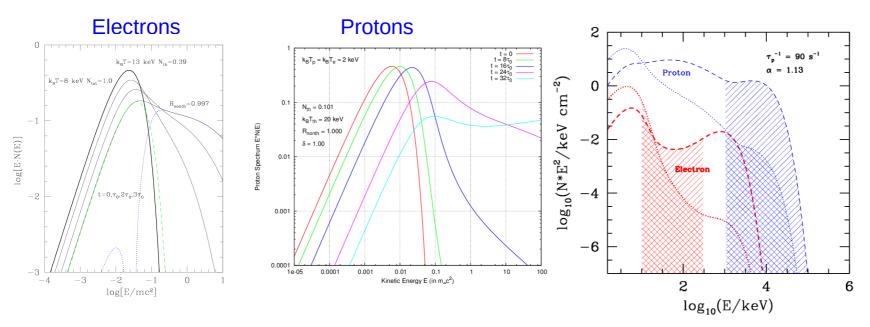
more heating than acceleration

VP, East, ApJ, 2008 ; VP, Kang, ApJ, 2015

B. Open with escape

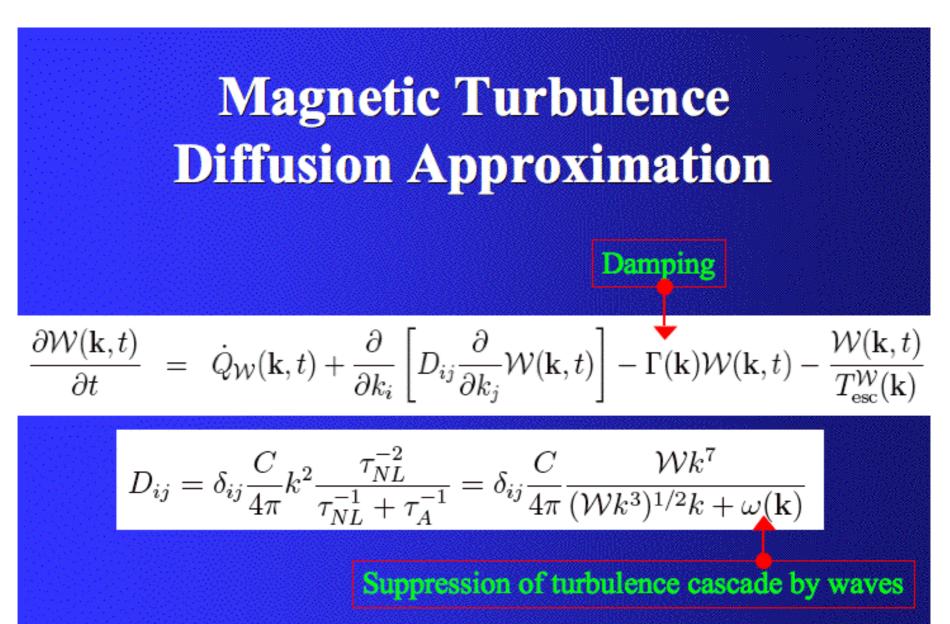
harder or softer escaping spectra

VP, Liu, ApJ, 2004



Zakopane-1, 2019

The Final unknown



Coupled turbulence and particle kinetic equation

Toward a Complete Treatment Stochastic Acceleration by Turbulence

$$\begin{array}{lll} \displaystyle \frac{\partial W}{\partial t} & = & \displaystyle \frac{\partial}{\partial k_i} \left[D_{ij} \frac{\partial}{\partial k_j} W \right] - \Gamma(\mathbf{k}) W - \frac{W}{T_{\mathrm{esc}}^W(\mathbf{k})} + \dot{Q}^W, \\ \displaystyle \frac{\partial N}{\partial t} & = & \displaystyle \frac{\partial}{\partial E} \left[D_{EE} \frac{\partial N}{\partial E} - (A - \dot{E}_L) N \right] - \frac{N}{T_{\mathrm{esc}}^p} + \dot{Q}^p. \end{array}$$

Jiang et al. 2008

SUMMERY-1

- Acceleration happens everywhere and all scales Turbulence is the main ingredient of acceleration For complete treatment of Acceleration and transport of high energy particles we need to include all particle-particle, particle-field, waveparticle and wave-wave interactions
- A critical role is played by the escape time
- A critical role is played by the escape time

Some Analytic solutions

D. SOME STEADY STATE SOLUTIONS

$$rac{\partial N}{\partial t} = rac{\partial^2}{\partial E^2} [D(E)N] - rac{\partial}{\partial E} \{ [A(E) - \dot{E}_L]N \} - rac{N}{T_{
m esc}} + \dot{Q}$$

Green's Functions: $\dot{Q} = Q_0 \delta(E - E_0)$

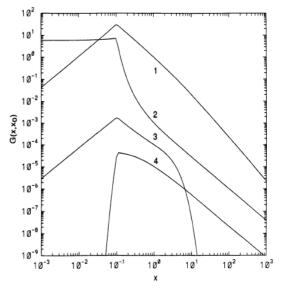
1. Constant Coefficients no Losses: $\dot{E}_L = 0$

(Direct acceleration. e.g. shock acceleration D = 0)

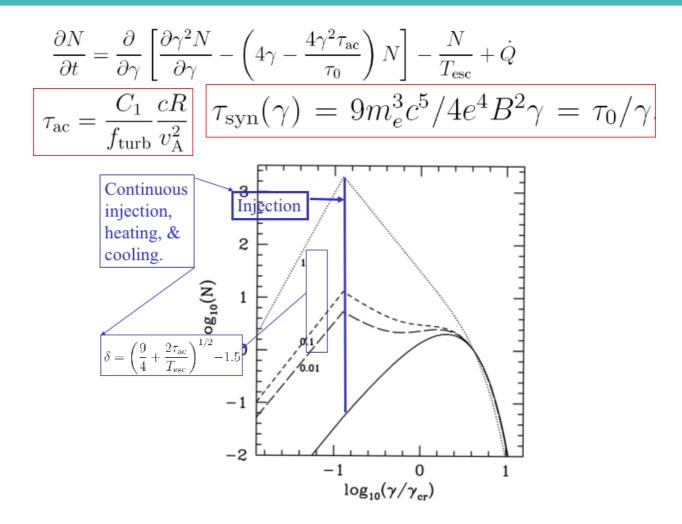
 $N(E) \propto Q_0 E^{-(1+E/AT_{
m esc})}$

- 2. Simple Coefficients no Losses: $D\propto E^q, A\propto E^{q-1}, T_{\rm esc}\propto E^s$
- 3. Effects of Energy Losses: $\dot{E}_L \propto E^r$



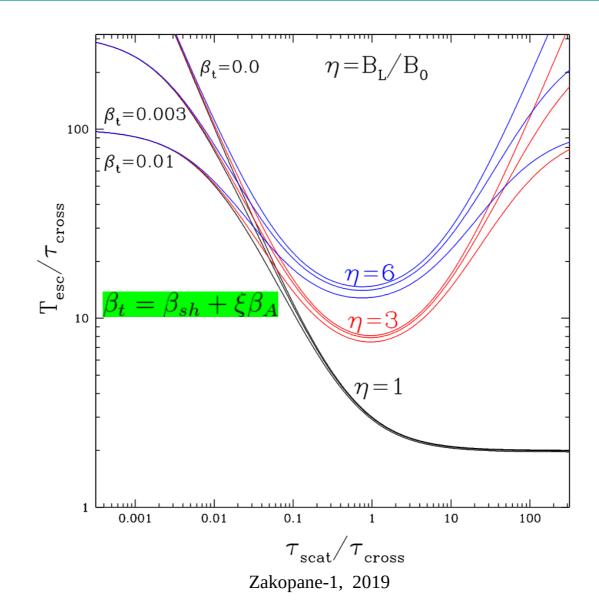


Another example: Rel. Acc. + Synch loss



Zakopane-1, 2019

The Escape Time



The Escape Times Numerical Simulations

$$\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right) - \frac{\partial}{\partial E} \left[(A - \dot{E}_L) N \right] + \frac{\dot{N}}{T_{esc}} + \dot{Q}$$

 $\begin{array}{l} \text{Strong diffusion } \overline{T_{\text{esc}}} \sim \tau_{\text{cross}}^2 / \tau_{\text{sc}} \\ \text{Weak diffusion } \overline{T_{\text{esc}}} \sim \tau_{\text{cross}} \\ \text{Converging B-field } \overline{T_{\text{esc}}} \propto \tau_{\text{sc}} \end{array}$

Combined equation (Malyshkin and Kulsrud ApJ 2001)

 $T_{\rm esc} = \tau_{\rm cross} \left(\eta + \frac{\tau_{\rm cross}}{\tau_{\rm sc}} + \ln \eta \frac{\tau_{\rm sc}}{\tau_{\rm cross}} \right)$

