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• Energy and charge transport is suppressed

• Some memory of the initial state is conserved 
forever in local quantities

• Eigenstates close in energy have different 
“footprints” of local observables

• Eigenstates have area law entanglement (even at 
high T)

• Entanglement of an initial product state grows 
slowly, but to an extensive value

Explaining the 
phenomenology



Local IOM
Local IOMs can explain all of this

We need to find them: numerically or analytically

derivation: V.Ros, M.Mueller, A.S. NPB 2015
review (including numerics): J.Imbrie, V.Ros, A.S. Annalen der Physik 2017

Analytical:
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Local IOM

Which are local

This LIOMs constrain the dynamics of the system in such a 
way that ergodicity cannot be achieved
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Local IOM
We will construct explicitly the LIOM for 
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connecting the formulation in terms of LIOM to the 
perturbation theory of BAA

These LIOMs are number operators dressed with strings 
of excitations
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Local IOM
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First of all we diagonalize the quadratic part
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Local IOM
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Local IOM

the amplitudes are random numbers

lim
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Local IOM

To make analytic progress, we focus on the tail of the 
operators and estimate

Ar = �rc0(r) + �r+1c1(r) + ...

to lowest order in perturbation theory
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Perturbation theory
Hopping in operator space

Lowest order: shortest paths from a short to a long 
operator (forward approximation)

This should give a lower bound for the critical interaction

(a) (b)

Figure 1: Structure of the operator lattice before (a) and after (b) making
the forward approximation. Vertices correspond to Fock indices (I, J); links
are drawn between index pairs, which are connected by the interaction U ,
that is, if the pairs appear simultaneously in at least one of the Eqs. (39).

for index sets I, J of length N are coupled only to amplitudes with index sets
of equal or shorter length. Therefore, the sites can be organized into gener-
ations, according to the length of their index sets. Hopping is possible only
within the same generation (second term in equation p39q) or between con-
secutive ones (third term in equation p39q). In the latter case, the hopping
is unidirectional, and thus the hopping problem is non-Hermitian.

The connectivity of the lattice is determined by the restrictions in energy,
Eq. (6), and space (particles need to be in the same or in an adjacent local-
ization volume) of the matrix elements U↵�,��. Hoppings from a site pI, Jq

in generation N to a site pI1, J1
q in generation N ` 1 requires a particle (or

hole) in a state ↵ to scatter to the closest energy level � above or below
↵, while another particle-hole pair of adjacent levels p�, �q is created. The
particle � can be chosen in N

loc

ways with N
loc

given in (3), and there are
two choices for � and �, respectively. Therefore, the number of Fock states
(I1, J1) accessible from (I, J) via the decay of a given quasiparticle ↵ is:

K “ 4

W

�⇠
“ 4N
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. (40)

In contrast, hoppings from pI, Jq to a site of the same generation correspond
to processes where each member of a pair of particles (or holes) scatter to
one of the two closest energy levels: there are 4 possible final states to which
a given pair can decay.
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Perturbation theory
Forward 

approximation
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This is equivalent to the ImSCBA in BAA’s perturbation 
theory (see also Abou-Chacra, Anderson, Thouless 1973)
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Perturbation theory
We only include terms in the n-th order operator which 
look like this:Diagrammatic for the IOM

This means that we are considering diagrams like

and, for example:
at 3-rd order

a

a

na to 0-th order

Thursday 15 May 14

Diagrammatic for the IOM

This means that we are considering diagrams like

and, for example:
at 3-rd order

a

a

na to 0-th order

Thursday 15 May 14

or

Consider the two branching trees

4 c†, 4 c�3�0



Perturbation theory
These are the same diagram that are considered in the 

ImSCBA by BAA
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Correlated denominators
Problem: it looks like there are n!  terms at order n but 

they are actually correlated
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Independent amplitudes 
correspond to independent 

physical processes



Correlated denominators
The many-body amplitude

is different from the single-particle one
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We need to find         and we cannot use the 
techniques used for single particle AL
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Probability distribution of A

The series converges if there is a z<1 
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Very different probability distributions...

Correlated denominators

Consider Y = � ln |A|



Probability distribution of A

GN (k) = E[e�kY ]
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and eventually invert it to get

we anticipate that we are going to do a saddle point 
calculation with 
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Correlated denominators



Correlated denominators
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Correlated denominatorsProbability distribution of A
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We find that

So we need to find the largest eigenvalue of H
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We cast the Laplace transform in a transfer matrix 
calculation



Correlated denominators
This can be done (large Y means           ) and we find that 
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We now need to find how many terms are there in the sum
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of the order n correction
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This is the probability distribution of a single amplitude 



Counting diagrams
Diagrammatic for the IOM

How many diagrams?

Topology

, , ,

, etc.

Thursday 15 May 14

Topology + assignment of indices ↵,�, �, �

Classic combinatorics problem (generalized Catalan numbers)
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Counting diagrams
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Lagrange inversion theorem:



Counting diagrams
Diagrammatic for the IOM

Assignments of a,b,c,d indices
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Ballistic particles go further and have also more phase space
Thursday 15 May 14

Assignment of indices defines the spatial structure of the 
excitations

e.g. ballistic excitation

It is convenient to consider the picture of a particle which 
hops from volume to volume leaving a trail of excitations

K = ⇠/a



Local IOM
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The important processes are those in which an excitation can travel 
staying (almost) in resonance
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We need to estimate the probability that a resonance occurs far away



Counting diagrams
Assigning indices: describing the trail of excitations

factor. For each pair, one can choose how to assign the two levels to particle
and hole, respectively. This yields the factor 2

m
i .

As we will see below, the relevant mi are of order Op1q ! K. We therefore
approximate: ˆ
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Note that the necklace structure will in general fold back and forth in real
space, such that several groups will get to lie in the same volume. Neverthe-
less, the above approximation remains good as long as the total number of
pairs created in a given localization volume is significantly smaller than K.

Combining Eqs. (72-74), the total number of necklace diagrams is:
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where the average number of effective paths per diagram, Ppdq, scales sub-
exponentially with N . The factors of 2 arise due to freedom of each group
to scatter to the left or the right of the preceding group as long as there is
still significant phase space in the corresponding localization volumina. The
correction due to the finiteness of K " 1 is small and was thus neglected.

We now determine the distribution of group sizes tmiu which dominates
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where nm “

∞
i �m,m
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is the number of groups i with m pairs. For the relevant
m’s, nm „ N " 1; therefore, at large N the sum (76) is dominated by the
saddle point over the nm. Imposing the constraint

∞
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Lagrange multiplier µ yields the saddle point equations:
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In every box i there are m excitations

We need to maximize this number over the m’s
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Figure 6: The plot (a) shows the distribution of the number nm{N of groups
of m particle-hole pairs in necklace diagrams dominating NN . The plot (b)
shows the probability mnm{N that a given pair belongs to a group containing
m pairs.

The Lagrange multiplier µ is fixed by the constraint:

1 “
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with Tpxq “

∞
m Tmxm. As discussed in Appendix E, Tpxq “ rT pxqs

2,
where T pxq is the generating function of 3-branched trees satisfying T pxq “

1 ` xT 3

pxq. The solution of Eq. (79) is:
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The saddle point solution can thus be written as
nm
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where 1{A “ d2{dµ2
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s “ 1{0.778, as follows from the constraint∞
m mnm “ N . The resulting values for nm{N are shown in Fig. 6a. The

probability that a given pair is created in a scattering process involving a
total of m pairs in the same localization volume is plotted in Fig. 6b. We see
that most pairs are created together with a few more pairs within the same
localization volume.

Plugging (81) into the saddle point for NN , we find the number of dia-
grams to grow like (dropping pre-exponential factors)

NN « pKeµq

N
« p10.6Kq

N . (82)
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Counting diagrams
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Figure 6: The plot (a) shows the distribution of the number nm{N of groups
of m particle-hole pairs in necklace diagrams dominating NN . The plot (b)
shows the probability mnm{N that a given pair belongs to a group containing
m pairs.
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Recapitulate

• 1) Find distribution of amplitudes of a 
single diagram giving a long operator 
inside 

• 2) Count the number of diagrams

• 3) Count the number of spatial processes 
pertaining to a given assignment of 
indices

I↵



Result
for 

we can find operators I↵
[H, I↵] = 0

(one per site) I↵ = 0, 1

|Emi = |0, 1, 0, 0, 0..., 1i

Then the eigenstates can be written as bit strings 

each bit is the eigenvalue of a local operator
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Convergence of p.t. for LIOMs
We found that the IOM are local for

� < �c =

p
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1

K lnK

For           there are several different scenarios 

a) All LIOMs die, becoming non-local
b) Some LIOMs “die,” some don’t (a la KAM) 

This problem is open
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Conclusions

• MBL phenomenology can be recovered 
by conjecturing the existence of local 
IOMs

• We can show, under the same 
approximations of BAA, that LIOMs exist 
for weak interactions/strong disorder

• We can find the radius of convergence of 
the perturbation theory


