▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Particle acceleration in Poynting-flux dominated outflows

John Kirk

Max-Planck-Institut für Kernphysik

59th Cracow School of Theoretical Physics, Zakopane, 20th/21st June 2019

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Relativistic bulk motion

Object	Evidence	Lorentz factor	Radiation mechanism
Radio Galaxies	direct	10	synchrotron
Micro-Quasars	direct	3	synchrotron
γ -ray Bursts	indirect	250	synchrotron/IC
γ -ray Blazars	indirect	50	synchrotron/IC
Pulsar Winds	theory	10 ⁵	synchrotron

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Relativistic bulk motion

Object	Evidence	Lorentz factor	Radiation mechanism
Radio Galaxies Micro-Quasars γ -ray Bursts γ -ray Blazars Pulsar Winds	direct direct indirect indirect theory	10 3 250 50 10 ⁵	synchrotron synchrotron/IC synchrotron/IC synchrotron/IC

In all cases γ (particle) \gg Γ (bulk) \Rightarrow Particle Acceleration

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Relativistic bulk motion

Obje	ect	Evidence	Lorentz factor	Radiation mechanism
Rad Micr γ -ra γ -ra Puls	io Galaxies o-Quasars y Bursts y Blazars ar Winds	direct direct indirect indirect theory	10 3 250 50 10 ⁵	synchrotron synchrotron synchrotron/IC synchrotron/IC synchrotron
In al		v(partic	$\Gamma(h) \gg \Gamma(h)$	ulk)

In all cases

Hillas' (1984) limit:

 γ (particle) \gg Γ (bulk) \Rightarrow *Particle Acceleration* Energy < (v/c) Ze $\bar{r} \bar{B}$

Relativistic bulk motion

Object	Evidence	Lorentz factor	Radiation mechanism
Radio Galaxies	direct	10	synchrotron
Micro-Quasars	direct	3	synchrotron
γ -ray Bursts	indirect	250	synchrotron/IC
γ -ray Blazars	indirect	50	synchrotron/IC
Pulsar Winds	theory	10 ⁵	synchrotron

In all cases

Hillas' (1984) limit: Highest energy: γ (particle) \gg Γ (bulk) \Rightarrow *Particle Acceleration* Energy < (v/c) *Ze* \bar{r} \bar{B} relativistic flows with maximal *B* \Rightarrow Low density, *Poynting-flux dominated*

Pulsar Wind Nebulae

> 2000 pulsars, ~ 50 with observed nebulae
 Crucial advance:
 high resolution images

PSR 1509 Chandra, false colour

Pulsar Wind Nebulae

> 2000 pulsars, ~ 50 with observed nebulae
 Crucial advance:
 high resolution images

PSR 1509 H.E.S.S., TeV gamma-rays White contours: ROSAT (0.6–2.1 keV)

 \sim 40 PWN are TeV gamma-ray sources (H.E.S.S. A&A '18)

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Pulsar Wind Nebulae

> 2000 pulsars, ~ 50 with observed nebulae
 Crucial advance:
 high resolution images

Crab optical: red (Hubble ST) X-ray: blue (Chandra)

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

(Image: NASA/CXC//SAO)

Outline

- Acceleration in vacuum waves
- Low density "force-free" approximation for steady flows the unipolar inductor
- Mix waves and low density flows striped winds and reconnection
- Lower the density still further inductive acceleration

• Optional extras:

- application to γ-ray flares from the Crab
- the importance of proton loading

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Historical context — The Crab Nebula

Shklovsky '54: Diffuse optical emission is synchrotron radiation.

Historical context — The Crab Nebula

- Shklovsky '54: Diffuse optical emission is synchrotron radiation.
- Piddington '57: Magnetic field originates in the central star.

Historical context — The Crab Nebula

- Shklovsky '54: Diffuse optical emission is synchrotron radiation.
- Piddington '57: Magnetic field originates in the central star.
- Pacini '67: Nebula powered by magnetic dipole radiation (vacuum wave) of a rotating neutron star.

Historical context — The Crab Nebula

- Shklovsky '54: Diffuse optical emission is synchrotron radiation.
- Piddington '57: Magnetic field originates in the central star.
- Pacini '67: Nebula powered by magnetic dipole radiation (vacuum wave) of a rotating neutron star.
- Staelin & Reifenstein '68: Discovery of the Crab Pulsar.

- Circular polarization
- *E* and *B* rotate at angular speed ω , with constant magnitudes and $\vec{E} \perp \vec{B}$.
- If particle moves in a circle, with v always parallel to B:

$$\frac{d\vec{p}}{dt} = q\vec{E}$$

$$\Rightarrow |q| E/p = \omega$$

$$\Rightarrow \gamma = \sqrt{1 + a^2}$$

・ロット (雪) () () () ()

э

- Circular polarization
- *E* and *B* rotate at angular speed ω , with constant magnitudes and $\vec{E} \perp \vec{B}$.
- If particle moves in a circle, with v always parallel to B:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = q\vec{E}$$
$$\Rightarrow |q| E/p = \omega$$
$$\Rightarrow \gamma = \sqrt{1 + a^2}$$

Strength parameter = $|q| E/Mc\omega$

・ロト ・ 四ト ・ ヨト ・ ヨト

э

- Circular polarization
- *E* and *B* rotate at angular speed ω , with constant magnitudes and $\vec{E} \perp \vec{B}$.
- If particle moves in a circle, with v always parallel to B:

$$\frac{d\vec{p}}{dt} = q\vec{E}$$

$$\Rightarrow |q| E/p = \omega$$

$$\Rightarrow \gamma = \sqrt{1 + a^2}$$

Strength parameter = $|q| E/Mc\omega$

・ロト ・四ト ・ヨト・

Radius = $c/\omega = \lambda/2\pi$

- Linear polarization
- Start at rest, v ∧ B force drags particle with wave

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

- Linear polarization
- Start at rest, v ∧ B force drags particle with wave
- Recoil into zero momentum frame moving with Γ ≈ a, so ω' ≈ ω/a

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

- Linear polarization
- Start at rest, v ∧ B force drags particle with wave
- Recoil into zero momentum frame moving with Γ ≈ a, so ω' ≈ ω/a
- In this frame, particle moves in "figure-of-eight", Lorentz factor γ' ~ a

- Linear polarization
- Start at rest, v ∧ B force drags particle with wave
- Recoil into zero momentum frame moving with Γ ≈ a, so ω' ≈ ω/a
- In this frame, particle moves in "figure-of-eight", Lorentz factor γ' ~ a
- Size of orbit $\Delta X \approx 2\pi c/\omega' \approx a 2\pi c/\omega$ $\Delta Z = a^2 2\pi c/\omega$

- Linear polarization
- Start at rest, v ∧ B force drags particle with wave
- Recoil into zero momentum frame moving with Γ ≈ a, so ω' ≈ ω/a
- In this frame, particle moves in "figure-of-eight", Lorentz factor γ' ~ a
- Size of orbit $\Delta X \approx 2\pi c/\omega' \approx a2\pi c/\omega$ $\Delta Z = a^2 2\pi c/\omega$
- Maximum Lorentz factor $\gamma \approx \Gamma \gamma' \approx a^2$

・ロト・日本・日本・日本・日本

Spherical wave

- In wave zone, $E, B \propto 1/r$, i.e., $a \propto 1/r$.
- Define a fiducial strength parameter a_L (L stands for "light cylinder") at the start of the wave zone

$$a = a_{\rm L}r_{\rm L}/r = a_{\rm L}c/r\omega$$

(Hillas' extended limit is $\gamma < a_L$)

Spherical wave

- In wave zone, $E, B \propto 1/r$, i.e., $a \propto 1/r$.
- Define a fiducial strength parameter *a*_L (L stands for "light cylinder") at the start of the wave zone

$$a = a_{\rm L}r_{\rm L}/r = a_{\rm L}c/r\omega$$

(Hillas' extended limit is $\gamma < a_L$)

• Release particle at rest at $r = r_L$, orbit size $\Delta z = a^2 r_L \gg r_L$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Spherical wave

- In wave zone, $E, B \propto 1/r$, i.e., $a \propto 1/r$.
- Define a fiducial strength parameter *a*_L (L stands for "light cylinder") at the start of the wave zone

$$a = a_{\rm L}r_{\rm L}/r = a_{\rm L}c/r\omega$$

(Hillas' extended limit is $\gamma < a_L$)

- Release particle at rest at $r = r_L$, orbit size $\Delta z = a^2 r_L \gg r_L$.
- Plane wave approximation requires $\Delta z \leq r$,

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Spherical wave

- In wave zone, $E, B \propto 1/r$, i.e., $a \propto 1/r$.
- Define a fiducial strength parameter a_L (L stands for "light cylinder") at the start of the wave zone

$$a = a_{\rm L}r_{\rm L}/r = a_{\rm L}c/r\omega$$

(Hillas' extended limit is $\gamma < a_L$)

- Release particle at rest at $r = r_L$, orbit size $\Delta z = a^2 r_L \gg r_L$.
- Plane wave approximation requires $\Delta z \leq r$,
- which implies $r \gtrsim r_{\text{plane}} = a_{\text{L}}^{2/3} r_{\text{L}}$, where $a \approx a_{\text{plane}} = a_{\text{L}}^{1/3}$.

Spherical wave

- In wave zone, $E, B \propto 1/r$, i.e., $a \propto 1/r$.
- Define a fiducial strength parameter a_L (L stands for "light cylinder") at the start of the wave zone

$$a = a_{\rm L}r_{\rm L}/r = a_{\rm L}c/r\omega$$

(Hillas' extended limit is $\gamma < a_L$)

- Release particle at rest at $r = r_L$, orbit size $\Delta z = a^2 r_L \gg r_L$.
- Plane wave approximation requires $\Delta z \leq r$,
- which implies $r \gtrsim r_{\text{plane}} = a_{\text{L}}^{2/3} r_{\text{L}}$, where $a \approx a_{\text{plane}} = a_{\text{L}}^{1/3}$.
- Therefore, maximum Lorentz factor is $\gamma_{max} \approx a_{plane}^2 = a_L^{2/3}$, significantly smaller than a_L (Gun & Ostriker 1969)

・ロト・日本・日本・日本・日本・日本

Spherical wave

- In wave zone, $E, B \propto 1/r$, i.e., $a \propto 1/r$.
- Define a fiducial strength parameter *a*_L (L stands for "light cylinder") at the start of the wave zone

$$a = a_{\rm L}r_{\rm L}/r = a_{\rm L}c/r\omega$$

(Hillas' extended limit is $\gamma < a_L$)

- Release particle at rest at $r = r_L$, orbit size $\Delta z = a^2 r_L \gg r_L$.
- Plane wave approximation requires $\Delta z \leq r$,
- which implies $r \gtrsim r_{\text{plane}} = a_{\text{L}}^{2/3} r_{\text{L}}$, where $a \approx a_{\text{plane}} = a_{\text{L}}^{1/3}$.
- Therefore, maximum Lorentz factor is $\gamma_{max} \approx a_{plane}^2 = a_L^{2/3}$, significantly smaller than a_L (Gun & Ostriker 1969)

Note:
$$a_{\text{Le}} = \left[4\pi \left(\frac{dL}{d\Omega} \right) \frac{e^2}{m^2 c^5} \right]^{1/2} = 3.4 \times 10^{10} \left(\frac{4\pi L_{38}}{\Omega} \right)^{1/2}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Vacuum waves — summary

- Hillas' limit not reached.
- Energy depends sensitively on launch phase.
- Negligible DC component of magnetic flux ($\propto 1/r^3$)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

MHD outflows

Equations of motion:

$$\partial_{\mu} \left(T^{\mu \nu}_{\rm EM} \right) = f^{\nu} = -\partial_{\mu} \left(T^{\mu \nu}_{\rm particles} \right)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

MHD outflows

Equations of motion:

$$\partial_{\mu} \left(T^{\mu\nu}_{\rm EM} \right) = f^{\nu} = -\partial_{\mu} \left(T^{\mu\nu}_{\rm particles} \right)$$

• Force-free approximation: add some charge/current carriers, but neglect exchange of energy/momentum with EM fields, by setting $f^{\mu} = 0$:

$$\rho \vec{E} + \vec{j} \wedge \vec{B} = 0$$

MHD outflows

Equations of motion:

$$\partial_{\mu} \left(T^{\mu\nu}_{\rm EM} \right) = f^{\nu} = -\partial_{\mu} \left(T^{\mu\nu}_{\rm particles} \right)$$

• Force-free approximation: add some charge/current carriers, but neglect exchange of energy/momentum with EM fields, by setting $f^{\mu} = 0$:

$$\rho \vec{E} + \vec{j} \wedge \vec{B} = 0$$

• Eliminate ρ and \vec{j} from Maxwell's equations and solve for fields

MHD outflows

Equations of motion:

$$\partial_{\mu} \left(T^{\mu\nu}_{\rm EM} \right) = f^{\nu} = -\partial_{\mu} \left(T^{\mu\nu}_{\rm particles} \right)$$

• Force-free approximation: add some charge/current carriers, but neglect exchange of energy/momentum with EM fields, by setting $f^{\mu} = 0$:

$$\rho \vec{E} + \vec{j} \wedge \vec{B} = 0$$

- Eliminate ρ and \vec{j} from Maxwell's equations and solve for fields
- Numerical solutions not guaranteed to have $\vec{E} \cdot \vec{B} = 0$

MHD outflows

Equations of motion:

$$\partial_{\mu} \left(T^{\mu\nu}_{\rm EM} \right) = f^{\nu} = -\partial_{\mu} \left(T^{\mu\nu}_{\rm particles} \right)$$

• Force-free approximation: add some charge/current carriers, but neglect exchange of energy/momentum with EM fields, by setting $f^{\mu} = 0$:

$$\rho \vec{E} + \vec{j} \wedge \vec{B} = 0$$

- Eliminate ρ and \vec{j} from Maxwell's equations and solve for fields
- Numerical solutions not guaranteed to have $\vec{E} \cdot \vec{B} = 0$
- Solutions can imply unphysical charge carriers

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Axisymmetric, rotating monopole

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - - のへぐ

Axisymmetric, rotating monopole

• Exact, force-free solution is available! Michel 1973, ApJ

Axisymmetric, rotating monopole

- Exact, force-free solution is available! Michel 1973, ApJ
- Properties:

Spiral field lines, angle ξ between \vec{r} and \vec{B} is

$$\xi = \arctan(r\sin\theta/r_{\rm L})$$
Axisymmetric, rotating monopole

- Exact, force-free solution is available! Michel 1973, ApJ
- Properties:

Spiral field lines, angle ξ between \vec{r} and \vec{B} is

 $\xi = \arctan(r\sin\theta/r_{\rm L})$

•
$$E_r = E_\phi = B_\theta = 0$$
, and $E_\theta = B_\phi$

Axisymmetric, rotating monopole

- Exact, force-free solution is available! Michel 1973, ApJ
- Properties:

Spiral field lines, angle ξ between \vec{r} and \vec{B} is

 $\xi = \arctan(r\sin\theta/r_{\rm L})$

•
$$E_r = E_{\phi} = B_{\theta} = 0$$
, and $E_{\theta} = B_{\phi}$
• $\Rightarrow \gamma > \gamma_{\text{drift}} = \sqrt{1 + r^2 \sin^2 \theta / r_L}$

Axisymmetric, rotating monopole

- Exact, force-free solution is available! Michel 1973, ApJ
- Properties:

Spiral field lines, angle ξ between \vec{r} and \vec{B} is

 $\xi = \arctan(r\sin\theta/r_{\rm L})$

•
$$E_r = E_{\phi} = B_{\theta} = 0$$
, and $E_{\theta} = B_{\phi}$

•
$$\Rightarrow \gamma > \gamma_{\rm drift} = \sqrt{1 + r^2 \sin^2 \theta / r_{\rm L}}$$

• Inertia becomes important when $\gamma_{\text{drift}} < \gamma_{\text{sound}} = \sqrt{\sigma}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Axisymmetric, rotating monopole

- Exact, force-free solution is available! Michel 1973, ApJ
- Properties:

Spiral field lines, angle ξ between \vec{r} and \vec{B} is

 $\xi = \arctan(r\sin\theta/r_{\rm L})$

•
$$E_r = E_{\phi} = B_{\theta} = 0$$
, and $E_{\theta} = B_{\phi}$

•
$$\Rightarrow \gamma > \gamma_{\rm drift} = \sqrt{1 + r^2} \sin^2 \theta / r_{\rm L}$$

• Inertia becomes important when $\gamma_{\text{drift}} < \gamma_{\text{sound}} = \sqrt{\sigma}$

 $\sigma =$ (Poynting flux) / (Particle energy flux — including rest-mass)

Axisymmetric, rotating monopole

- Exact, force-free solution is available! Michel 1973, ApJ
- Properties:

Spiral field lines, angle ξ between \vec{r} and \vec{B} is

 $\xi = \arctan(r\sin\theta/r_{\rm L})$

•
$$E_r = E_\phi = B_ heta = 0$$
, and $E_ heta = B_\phi$

•
$$\Rightarrow \gamma > \gamma_{\text{drift}} = \sqrt{1 + r^2 \sin^2 \theta / r_{\text{L}}}$$

• Inertia becomes important when $\gamma_{\text{drift}} < \gamma_{\text{sound}} = \sqrt{\sigma}$

 $\sigma =$ (Poynting flux) / (Particle energy flux — including rest-mass) Supersonic, radial MHD flows have $\gamma =$ constant.

The unipolar inductor

Newly born magnetars/young pulsars as sources of UHECR?

Bell 1992, Blasi et al 2000, Arons 2003

The unipolar inductor

Newly born magnetars/young pulsars as sources of UHECR?

Bell 1992, Blasi et al 2000, Arons 2003

Time-independent field with E_θ = B_φ ∝ 1/r ⇒ electrostatic potential

$$\Phi = B_{r,L}r_L\cos\theta$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The unipolar inductor

Newly born magnetars/young pulsars as sources of UHECR?

Bell 1992, Blasi et al 2000, Arons 2003

• Time-independent field with $E_{\theta} = B_{\phi} \propto 1/r \Rightarrow$ electrostatic potential

$$\Phi = B_{r,L}r_L\cos\theta$$

• Pro's:

- DC magnetic flux carried out by plasma ($B \propto 1/r$)
- Hillas' limit reached for test particles that move from equator to pole (or vice-versa).

The unipolar inductor

Newly born magnetars/young pulsars as sources of UHECR?

Bell 1992, Blasi et al 2000, Arons 2003

Time-independent field with E_θ = B_φ ∝ 1/r ⇒ electrostatic potential

$$\Phi = B_{r,L}r_L\cos\theta$$

• Pro's:

- DC magnetic flux carried out by plasma ($B \propto 1/r$)
- Hillas' limit reached for test particles that move from equator to pole (or vice-versa).
- Con's:
 - Trajectories complicated unclear what fraction (if any) of injected particles achieve the maximum energy
 - Test-particle treatment: no backreaction on the flow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Vacuum wave + plasma rearranges itself into 'step-function' wind, (MHD wave) which reconnects

Michel '71, '82, Coroniti '90

イロト イロト イヨト イヨト

ж

 Vacuum wave + plasma rearranges itself into 'step-function' wind, (MHD wave) which reconnects

Michel '71, '82, Coroniti '90

- ... but also accelerates
 - Min. sheet thickness: $\gamma \propto r^{1/2}$ Lyubarsky, JK '01
 - Tearing mode: $\gamma \propto r^{5/12}$ JK & Skjaeraasen '03
 - Fast reconnection: $\gamma \propto r^{1/3}$ Drenkhahn '02

 Vacuum wave + plasma rearranges itself into 'step-function' wind, (MHD wave) which reconnects

Michel '71, '82, Coroniti '90

- ... but also accelerates
 - Min. sheet thickness: $\gamma \propto r^{1/2}$ Lyubarsky, JK '01
 - Tearing mode: $\gamma \propto r^{5/12}$ JK & Skjaeraasen '03
- Fast reconnection: $\gamma \propto r^{1/3}$ Drenkhahn '02 Maximum energy $\gamma_{max} \approx a_L/\kappa_L$, achieved at $r \approx a_L r_L$.

 Vacuum wave + plasma rearranges itself into 'step-function' wind, (MHD wave) which reconnects

Michel '71, '82, Coroniti '90

- ... but also accelerates
 - Min. sheet thickness: $\gamma \propto r^{1/2}$ Lyubarsky, JK '01
 - Tearing mode: $\gamma \propto r^{5/12}$ JK & Skjaeraasen '03
 - Fast reconnection: $\gamma \propto r^{1/3}$ Drenkhahn '02

Maximum energy $\gamma_{max} \approx a_L/\kappa_L$, achieved at $r \approx a_L r_L$.

Reconnection in stripes:

• \Rightarrow slow, bulk acceleration

• Fails at
$$r \approx \kappa_{\rm L}^2 r_{\rm L} < r_{\rm TS}$$

Local PIC simulations

Zrake '16

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- Stripes unstable, fully turbulent at TS
- ... but bulk acceleration not taken into account.

Global PIC simulations

• Striped wind launched by split monopole

Global PIC simulations

- Striped wind launched by split monopole
- Stripes reconnect at ~ 100r_L

Cerutti & Philippov '17

Global PIC simulations

- Striped wind launched by split monopole
- Stripes reconnect at ~ 100rL
- ... but $a_L \sim 100$
- and initial conditions favour dissipation

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Observational constraint

THE ASTROPHYSICAL JOURNAL, 613:L57–L60, 2004 September 20 © 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE DOUBLE PULSAR SYSTEM J0737–3039: MODULATION OF THE RADIO EMISSION FROM B BY RADIATION FROM A

M. A. MCLAUGHLIN,¹ M. KRAMER,¹ A. G. LYNE,¹ D. R. LORIMER,¹ I. H. STAIRS,² A. POSSENTI,³ R. N. MANCHESTER,⁴ P. C. C. FRIRE,⁵ B. C. JOSHI,⁶ M. BURGAY,³ F. CAMILO,⁷ AND N. D'AMICO⁸ Received 2004 July 13; accepted 2004 August 11; published 2004 August 18

"... we conclude that the observed modulation is due to the influence of the 44Hz magnetic dipole radiation on the magnetosphere of B" (located at $r = 1600r_L$)

Reconnection in the striped wind - summary

• Pulsars launch an MHD-type wave.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Reconnection in the striped wind — summary

- Pulsars launch an MHD-type wave.
- Two phase (hot sheet, cold stripes) analytical results: reconnection causes bulk acceleration, γ ∝ r^{1/3...1/2} and relatively slow wave damping into particle energy. Complete conversion at r ≤ a_Lr_L

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Reconnection in the striped wind — summary

- Pulsars launch an MHD-type wave.
- Two phase (hot sheet, cold stripes) analytical results: reconnection causes bulk acceleration, γ ∝ r^{1/3...1/2} and relatively slow wave damping into particle energy. Complete conversion at r ≤ a_Lr_L
- Simulations suggest more rapid (too rapid?) damping.

Reconnection in the striped wind — summary

- Pulsars launch an MHD-type wave.
- Two phase (hot sheet, cold stripes) analytical results: reconnection causes bulk acceleration, $\gamma \propto r^{1/3...1/2}$ and relatively slow wave damping into particle energy. Complete conversion at $r \leq a_{\rm L} r_{\rm L}$
- Simulations suggest more rapid (too rapid?) damping.
- Hillas' limit not reached: $\gamma_{max} < a_L^{1/2}$, because the sheet must have time to thermalize.

 Replace current sheet by force-free magnetic shear, j || B.

 Replace current sheet by force-free magnetic shear, j || B.

- Inertia \rightarrow misalignment
 - \rightarrow **j** × **B** \neq 0.

- Replace current sheet by force-free magnetic shear, j || B.
- Inertia \rightarrow misalignment \rightarrow **j** \times **B** \neq 0.
- *Inductive* acceleration 3 phases:

JK, Mochol '11, JK & Giacinti '17

- **D** MHD, γ , σ constant
- 2 Acceleration, $\gamma \propto r$, $\sigma \propto 1/r$.
- Coasting, wave fully dissipated

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- Replace current sheet by force-free magnetic shear, j || B.
- Inertia \rightarrow misalignment \rightarrow **j** \times **B** \neq 0.
- *Inductive* acceleration 3 phases:

JK, Mochol '11, JK & Giacinti '17

- **)** MHD, γ , σ constant
- 2 Acceleration, $\gamma \propto r$, $\sigma \propto 1/r$.
- Coasting, wave fully dissipated

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

ション 小田 マイビット ビー シックション

Inductive acceleration in the striped wind - summary

Two-fluid, analytical results: for κ_L < a_L^{1/2}, bulk acceleration occurs without thermalization, giving γ ∝ r.

ション 小田 マイビット ビー シックション

Inductive acceleration in the striped wind - summary

- Two-fluid, analytical results: for κ_L < a_L^{1/2}, bulk acceleration occurs without thermalization, giving γ ∝ r.
- Process relatively slow; complete conversion at $r \approx a_L r_L$

Inductive acceleration in the striped wind - summary

- Two-fluid, analytical results: for κ_L < a_L^{1/2}, bulk acceleration occurs without thermalization, giving γ ∝ r.
- Process relatively slow; complete conversion at $r \approx a_L r_L$
- So far, no simulations in this regime

Inductive acceleration in the striped wind - summary

- Two-fluid, analytical results: for κ_L < a_L^{1/2}, bulk acceleration occurs without thermalization, giving γ ∝ r.
- Process relatively slow; complete conversion at $r \approx a_{\rm L} r_{\rm L}$
- So far, no simulations in this regime
- Hillas' limit reached for $\kappa_L\approx 1$

The Crab Nebula — gamma-ray flares

Three major puzzles:

- Synchrotron emission at 400 MeV
- Variability on timescale of hours
- Gamma-ray power ≤ 0.1× entire nebula?

Buehler & Blandford '14; Porth et al '17

ヘロト 人間 トイヨト 人 ヨトー

3

The Crab Nebula — gamma-ray flares

Three major puzzles:

- Synchrotron emission at 400 MeV
- Variability on timescale of hours
- Gamma-ray power ≤ 0.1× entire nebula?

Buehler & Blandford '14; Porth et al '17

イロト 不得 トイヨト イヨト

3

Reconnection? Doppler boosting? Magneto-luminescence?

The Crab Nebula — gamma-ray flares

Three major puzzles:

- Synchrotron emission at 400 MeV
- Variability on timescale of hours
- Gamma-ray power ≤ 0.1× entire nebula?

Buehler & Blandford '14; Porth et al '17

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

Reconnection? Doppler boosting? Magneto-luminescence?

Inductive acceleration JK & Giacinti, PRL '17

Bulk acceleration of the pulsar wind

Inductive acceleration — not complete until $r = a_L r_L > r_{TS}$

Quiescent Crab parameters: $a_{\rm L} = 7.6 \times 10^{10}$ $\mu = 10^6$, ($\kappa \approx 10^4$)

ヘロト 人間 トイヨト 人 ヨトー

3

Bulk acceleration of the pulsar wind

Inductive acceleration — not complete until $r = a_L r_L > r_{TS}$

Quiescent Crab parameters: $a_{\rm L} = 7.6 \times 10^{10}$ $\mu = 10^6$, ($\kappa \approx 10^4$)

During an interruption of the supply of pairs:

 $\mu = a_{\rm L} (\kappa \approx 1)$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○
Bulk acceleration of the pulsar wind

Inductive acceleration — not complete until $r = a_L r_L > r_{TS}$

 $\begin{aligned} & \text{Quiescent Crab parameters:} \\ & a_L = 7.6 \times 10^{10} \\ & \mu = 10^6, \, (\kappa \approx 10^4) \end{aligned}$

During an interruption of the supply of pairs:

 $\mu = a_{\rm L} \ (\kappa \approx 1)$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Bulk acceleration of the pulsar wind

Inductive acceleration — not complete until $r = a_L r_L > r_{TS}$

 $\begin{aligned} & \text{Quiescent Crab parameters:} \\ & a_L = 7.6 \times 10^{10} \\ & \mu = 10^6, \, (\kappa \approx 10^4) \end{aligned}$

During an interruption of the supply of pairs:

 $\mu = a_{\rm L} (\kappa \approx 1)$

⇒ Injection into the nebula of radially-collimated multi-PeV electron/positron beams

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- Depletion to μ = a_L in cone Ω, containing line of sight to observer
- Injection of radial pair beams with $\gamma = a_{\rm L}$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

- Depletion to μ = a_L in cone Ω, containing line of sight to observer
- Injection of radial pair beams with $\gamma = a_{\rm L}$
- Deflection downstream:

$$\delta\theta = \left(\frac{80 \text{ MeV}}{h\nu}\right) \left(1 - \frac{\nu}{\nu_{\text{max}}}\right)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

- Depletion to μ = a_L in cone Ω, containing line of sight to observer
- Injection of radial pair beams with $\gamma = a_{\rm L}$
- Deflection downstream:

$$\delta\theta = \left(\frac{80 \text{ MeV}}{h\nu}\right) \left(1 - \frac{\nu}{\nu_{\max}}\right)$$

 For δθ < Ω^{1/2}: power/sr
f × particle wind power/sr

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-

- Depletion to μ = a_L in cone Ω, containing line of sight to observer
- Injection of radial pair beams with γ = a_L
- Deflection downstream:

$$\delta\theta = \left(\frac{80 \,\mathrm{MeV}}{h\nu}\right) \left(1 - \frac{\nu}{\nu_{\mathrm{max}}}\right)$$

 For δθ < Ω^{1/2}: power/sr
f × particle wind power/sr

・ロト ・ 同ト ・ ヨト ・ ヨト

э

- Depletion to μ = a_L in cone Ω, containing line of sight to observer
- Injection of radial pair beams with $\gamma = a_L \times r_{TS}/r_L a_L$
- Deflection downstream:

$$\delta\theta = \left(\frac{80 \text{ MeV}}{h\nu}\right) \left(1 - \frac{\nu}{\nu_{\max}}\right)$$

 For δθ < Ω^{1/2}: power/sr
≈ f × particle wind power/sr
×r_{TS}/r_La_L

Flare spectrum

- Cooling spectrum $f_{\nu} \propto \nu^{-1/2}$
- Turnover $v < v_t$ where deflection angle $\delta \theta \gtrsim \Omega^{1/2}$
- Variation timescale $\delta \theta^2 r_{\rm TS}/c$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Flare spectrum

- Cooling spectrum $f_{\nu} \propto \nu^{-1/2}$
- Turnover ν < ν_t where deflection angle δθ ≥ Ω^{1/2}
- Variation timescale $\delta \theta^2 r_{\rm TS}/c$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Flare spectrum

- Cooling spectrum $f_{\nu} \propto \nu^{-1/2}$
- Turnover ν < ν_t where deflection angle δθ ≥ Ω^{1/2}
- Variation timescale $\delta \theta^2 r_{\rm TS}/c$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Summary — gamma-ray flares

• An inductively accelerated wind solves the three main puzzles surrounding gamma-ray flares from the Crab.

Summary — gamma-ray flares

- An inductively accelerated wind solves the three main puzzles surrounding gamma-ray flares from the Crab.
- Flares may give insights into cascade physics/geometry,

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Summary — gamma-ray flares

- An inductively accelerated wind solves the three main puzzles surrounding gamma-ray flares from the Crab.
- Flares may give insights into cascade physics/geometry,
- reveal the properties of beam divergence, and, hence, probe the turbulence in the nebula.

Summary — gamma-ray flares

- An inductively accelerated wind solves the three main puzzles surrounding gamma-ray flares from the Crab.
- Flares may give insights into cascade physics/geometry,
- reveal the properties of beam divergence, and, hence, probe the turbulence in the nebula.
- Similar flares from J0537–6910, B0540–69, 3C 58, Black Widow...?

2-fluids: electron, positron

ヘロト 人間 ト 人 ヨト 人 ヨトー

æ

2-fluids: electron, positron + protons

 $\kappa = 10^4, 10^2, 0$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

2-fluids: electron, positron + protons

- Set $\kappa_{L,p} = 1$
- Lepton dominated: no change (Hillas' limit not reached)

 $\kappa = 10^4, 10^2, 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2-fluids: electron, positron + protons

- Set $\kappa_{L,p} = 1$
- Lepton dominated: no change (Hillas' limit not reached)
- Proton dominated:
 - Rapid lepton acceleration
 - For $\kappa_{L,e} = 1$, Hillas' limit reached by protons *and* leptons
 - Heavy particles speed up acceleration

 $\kappa = 10^4, \, 10^2, \, 0$

・ロト・日本・日本・日本・日本・日本