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Explaining the
phenomenology

Energy and charge transport is suppressed

Some memory of the initial state is conserved
forever in local quantities

Eigenstates close in energy have different
“footprints” of local observables

Eigenstates have area law entanglement (even at
high T)

Entanglement of an initial product state grows
slowly, but to an extensive value



Local IOM

Local IOMs can explain all of this

We need to find them: numerically or analytically

Analytical:

derivation:V.Ros, M.Mueller; A.S. NPB 2015
review (including numerics): J.Imbrie,V.Ros,A.S. Annalen der Physik 2017



Local IOM

in the MBL phase can be rewritten as
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The operators 7; are conserved quantities

H,7’]=0  called I-bits



Local IOM

Which are local
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This LIOMs constrain the dynamics of the system in such a
way that ergodicity cannot be achieved



Local IOM

We will construct explicitly the LIOM for

H = —t Z C,Z-L_HC?; + cl-tcz-“ + Z €;M; + A Z v(|i — j|)nin;
1 1 1,9
connecting the formulation in terms of LIOM to the
perturbation theory of BAA

These LIOMs are number operators dressed with strings
of excitations

Il ~ N1 + AQCS_TMCO -+ Agcg_ngnlC() -+ ...



Local IOM

First of all we diagonalize the quadratic part

H = Z € C Ca + A Z Ue, 8,7, (str CEC’YC(S
a,fB,7,0

single particle
‘a> localized states

we coarse grain the system into “quantum dots” of size & and then we consider only
matrix elements between the same or n.n. quantum dots



Local IOM

eigenstate at A\ =0
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Local IOM

I = nqy + Ag)lcgnlco —+ AQ’QCECO -+ ...
—I—Ag,lcgc;c]{@clco + A3,QC;§C$CQCO 4 ...

the number of terms at
distance r 4T

the amplitudes are random numbers

A,| = max|A,

In the localized regime we expect

3¢ >0 lim P(|A] <e %) =1
T—>00

so that the operators are (quasi-)local



Local IOM

Hy+ AV, 1,|=0

In perturbation theory: Hy, I+ [V, 1" D] = 0

To make analytic progress, we focus on the tail of the
operators and estimate

A, = Neo(r) + X e (r) + ...
to lowest order in perturbation theory

Co (T) ~ qr



Perturbation theory

Hopping in operator space

Lowest order: shortest paths from a short to a long
operator (forward approximation)
This should give a lower bound for the critical interaction



Perturbation theory
Forward (N (n) ~ Z H " i -

approximation ,
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Resonances
are less
important in
the exact  ¢)?
solution than
in the fwd
approx

- exact eigenstate

X

This is equivalent to the ImMSCBA in BAA’s perturbation
theo I'Y (see also Abou-Chacra, Anderson, Thouless 1973)



Perturbation theory

We only include terms in the n-th order operator which
look like this:
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Consider the two branching trees



Perturbation theory

One sub-tree generates an amplitude:

A6 A6 A6 A6

T E+40E,E+0E, +0FEyE+0E, +0Fy+0FEs E+0F, +0Ey + 0Es + 0F,



Correlated denominators

Problem: it looks like there are n! terms at order n but
they are actually correlated
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Independent amplitudes
correspond to independent
physical processes
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Correlated denominators

The many-body amplitude

a=1,..., n

We need to find P(A) and we cannot use the
techniques used for single particle AL



Correlated denominators

Very different probability distributions...

many body single particle

Consider Y = —In |A]



Correlated denominators

We can compute the Laplace transform
Gy (k) =E[e "]

and eventually invert it to get
dk
/ kYGN
271

we anticipate that we are going to do a saddle point
calculation with

Y ~N



Correlated denominators
Gn (k) = / dVx (2m) N2 e X ki 0g]sil
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Correlated denominators

We cast the Laplace transform in a transfer matrix
calculation

52k

N/2
Gn (k) = (;7) (W' [HY ).

I'(EE 4+ m +n)
VIT(1+2m)/T(1+ 2n)

So we need to find the largest eigenvalue of H



Correlated denominators

This can be done (large Y means £ — —1) and we find that

N
P(Y) _ d_k.eN(y—l-log(,u)) ~ L 6—Y/y0(1—fy/(2(Y/N)2)
27TZ yoN

This is the probability distribution of a single amplitude

We now need to find how many terms are there in the sum

I((Xn) — Z AI,jOI,j
Z|=]T|=n

of the order n correction



Counting diagrams

Topology + assighment of indices «, 3,,0

o 2 A E

Classic combinatorics problem (generalized Catalan numbers)
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Counting diagrams

T() =Y Twa"  To= > TwTwTn,
n m1 ,Tnz,mg,zi m;=n
1T —1
T(x) =1+ 2T (x)° T = = f(T)

Lagrange inversion theorem:
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Counting diagrams

Assignment of indices defines the spatial structure of the

Q| |10

K3 | =3¢

excitations

e.g. ballistic excitation
K =¢/a

It is convenient to consider the picture of a particle which
hops from volume to volume leaving a trail of excitations



Local IOM

The important processes are those in which an excitation can travel
staying (almost) in resonance
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We need to estimate the probability that a resonance occurs far away



Counting diagrams

Assigning indices: describing the trail of excitations

In every box i there are m excitations

We need to maximize this number over the m’s

Ny ~ (Ke!)N ~ (10.6 K)N




Counting diagrams

(a) (b)

Figure 6: The plot (a) shows the distribution of the number n,,/N of groups
of m particle-hole pairs in necklace diagrams dominating Ny. The plot (b)
shows the probability mn,, /N that a given pair belongs to a group containing

m pairs.




Recapitulate

® |) Find distribution of amplitudes of a
single diagram giving a long operator
inside 71,

® ) Count the number of diagrams

® 3) Count the number of spatial processes
pertaining to a given assignment of
indices



Result

18.97 < C < 36.25
\/ 27T 1

v(l —v)2eC KIn K K~ T/
K ~W/5e

for A< )\, =

we can find operators [, (one per site) I, = 0,1
H,1,]=0
Then the eigenstates can be written as bit strings
E,) =10,1,0,0,0...,1)

each bit is the eigenvalue of a local operator

Tr(Incle,) ~ e~ dm)/t



Convergence of p.t. for LIOMs

We found that the IOM are local for

V2T 1
v(l —v)2eC Kn K

A< A, =

For A > ). there are several different scenarios

a) All LIOMs die, becoming non-local
b) Some LIOMs “die,” some don'’t (a la KAM)

This problem is open



Conclusions

® MBL phenomenology can be recovered

by conjecturing the existence of local
|OMs

® We can show, under the same
approximations of BAA, that LIOMs exist
for weak interactions/strong disorder

® We can find the radius of convergence of
the perturbation theory



