Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

in collaboration with Santosh Kumar and M.S.Santhanam

Indian Institute of Science Education and Research, Pune, India

June 14, 2017

IISER Pune, India

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytica Form

Extension to Gaussian Unitary Ensemble

Outline

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

1 Introduction

2 Gaussian Orthogonal Ensemble: RMT Model and Systems

- RMT Model
- Method
- Systems and Results

3 Analytical Form

4 Extension to Gaussian Unitary Ensemble

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Systems and Results
- Conclusion

Outline

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

1 Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Method
- Systems and Results

3 Analytical Form

Extension to Gaussian Unitary Ensemble

- Systems and Results
- Conclusion

Introduction

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

- Quantum chaos: The study of quantum systems which exhibit chaos in the classical regime.
- The level spacing distribution is an indicator of quantum chaos. Random Matrix Theory (RMT) proves to be very useful in this regard.
- The presence of regular and chaotic regions in the classical phase space of a system affects the spectral statistics of its quantum version.
- Some of these systems exhibit semiclassical phenomena like localization of states.

Localization in quantum chaos

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

- Anomalous enhancement of eigenfunction intensity.
- Can we obtain any information about the localized states by investigating the corresponding eigenvalue statistics?
- We construct a random matrix model to simulate the coupling between a localized state and its nearest neighbours.
- In this work, localized states are identified by calculating the information entropy for each eigenstate, given by:

$$S_n^lpha = \sum_{j=1}^M |a_{n,j}^lpha|^2 \log |a_{n,j}^lpha|^2$$

Outline

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems

Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

1 Introduction

- RMT Model
- Method
- Systems and Results

3 Analytical Form

Extension to Gaussian Unitary Ensemble

2 Gaussian Orthogonal Ensemble: RMT Model and Systems

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Systems and Results
- Conclusion

Random Matrix Theory- the essentials

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems

Method Systems and Results

Analytica Form

Extension to Gaussian Unitary Ensemble

Systems and

- Hamiltonians having time-reversal symmetry are modeled using the Gaussian Orthogonal Ensemble (GOE) class of random matrices.
- The nearest neighbour spacing distribution (NNSD) for GOE systems is given by the Wigner distribution:

$$P_W(S) = \frac{\pi}{2} S e^{-\frac{\pi}{4}S^2}$$

• Here $S_i = E_{i+1} - E_i$. Instead, we may also look at the ratio of spacings $r_i = S_i/S_{i-1}$. For the GOE case, the NNSD would then be¹:

$$P_W(r) = rac{27}{8} rac{(r+r^2)}{(1+r+r^2)^{5/2}}$$

¹*PRL*, *110*(8), 084101 (2013)

・ロト ・ 日下・ ・ 田下・ ・ 日下・ く日下

Matrix Model

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems **RMT Model** Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble We consider a 3×3 real, symmetric matrix of the following type:

$$H = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{12} & H_{22} & H_{23} \\ H_{13} & H_{23} & H_{33} \end{bmatrix}$$

• Here,
$$\langle H_{ij} \rangle = 0$$
, $\langle H_{ii}^2 \rangle = 1$ for $i, j=1,2,3$,
 $\langle H_{12}^2 \rangle = \frac{1}{2}$, $\langle H_{13}^2 \rangle = \langle H_{23}^2 \rangle = \frac{k^2}{2}$ with $0 \le k \le 1$

We consider H₃₃ to be an eigenvalue corrresponding to a localized state, which is coupled to its nearest neighbours (the 2 × 2 block) via the coupling parameter of strength k.

Identification of localized states

æ

Systems and

Identification of localized states

(日)、

ъ

- Extension to Gaussian Unitary Ensemble
- Systems and

Quantum Billiards

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

Systems and

 Obtaining the eigenvalues for a closed quantum billiard system involves solving the Helmholtz equation with Dirichlet boundary conditions. That is,

$$\left[\vec{\nabla}^2 + k^2\right]\vec{E} = 0$$

- The chaos parameter in this problem is the shape of the billiard, varying which, the transition from integrability to chaos can be observed.
- Localized states called scars first studied in this context³.
- Depending on shape, different kinds of localized states observed, including whispering gallery modes, bouncing ball modes, bowtie modes etc.

³*PRL*, *53*(16), 1515 (1984)

Stadium Billiard

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytica Form

Extension to Gaussian Unitary Ensemble

Figure : Trajectories in configuration space and corresponding eigenstates for a chaotic and a localized state for the billiard.

Results

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytica

Extension t Gaussian Unitary

Systems and

Figure : Distribution of the ratio of spacings between a localized state and its nearest neighbours for the stadium billiard plotted along with the numerical results obtained from the 3×3 model with the appropriate value of parameter k, and the theoretical curve for GOE.

Coupled Quartic Oscillator

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

- Here, we consider a coupled quartic oscillator system which is classically chaotic for different values of the coupling parameter α.
- The Hamiltonian for this system is given by

$$H = \frac{p_x^2}{2} + \frac{p_y^2}{2} + x^4 + y^4 + \alpha x^2 y^2$$

- The classical phase space has both regular and chaotic regions. Regular periodic orbits exist even as α → ∞.
- Quantum system exhibits localization along channel periodic orbits.

Coupled Quartic Oscillator

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

Systems and

Figure : Configuration space intensities for a chaotic state and a localized state for $\alpha = 90$. Colour code —red is the maximum, blue is low and black is zero.

2

²Pramana,48(2), 439, 1997

・ロト・西ト・ヨト・ヨー シック

Results

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

Figure : Distribution of the ratio of spacings between a localized state and its nearest neighbours for three values of α for the quartic oscillator shown along with the numerical results obtained from the 3×3 model with the appropriate value of parameter k.

(日)、

Outline

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

I Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Method
- Systems and Results

3 Analytical Form

4

Extension to Gaussian Unitary Ensen

- Systems and Results
- Conclusion

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble Systems and Consider real symmetric (for $\beta = 1$) or Hermitian (for $\beta = 2$) matrices *H* from the probability measure

$$\mathcal{P}(H)d[H]\propto \exp\left(-rac{eta}{2}\ tr\ \Sigma^{-2}H^2
ight)d[H].$$

• For $\beta = 1$, the joint probability density of eigenvalue follows as

$$P(k;\lambda_1,\lambda_2,\lambda_3) \propto |\Delta(\{\lambda\})| \int_{\mathcal{O}_3} d\mu(\mathcal{O}) \exp\left(-\frac{1}{2}\Sigma^{-2}\mathcal{O}\Lambda^2\mathcal{O}^T\right)$$

where the integral is over the group of 3×3 orthogonal matrices with $d\mu(O)$ representing the corresponding Haar measure.

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshin Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

٠

Extension to Gaussian Unitary Ensemble Systems and For β=2, the joint probability density of (unordered) eigenvalue in this case follows as

$$\mathcal{P}(k;\lambda_1,\lambda_2,\lambda_3) \propto \Delta^2(\{\lambda\}) \int_{\mathcal{U}_3} d\mu(U) \exp\left(-\Sigma^{-2} U \Lambda^2 U^{\dagger}
ight),$$

where The unitary group integral can be performed using the Harish-Chandra-Itzykson-Zuber integral:

$$\int_{\mathcal{U}_N} dU \exp\left(-s \ tr \ XUYU^{\dagger}\right) \propto \frac{\det\left[\exp(-s \ x_j y_k)\right]_{j,k=1,\dots,N}}{\Delta(\{x\})\Delta(\{y\})}$$

Outline

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

Systems and

1 Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- Method
- Systems and Results

3 Analytical Form

4 Extension to Gaussian Unitary Ensemble

- Systems and Results
- Conclusion

Gaussian Unitary Ensemble

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytica Form

Extension to Gaussian Unitary Ensemble

Systems and

- The Gaussian Unitary Ensemble of random matrices correspond to systems that do not possess time reversal symmetry.
- The distribution of the ratio of spacings in this case, is given by¹:

$$\frac{81\sqrt{3}}{4\pi}\frac{(r+r^2)^2}{(1+r+r^2)^4}$$

Examples: driven Rydberg atoms(*Eur. Phys. J. D*, (2000)), chaotic graphene billiards(*Chaos*,2011), Rydberg excitons(*Nature Materials*,2016) etc.

¹*PRL*, *110*(8), 084101 (2013)

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytica Form

Extension to Gaussian Unitary Ensemble

Systems and

• We consider a 3×3 Hermitian matrix of the following type:

$$H = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{12} & H_{22} & H_{23} \\ H_{13} & H_{23} & H_{33} \end{bmatrix}$$

• The matrix elements are zero-mean Gaussians (real and complex for diagonal and off-diagonal) with variances: $\langle H_{11}^2 \rangle = \langle H_{22}^2 \rangle = 1$, $\langle Re(H_{12})^2 \rangle = \langle Im(H_{12})^2 \rangle = \frac{1}{4}$, $\langle Re(H_{13}^2) \rangle = \langle Im(H_{13}^2) \rangle = \langle Re(H_{23}^2) \rangle = \langle Im(H_{23}^2) \rangle = \frac{k^2}{4}$, $\langle H_{33}^2 \rangle = \frac{1}{2} \frac{k^2}{2-k^2}$

GUE: Analytical result²

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

.

Analytica Form

Extension to Gaussian Unitary Ensemble

Systems and

 For β=2, the joint probability density of (unordered) eigenvalue in this case follows as

$$P(k; \lambda_1, \lambda_2, \lambda_3) \propto \Delta^2(\{\lambda\}) \int_{\mathcal{U}_3} d\mu(U) \exp\left(-\Sigma^{-2} U \Lambda^2 U^{\dagger}\right),$$

where The unitary group integral can be performed using the Harish-Chandra-Itzykson-Zuber integral:

$$\int_{\mathcal{U}_N} dU \exp\left(-s \ tr \ XUYU^{\dagger}\right) \propto \frac{\det\left[\exp(-s \ x_j y_k)\right]_{j,k=1,\dots,N}}{\Delta(\{x\})\Delta(\{y\})}$$

²The form of p(k;r) has been obtained in collaboration with Santosh Kumar (Shiv Nadar University,Noida)

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytica Form

Extension to Gaussian Unitary Ensemble

Systems and

The probability density function of the ratio of consecutive spacings $r = (\lambda_2 - \lambda_3)/(\lambda_3 - \lambda_1)$ can then be found as

$$p(k;r) = \int_{-\infty}^{\infty} d\lambda_3 \int_{-\infty}^{\lambda_3} d\lambda_1 \int_{\lambda_3}^{\infty} d\lambda_2 \,\delta\left(r - \frac{\lambda_2 - \lambda_3}{\lambda_3 - \lambda_1}\right) \times \widetilde{P}(k;\lambda_1,\lambda_2,\lambda_3)$$

Here, λ₁ < λ₃ < λ₂, where λ₃ is the eigenvalue corresponding to a localized state.

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

> Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

Systems and

The final result is of the form:

р

$$\begin{aligned} (k;r) &= \frac{\sqrt{2-k^2}}{4\pi k(1-k^2)^2} r(r+1) \sum_{j=1}^3 \left[\frac{b_j(5a_j^2+2b_j^2)}{a_j^4(a_j^2+b_j^2)^2} \right. \\ &+ \frac{3}{(a_j^2+b_j^2)^{5/2}} \sinh^{-1}\left(\frac{b_j}{a_j}\right) - \frac{c_j(5a_j^2+2c_j^2)}{a_j^4(a_j^2+c_j^2)^2} \\ &- \frac{3}{(a_j^2+c_j^2)^{5/2}} \sinh^{-1}\left(\frac{c_j}{a_j}\right) \right]. \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < ○

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

Systems and

Here, the coefficients are defined as:

$$\begin{split} a_1 &= \frac{\sqrt{2[1+r(r+1)(2-k^2)]}}{\sqrt{2+k^2}}, \quad a_2 &= \frac{\sqrt{2}[1+r(r+k^2)]}{\sqrt{2+k^2}}, \quad a_3 &= \frac{\sqrt{2}[2+r(r+2)-k^2(r+1)]}{\sqrt{2+k^2}}, \\ b_1 &= \frac{k^2(3r+1)-2(r+1)}{2k\sqrt{2+k^2}}, \quad b_2 &= \frac{2+k^2(2r-1)}{2k\sqrt{2+k^2}}, \quad b_3 &= \frac{2-k^2(2r+3)}{2k\sqrt{2+k^2}}, \\ c_1 &= \frac{k^2(3r+2)-2r}{2k\sqrt{2+k^2}}, \quad c_2 &= \frac{k^2(r-2)-2r}{2k\sqrt{2+k^2}}, \quad c_3 &= \frac{2(r+1)-k^2(r+3)}{2k\sqrt{2+k^2}}. \end{split}$$

イロト 不得 トイヨト イヨト

Experimental Observation in 2D Microwave Cavity

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Peculic

Analytical Form

Extension to Gaussian Unitary Ensemble

Systems and

- So, Paul, et al. "Wave chaos experiments with and without time reversal symmetry: GUE and GOE statistics." *Physical Review Letters* **74.14** (1995): 2662.
- Electromagnetic wave equation in a thin microwave cavity with a magnetized ferrite stip is in the same universality class (GUE) as the Schrodinger equation without time reversal symmetry.
- Simulations done with COMSOL Multiphysics, which uses Finite Element Method.

Geometry

Systems and

Results

Systems and

◆□> ◆□> ◆三> ◆三> ● 三 のへの

Conclusion

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Decrete

Analytical Form

Extension to Gaussian Unitary Ensemble

- A random matrix model for the coupling between a localized state and its nearest neighbours was put forth for GOE and GUE systems.
- The distribution of the ratios of level spacings (corresponding to localized states) was evaluated for some well-known quantum systems.
- This was compared with data obtained numerically(for GOE) and analytically(for GUE) for different values of the parameter, to find an appropriate fit.
- This parameter k can be considered a numerical measure of the strength of the coupling.

Acknowledgements

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshini Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Peoulte

Analytical Form

Extension to Gaussian Unitary Ensemble

- The organizers of the Cracow School of Theoretical Physics, LVII Course, 2017.
- M.S.Santhanam (thesis supervisor), Santosh Kumar (collaborator), Sanku Paul (fellow PhD student)
- The Infosys Foundation, IISER Pune and the Director, IISER Pune.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spectral Statistics for localized states with their nearest neighbours in Quantum Chaos

Sai Harshin Tekur

Introduction

Gaussian Orthogonal Ensemble: RMT Model and Systems RMT Model Method Systems and Results

Analytical Form

Extension to Gaussian Unitary Ensemble

Systems and

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○