General Relativity experiment with spin polarized particle beams

András László

laszlo.andras@wigner.mta.hu
Wigner Research Centre for Physics
of the Hungarian Academy of Sciences, Budapest

based on: CQG35(2018)175003 and arXiv1901.06217

59th Cracow School of Theoretical Physics, Zakopane, 17 June 2019

Introduction

- Magnetic dipole moment is an important quantity: sensitive to radiative corrections. For elementary particle obeying classical Dirac equation: $g := \frac{2 m \mu}{q s} = 2$. QFT: $g \approx 2$ but $g \neq 2$ due to radiative corrections, sensitive to model details. For composite particles: g grossly deviates from g, due to internal angular momenta.
- So, g-2 is a sensitive probe for SM / BSM physics (\Rightarrow g-2 experiment). E.g. for muons: $\frac{(g-2)}{2} \approx 0.0011659209...$ in 3σ tension with SM.

Electric Dipole Moment (EDM) is also sensitive to internal structure.
It measures amount of CP violation

$$F_{ab} *F^{ab}$$

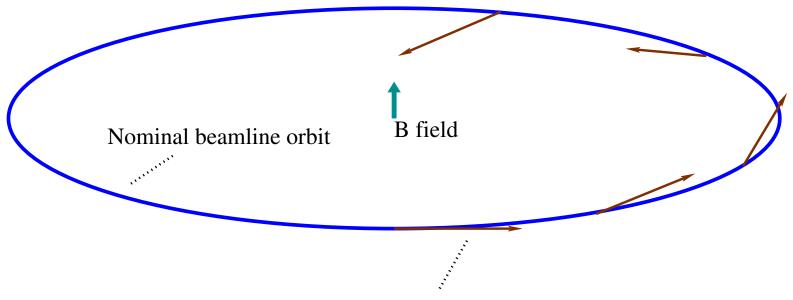
in the Lagrangian / effective Lagrangian.

■ SM gives negligible EDM, so good SM / BSM discriminator (\Rightarrow CPEDM collaboration).

Planned sensitivity: $10^{-29} \, \mathrm{e} \, \mathrm{cm}$, can see new physics up to $\approx \! \! 3000 \, \mathrm{TeV}$ mass.

How the magnetic moment anomaly $a:=rac{{ m g}-2}{2}$ is measured?

Principle of g-2 measuring storage rings: in vertical magnetic field, spin precesses in orbital plane at a rate $a\gamma\omega$

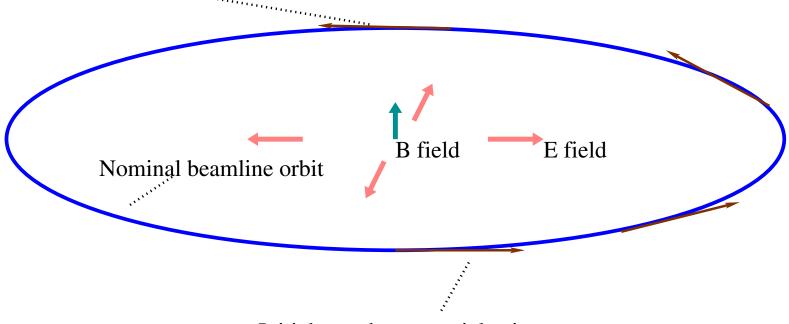


Initial, purely tangential spin vector

(ω : particle circular velocity, γ : Lorentz factor, and one has $\gamma \, \omega = B \, \frac{q}{m}$.)

How EDM is measured?

In a frozen spin ring, magnetic precession is compensated by an electric field: spin is always tangential to orbit



Initial, purely tangential spin vector

If EDM existed, it would slowly elevate spin out of the orbital plane under this condition.

General Relativistic motion of particle with spin in electromagnetic field:

 u^a denotes the four velocity of the particle at points of trajectory.

 w^a denotes the spin direction four vector at points of trajectory.

(For quantum mechanical reasons, always: $u_a w^a = 0$.)

Then the equation of motion is Newton + Thomas-Bargmann-Michel-Telegdi equation.

$$u^a \nabla_a u^b = -\frac{q}{m} F^{bc} u_c$$
 (\leftarrow Newton equation with Lorentz force),

$$\begin{split} D_u^F w^b &= -\frac{\mu}{s} \, \left(\, F^{bc} - u^b u_d \, \, F^{dc} - \, F^{bd} \, u_d u^c \right) \, w_c & (\leftarrow \, \, \mathsf{TBMT} \, \, \mathsf{equation}) \\ &+ \frac{d}{s} \, \left({}^\star \! F^{bc} - u^b u_d \, {}^\star \! F^{dc} - {}^\star \! F^{bd} \, u_d u^c \right) \, w_c. \end{split}$$

 $D_u^F w^b := u^a \nabla_a w^b + w^a u^b u^c \nabla_c u_a - w^a u_a u^c \nabla_c u^b$ is the Fermi-Walker derivative. (Conserves the constraint $u_a w^a = 0$. Free gyroscope equation would be $D_u^F w^b = 0$.)

Some historical terminology on the free gyroscope equation $D_u^F w^b = 0$:

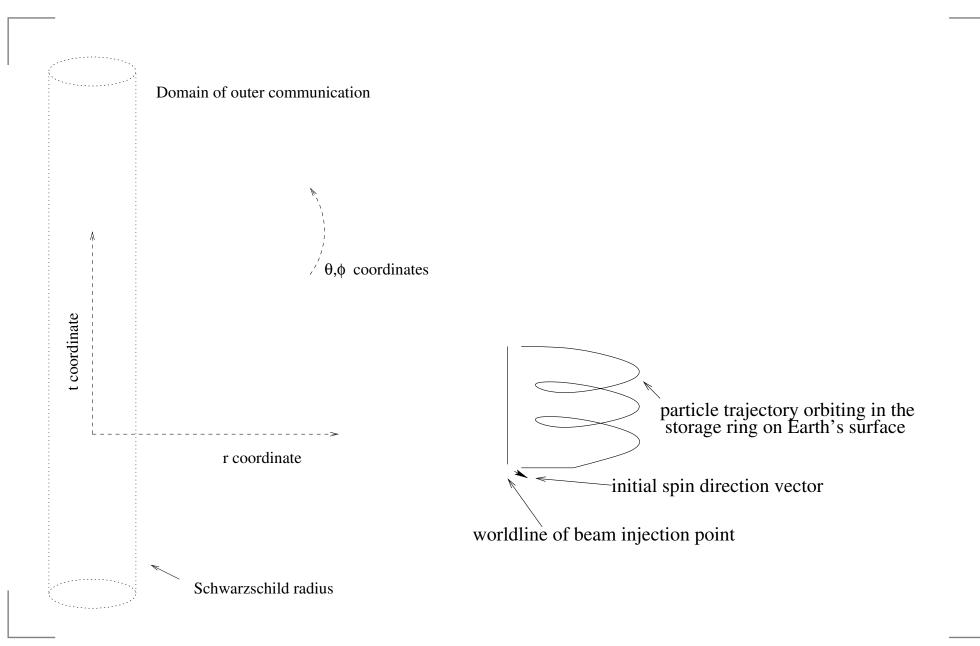
- **▶** For free, i.e. geodesic motion ($u^a \nabla_a u^b = 0$) in gravitational field:
 - In the field of nonrotating object (Schwarzschild): de Sitter precession.
 - In the field of rotating object (Kerr): Lense-Thirring precession. (See also: Gravity Probe B satellite experiment.)
- For forced orbit $(u^a \nabla_a u^b)$ = some force):
 - It is called the *Thomas* precession.
 (Already gives effect in special relativity, i.e. in absence of gravity.)

Our case:

$$\underbrace{D_u^F w^b}_{\text{causes Thomas precession}} = \underbrace{-\frac{\mu}{s} \left(F^{bc} - u^b u_d \ F^{dc} - F^{bd} \, u_d u^c \right) \, w_c}_{\text{causes Larmor precession in addition}}$$

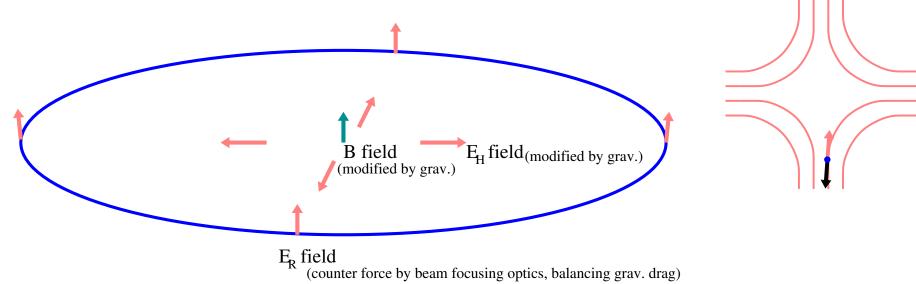
So we have: precession of kinematic origin (Thomas) + of electromagnetic origin (Larmor).

The kinematic configuration in GR setting



What does the GR modify?

- The spacetime metric, and thus the parallel transport ∇_a , Fermi-Walker derivative D^F . (Newton and TBMT equations of motion are modified.)
- The Maxwell equations $\nabla_a F^{ab} = 0$, $\nabla_a *F^{ab} = 0$. (The electromagnetic fields of the storage ring are modified.)



Notion of "vertical homogeneous magnetic field", "horizontal cylindrical electric field", and "Earth-radial electric field" makes sense and calculable over Schwarzschild.

These electomagnetic fields are necessary for modeling fields in idealized storage ring.

Results

A. László, Z. Zimborás: Class.Quant.Grav.35(2018)175003.

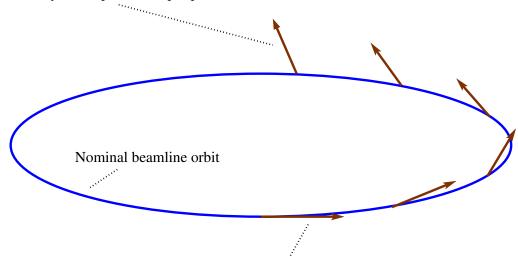
(R: Earth radius, r_S : Schwarzschild radius, L: storage ring radius, g: grav.accel.)

9 g-2: Systematic errors by GR is $\sim \frac{r_S}{R} \frac{L^2}{R^2} \approx 10^{-21}$, pretty much negligible. Qualitative reason: precession due to magnetic moment anomaly is relatively large effect, plus GR mainly modifies precession in the other direction.

EDM: In a "frozen spin" storage ring GR torques the spin vector out of the orbital plane, at a rate $-a\,\beta\gamma\,g/c$. This fake EDM signal is $\approx 10\times$ foreseen sensitivity.

(What about optimizing for specific GR experiment?)

Slowly built up vertical spin polarization due to GR



Optimalization, arXiv1901.06217

We need to optimize for large $|a|\beta\gamma|$. Grows unboundedly with γ , but becomes expensive.

Given $a:=\frac{g-2}{2}$ and $a\,\beta\gamma$, the Newton equation for circular motion and the "frozen spin" condition uniquely determines the B and E_H . (2 equations, for 2 variables.)

$$E_{H} L = -\operatorname{sign}(a) \frac{m c^{2}}{q} \frac{(a \beta \gamma)^{2} \sqrt{a^{2} + (a \beta \gamma)^{2}}}{a^{2} (1+a)},$$

$$B L = \frac{m c}{q} \frac{(a \beta \gamma)(a - (a \beta \gamma)^{2})}{a^{2} (1+a)}$$

Observe:

The necessary $|E_H|$ grows monotonically as $\sim |a \beta \gamma|^3$, for large $|a \beta \gamma|$. The necessary $|E_H|$ decreases as $\sim |a|^{-2}$, for large |a|.

Experimental limitation is in $|E_H|$: above $8 \,\mathrm{MV/m}$, essentially impossible.

Experimental idea: Use large |a| particle (nucleus), so that too large $|E_H|$ can be avoided.

Experimental / financial constraints:

ring radius L maximum $\sim \! 10 \, \mathrm{m}$, magnetic field |B| maximum $\sim \! 1 \, \mathrm{Tesla}$, electric field $|E_H|$ maximum $\sim \! 8 \, \mathrm{MV/m}$.

Let us aim for a GR signal strength $|a\,\beta\gamma|=0.4~$ (13.1 nrad/sec). Assume a surely realistic electric field $|E_H|=4.10\,\mathrm{MV/m}.$

Possible settings:

particle	$a \approx (\approx)$	L [m]	B [Tesla]	$p [\mathrm{MeV/c}]$	$\mathcal{E}_{\mathrm{kin}} \left[\mathrm{MeV} \right]$
triton	7.92	1.55	0.0335	141.9	3.58
helion3	-4.18	4.13	0.0353	268.5	12.8
proton	1.79	7.50	0.0304	209.7	23.1

Not realistic settings:

particle	$a \approx \infty$	L [m]	B [Tesla]	$p [\mathrm{GeV/c}]$	$\mathcal{E}_{\mathrm{kin}} \left[\mathrm{GeV} \right]$
deuteron	-0.142	1796	0.0243	5.283	3.731
electron	0.00116	5942	0.0136	0.1765	0.1760
muon	0.00116	1228520	0.0136	36.497	36.391

Observation: triton, helion3, or proton beam can be OK. For triton beams, it can be "tabletop" experiment!

Distinguishing GR signal from a true EDM signal: via opposite space reflection behavior (change direction of beam).

JEDI collaboration at COSY (Jülich): they included this GR measurement possiblity in their new proposal.

Open questions:

- spin polarized ion source (feasible),
- acceleration without depolarization (feasible),
- precision storage ring with large spin coherence time (feasible),
- polarimetry (feasible, carbon polarimetry),
- B field imperfections (is an issue, mainly the conicality $\frac{\langle B_H \rangle}{B}$).

B (magnetic field)

Proposal by R.Talman(JEDI) arXiv1812.05949:

compare 2 particle species to cancel first order (conical) B imperfection effects.

Summary

• GR gives substantial contribution to "frozen spin" EDM experiments, of magnitude $-a \beta \gamma \frac{g}{c}$.

A.László, Z.Zimborás: Class. Quant. Grav. 35 (2018) 175003

(Y.Orlov, E.Flanagan, Y.Semertzidis: *Phys.Lett.* **A376**(2012)2822 for purely electrostatic)

- Dedicated GR experiment via maximizing this contribution? The signal grows unboundedly with γ .
- Technical limiting factor is the necessary electric field. This can be decreased via using large |a| particle.
- With modest energy triton, helion3, or proton beams, seems to be OK.
- The JEDI collaboration extended its physics program with the possibility of detection of this GR signal.

Backup

GR corrections?!

For g-2:

In February 2018, a series of preprints appeared on arXiv, claiming that GR gives an unaccounted systematic error to g-2 experiment, resolving the 3 σ tension against SM. T. Morishima, T. Futamase, H. M. Shimizu:

arXiv:1801.10244, arXiv:1801.10245, arXiv:1801.10246.

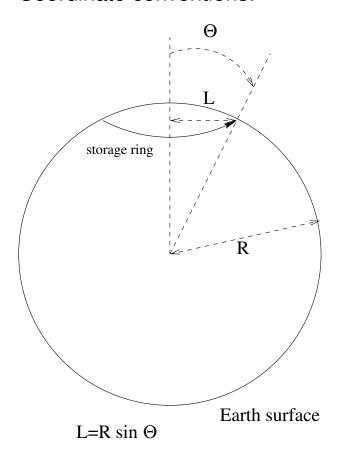
- Other authors responded: GR correction is much smaller than exp.sensitivity 10⁻⁷.
 M. Visser: arXiv:1802.00651, P. Guzowski: arXiv:1802.01120.
- Further authors: the effect is exactly zero.
 H. Nikolic: arXiv:1802.04025.
- Which is true? From first principles it is difficult to judge.

For EDM:

- Earlier papers already warned about possibility for a GR systematics on precession! PRD71(2005)064016, PRD76(2007)061101, NPB911(2016)206, PRD94(2016)044019... Perturbative calculations with approximations. Qualitatively OK.
- Explicitely first calculated for electric-only frozen spin ring in PLA376(2012)2822.
 Perturbative. Quantitatively OK!! But not done for mixed ring.
- One thing for sure from first principles: only Earth can contribute (equivalence principle).

Coordinate conventions:

Schwarzschild metric:



$$g_{\mathsf{ab}}(t,r,artheta,arphi) = \left(egin{array}{cccc} 1 - rac{r_S}{r} & 0 & 0 & 0 \\ 0 & -rac{1}{1 - rac{r_S}{r}} & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -r^2 \sin^2 artheta \end{array}
ight)$$

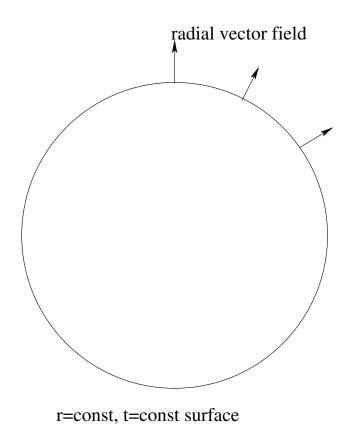
Schwarzschild metric is time translation (t) and rotationally (ϑ, φ) invariant.

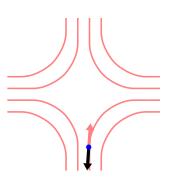
Earth surface at: r = R = const.

The storage ring: r = R = const, $\vartheta = \Theta = const$.

Time: in terms of proper time along curves (along laboratory and particle trajectory).

Earth-radial electrostatic field effectively exerted by beam focusing optics:

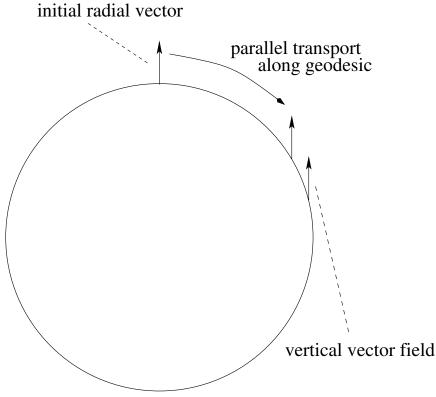




$$E_R^{\mathsf{a}}(t, r, \vartheta, \varphi) = E_R \, rac{R^2}{r^2} \left(egin{array}{c} 0 \\ \sqrt{1 - rac{r_S}{r}} \\ 0 \\ 0 \end{array}
ight)$$

Holds the beam against falling. (Field of charged spherical shell around graviting center.)

Vertical magnetic field (field inside infinite solenoid):

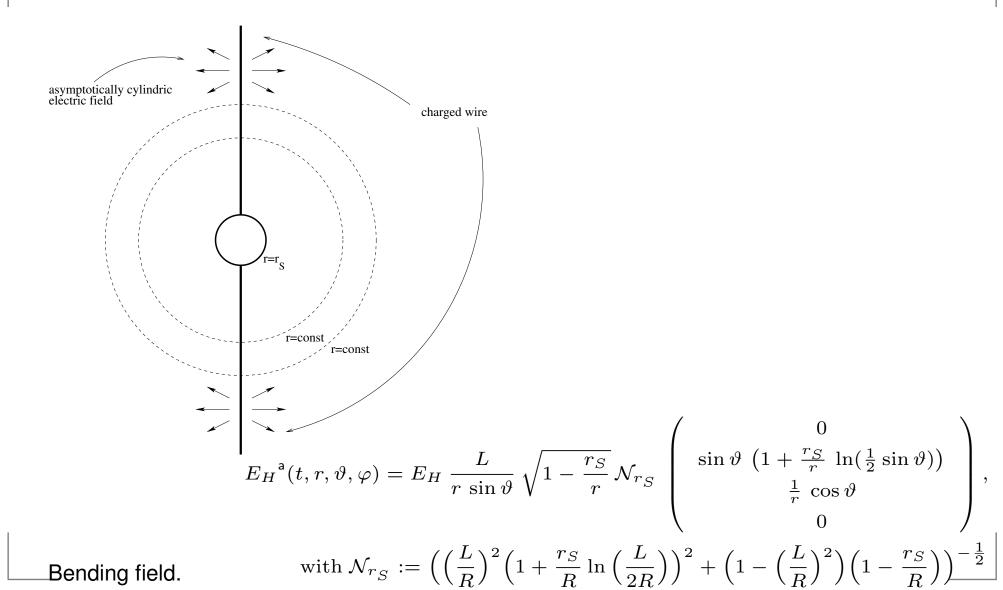


r=const, t=const surface

$$B^{\mathsf{a}}(t, r, \vartheta, \varphi) = B \sqrt{\frac{1 - \frac{r_S}{r}}{1 - \frac{r_S}{R} \left(\frac{L}{R}\right)^2}} \begin{pmatrix} 0 \\ \cos \vartheta \\ -\frac{1}{r} \sin \vartheta \\ 0 \end{pmatrix}$$

Bending field.

Horizontal electrostatic field (field of infinite uniformly charged suspended wire):



General Relativity experiment with spin polarized particle beams – p. 19/28

Some philosophy...

To what extent it is gravitational modification of kinematics vs Larmor precession?

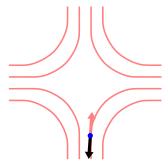
$$D_u^F w^b = -g \frac{q}{2\,m} \left(F^{bc} - u^b u_d \ F^{dc} - F^{bd} u_d u^c \right) w_c \qquad (\leftarrow \text{TBMT equations})$$
 from kinematics of electrodynamic origin (Larmor)

$$(F_{ab} = \underbrace{F_{ab}^{B}}_{ab} + \underbrace{F_{ab}^{E_{H}}}_{ab} + \underbrace{F_{ab}^{E_{R}}}_{ab})$$
magnetic bending electric bending just compensating "weight" of beam

Part of the contribution is coming merely from "weight":

$$-\frac{\mu}{s} \left(F_{bc}^{E_R} - u_b u^d F_{dc}^{E_R} - F_{bd}^{E_R} u^d u_c \right) \qquad (\leftarrow \text{ Larmor precession by } E_R)$$

 E_R merely compensates the gravitational drag of Earth:



Kind of "classical" effect. What is the contribution of Larmor precession by E_R ? Answer:

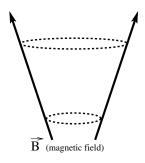
full GR prediction :
$$E_R$$
 contribution = $a: (1+a)$

Also:

full GR prediction : semi-classical prediction = a:(1+a)

Conicality imperfection more quantitatively, A.László:arXiv1901.06217

$$-\frac{q(1+a)}{m}\frac{1}{\gamma^2}B_H + -a\beta\gamma \frac{g/c}{GR \text{ term}}$$
magnetic field conicality imperfection term



Proposal by R.Talman(JEDI) arXiv1812.05949: compare 2 type of particle species to cancel first order (conical) B imperfection effects.

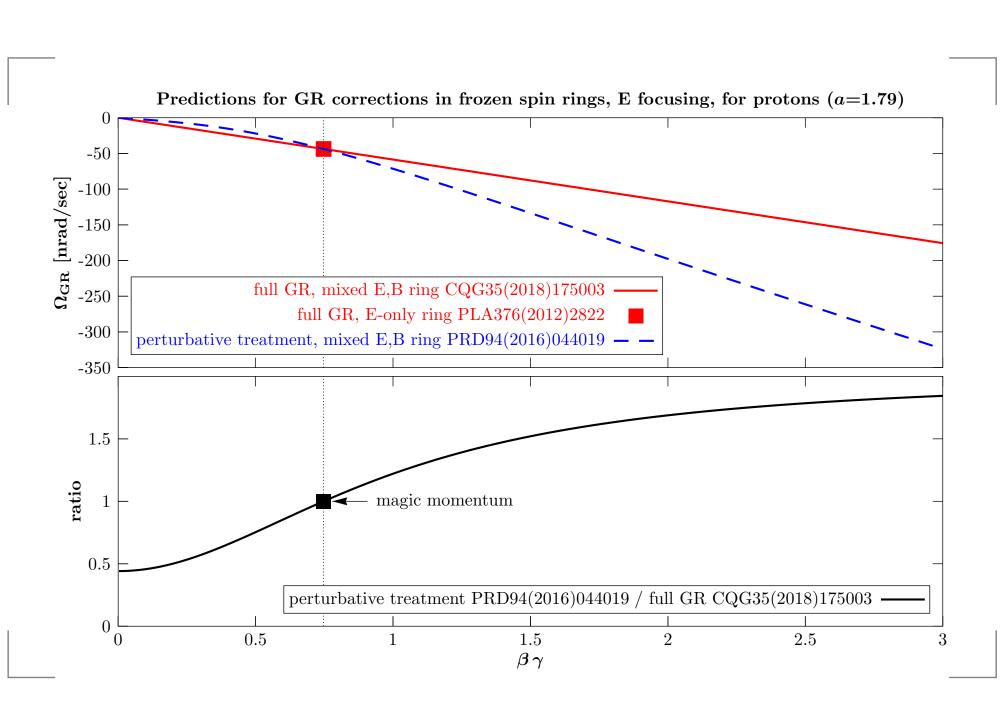
Comparison of predictions for frozen spin rings...

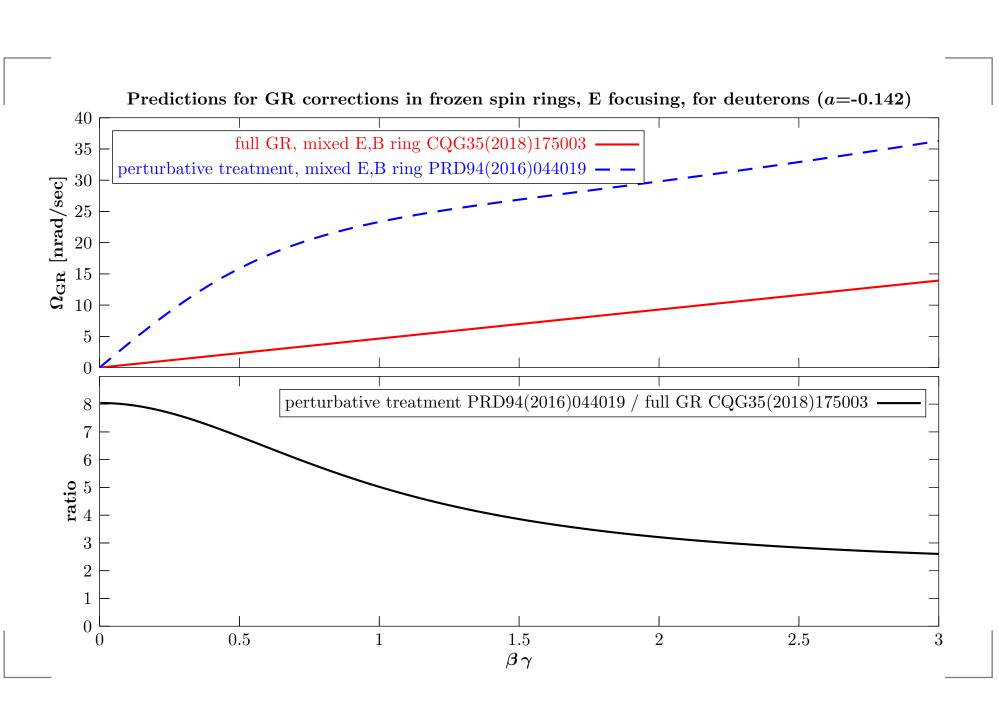
full GR treatment:

- Y.Orlov,E.Flanagan,Y.Semertzidis:Phys.Lett.A376(2012)2822. Via linearized GR, for electrostatic-only ring, with electrostatic vertical focusing. Only possible for a>0 and at magic momentum $βγ=\frac{1}{\sqrt{a}}$. Prediction: $Ω_{\rm GR}=-\sqrt{a}\,\frac{g}{c}$.
- A.László,Z.Zimborás:Class.Quant.Grav.35(2018)175003. Via full GR, for mixed magnetic electric ring, with electrostatic vertical focusing. Allows any $\beta\gamma$. Prediction: $\Omega_{\rm GR} = -a\,\beta\gamma\,\frac{g}{c}$. Meant as a baseline prediction. Any approximative treatment must reproduce it! (E.g. weak field approximation, which should be enough, can be cross-checked with it.)

perturbative treatment of gravitational modifications:

PRD71(2005)064016, PRD76(2007)061101, NPB911(2016)206, culminating in Y.N.Obukhov,A.J.Silenko,O.V.Terayaev:Phys.Rev.**D94**(2016)044019. Perturbative, for mixed magnetic - electric ring, with electric or magnetic focusing. Prediction for electric vertical focusing (for situation as above): $Ω_{\rm GR} = \frac{1-a~(2γ^2-1)}{γ} β \frac{g}{c}$. Differs from fully covariant GR prediction. (Agrees at magic momentum.) Possibly we want good spin dynamics for all βγ?





Further sanity checks: gravitational counter force ("weight" of beam).

In full GR treatment, CQG35(2018)175003:

$$q E_R = m \gamma g$$

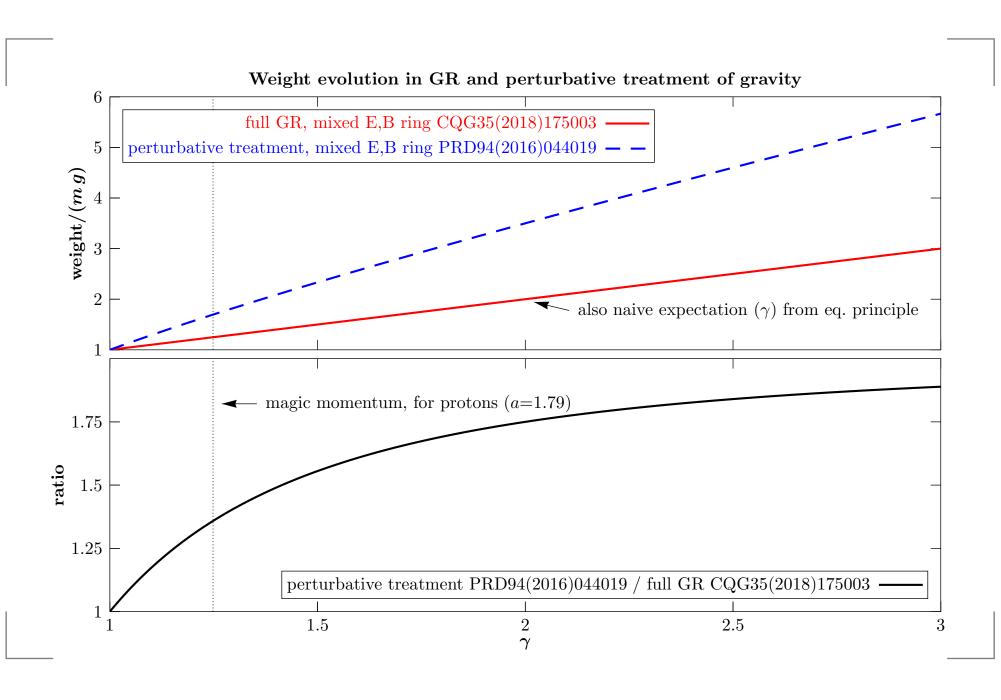
is the electrostatic force to keep the balance.

(== naive expectation from equivalence principle)

In perturbative treatment, PRD94(2016)044019:

$$q E_R = m \frac{2\gamma^2 - 1}{\gamma} g$$

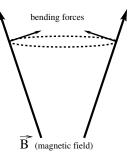
is the electrostatic force to keep the balance. (substantially heavier beam than expected, doesn't it violate equivalence principle?)



Found the reason:

in perturbative paper PRD94(2016)044019, accidentally Earth-radial direction was taken as

 \approx vertical direction.



This invokes an unintended permanent conical imperfection $\frac{B_H}{B} = \tan(\Theta) \sqrt{1 - \frac{r_S}{R}}$.

Under this constraint, using our conical imperfection + GR formula we can reproduce PRD94(2016)044019:

$$q \, E_R = \underbrace{-mc^2 \, \frac{\gamma^2 - 1}{\gamma} \, \frac{1}{R}}_{\text{from Earth-radial conicality}} + \underbrace{mc^2 \, \frac{2\gamma^2 - 1}{\gamma} \, \frac{r_S}{2R^2}}_{\text{first order GR correction, PRD94(2016)044019}} + O(r_S^2),$$

Precession rate =
$$\underbrace{\frac{c}{R}\beta\frac{a\beta^2\gamma^2 - 1}{\gamma}}_{}$$
 + $\underbrace{\frac{1 - a(2\gamma^2 - 1)}{\gamma}\beta c\frac{r_S}{2R^2}}_{}$ + $O(r_S^2)$.

from Earth-radial conicality first order GR correction, PRD94(2016)044019