Constructing the LIOMs

A.Scardicchio

Abdus Salam ICTP, Trieste

Explaining the phenomenology

- Energy and charge transport is suppressed
- Some memory of the initial state is conserved forever in local quantities
- Eigenstates close in energy have different "footprints" of local observables
- Eigenstates have area law entanglement (even at high T)
- Entanglement of an initial product state grows slowly, but to an extensive value

Local IOM

Local IOMs can explain all of this

We need to find them: numerically or analytically

Analytical:

derivation:V.Ros, M.Mueller,A.S. NPB 2015
review (including numerics): J.Imbrie,V.Ros,A.S.Annalen der Physik 2017

Local IOM

$$
H=J \sum_{i} \vec{s}_{i} \cdot \vec{s}_{i+1}-\sum_{i} h_{i} s_{i}^{z}
$$

in the MBL phase can be rewritten as

$$
H=-\sum_{i} h^{\prime} \tau_{i}^{z}-\sum_{i j} J_{i j} \tau_{i}^{z} \tau_{j}^{z}-\sum_{i j k} J_{i j k} \tau_{i}^{z} \tau_{j}^{z} \tau_{k}^{z}+\ldots
$$

The operators τ_{i}^{z} are conserved quantities

$$
\left[H, \tau_{i}^{z}\right]=0 \quad \text { called } / \text {-bits }
$$

Local IOM

Which are local

$$
\begin{gathered}
\tau_{1}^{z}=\frac{1}{Z}\left(\sum_{i} A_{i}^{(1)} s_{i}^{z}+\sum_{i, j} A_{i j}^{(2)} s_{i}^{+} s_{j}^{-}+\sum_{i, j, k} A_{i j k}^{(3)} s_{i}^{+} s_{j}^{z} s_{k}^{-}+\ldots\right) \\
\left|A_{i}^{(1)}\right|<e^{-|i-1| / \xi_{1}} \quad\left|A_{i j}^{(2)}\right|<e^{-(|i-1|+|j-1|) / \xi_{2}}
\end{gathered}
$$

This LIOMs constrain the dynamics of the system in such a way that ergodicity cannot be achieved

Local IOM

We will construct explicitly the LIOM for

$$
H=-t \sum_{i} c_{i+1}^{\dagger} c_{i}+c_{i}^{\dagger} c_{i+1}+\sum_{i} \epsilon_{i} n_{i}+\lambda \sum_{i, j} v(|i-j|) n_{i} n_{j}
$$

connecting the formulation in terms of LIOM to the perturbation theory of BAA

These LIOMs are number operators dressed with strings of excitations

$$
I_{1} \simeq n_{1}+A_{2} c_{2}^{+} n_{1} c_{0}+A_{3} c_{3}^{+} n_{2} n_{1} c_{0}+\ldots
$$

Local IOM

First of all we diagonalize the quadratic part

$$
H=\sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}+\lambda \sum_{\alpha, \beta, \gamma, \delta} u_{\alpha, \beta, \gamma, \delta} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta}
$$

$$
|\alpha\rangle \begin{gathered}
\text { single particle } \\
\text { localized states }
\end{gathered}
$$

we coarse grain the system into "quantum dots" of size ξ and then we consider only matrix elements between the same or n.n. quantum dots

Local IOM

eigenstate at $\lambda=0$

Local IOM

$$
H=\sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}+\lambda \sum_{\alpha, \beta, \gamma, \delta} u_{\alpha, \beta, \gamma, \delta} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta}
$$

$$
\left[H_{0}+\lambda V, I_{\alpha}\right]=0
$$

Local IOM

$$
\begin{aligned}
& \quad I_{1}=n_{1}+A_{2,1} c_{2}^{\dagger} n_{1} c_{0}+A_{2,2} c_{2}^{\dagger} c_{0}+\ldots \\
& +A_{3,1} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger} c_{2} c_{1} c_{0}+A_{3,2} c_{3}^{\dagger} c_{2}^{\dagger} c_{2} c_{0}+\ldots
\end{aligned}
$$

the number of terms at distance $r 4^{r}$
the amplitudes are random numbers

$$
\left|A_{r}\right|=\max _{i}\left|A_{r, i}\right|
$$

In the localized regime we expect

$$
\exists \xi>0 \quad \lim _{r \rightarrow \infty} P\left(\left|A_{r}\right|<e^{-r / \xi}\right)=1
$$

so that the operators are (quasi-)local

Local IOM

$$
\left[H_{0}+\lambda V, I_{\alpha}\right]=0
$$

In perturbation theory: $\quad\left[H_{0}, I_{\alpha}^{(n)}\right]+\left[V, I_{\alpha}^{(n-1)}\right]=0$

To make analytic progress, we focus on the tail of the operators and estimate

$$
A_{r}=\lambda^{r} c_{0}(r)+\lambda^{r+1} c_{1}(r)+\ldots
$$

to lowest order in perturbation theory

$$
c_{0}(r) \simeq q^{r}
$$

Perturbation theory

Hopping in operator space

Lowest order: shortest paths from a short to a long operator (forward approximation)
This should give a lower bound for the critical interaction

Perturbation theory

Resonances are less important in the exact solution than in the fwd approx

This is equivalent to the ImSCBA in BAA's perturbation theory (see also Abou-Chacra, Anderson, Thouless 1973)

Perturbation theory

We only include terms in the n-th order operator which look like this:

λ^{0}
λ^{3}
$4 c^{\dagger}, 4 c$

Consider the two branching trees

Perturbation theory

One sub-tree generates an amplitude:

$$
A=\frac{\lambda \delta_{\xi}}{E+\delta E_{1}} \frac{\lambda \delta_{\xi}}{E+\delta E_{1}+\delta E_{2}} \frac{\lambda \delta_{\xi}}{E+\delta E_{1}+\delta E_{2}+\delta E_{3}} \frac{\lambda \delta_{\xi}}{E+\delta E_{1}+\delta E_{2}+\delta E_{3}+\delta E_{4}}
$$

Correlated denominators

Problem: it looks like there are $n!$ terms at order n but they are actually correlated

$$
\begin{aligned}
& A=\frac{1}{B_{1}\left(E_{1}+E_{2}\right)\left(E_{1}+E_{2}+E_{3}\right)}+\frac{1}{E_{1}\left(E_{1}+E_{3}\right)\left(E_{1}+E_{3}+E_{2}\right)}+\frac{1}{B_{3}\left(E_{3}+E_{1}\right)\left(E_{1}+E_{2}+E_{3}\right)} \\
& =\begin{array}{l}
\text { Independent amplitudes } \\
B_{3}+E_{1}\left(E_{1}+E_{2}\right)
\end{array} \\
& \text { correspond to independent } \\
& \text { physical processes }
\end{aligned}
$$

Figure 3: Snops in the many-budy latitice corresponding to different procasses with the sanue final state, and the corresponding ordered graphs. The graphs differ oaly in the order in which the interactions U_{1}, U_{2}, U_{3} act. The weights of such paths are strongly correlated: they are all proportional to the same product of metrix clements, $U_{1} U_{2} U_{3}$, end have highly correlated denominators. The sum over all these ordered graphs constitutes a diapram.

Correlated denominators

The many-body amplitude

$$
A=\prod_{a=1, \ldots, n} \frac{\lambda \delta_{\xi}}{E+\sum_{i=1}^{a} \delta E_{i}}
$$

is different from the single-particle one

$$
A=\prod_{a=1, \ldots, n} \frac{\lambda \delta_{\xi}}{E+\delta E_{a}}
$$

We need to find $P(A)$ and we cannot use the techniques used for single particle AL

Correlated denominators

Very different probability distributions...

many body

single particle

Consider $Y=-\ln |A|$

Correlated denominators

We can compute the Laplace transform

$$
G_{N}(k)=\mathbb{E}\left[e^{-k Y}\right]
$$

and eventually invert it to get

$$
P(Y)=\int_{B} \frac{d k}{2 \pi i} e^{k Y} G_{N}(k)
$$

we anticipate that we are going to do a saddle point calculation with

$$
Y \sim N
$$

Correlated denominators

$$
\begin{gathered}
G_{N}(k)=\int d^{N} x(2 \pi)^{-N / 2} e^{-\sum_{i} \frac{x_{i}^{2}}{2}} e^{k \sum_{i} \log \left|s_{i}\right|} \\
G_{N}(k)=\int d^{N} x \prod_{i} f\left(s_{i}-s_{i-1}\right) e^{k \sum_{i} \log \left|s_{i}\right|} \\
G_{N}(k)=\int d s_{N} O^{N-1}[f]\left(s_{N}\right)\left|s_{N}\right|^{k} \\
O[f](s)=\int d t f(s-t)|t|^{k} d t
\end{gathered}
$$

Correlated denominators

We cast the Laplace transform in a transfer matrix

calculation

$$
\begin{gathered}
G_{N}(k)=\left(\frac{\delta_{\xi}^{2 k}}{2 \pi}\right)^{N / 2}\left\langle\psi^{\prime}\right| \mathcal{H}^{N}|\psi\rangle . \\
\mathcal{H}_{n, m}=\frac{\Gamma\left(\frac{1+k}{2}+m+n\right)}{\sqrt{\Gamma(1+2 m)} \sqrt{\Gamma(1+2 n)}}
\end{gathered}
$$

So we need to find the largest eigenvalue of H

Correlated denominators

This can be done (large Y means $k \rightarrow-1$) and we find that

$$
P(Y)=\int \frac{d k}{2 \pi i} e^{N(y+\log (\mu))} \simeq\left(\frac{Y}{y_{0} N}\right)^{N} e^{-Y / y_{0}\left(1-\gamma /\left(2(Y / N)^{2}\right)\right.}
$$

This is the probability distribution of a single amplitude
We now need to find how many terms are there in the sum

$$
I_{\alpha}^{(n)}=\sum_{|\mathcal{I}|=|\mathcal{J}|=n} A_{\mathcal{I}, \mathcal{J}} O_{\mathcal{I}, \mathcal{J}}
$$

of the order n correction

Counting diagrams

Topology + assignment of indices $\alpha, \beta, \gamma, \delta$

Topology:

Classic combinatorics problem (generalized Catalan numbers)

$$
T_{n}=\sum_{m_{1}, m_{2}, m_{3}, \sum_{i} m_{i}=n} T_{m_{1}} T_{m_{2}} T_{m_{3}}
$$

Counting diagrams

$$
\begin{gathered}
T(x)=\sum_{n} T_{n} x^{n} \quad T_{n}=\sum_{m_{1}, m_{2}, m_{3}, \sum_{i} m_{i}=n} T_{m_{1}} T_{m_{2}} T_{m_{3}} \\
T(x)=1+x T(x)^{3} \quad x=\frac{T-1}{T^{3}} \equiv f(T)
\end{gathered}
$$

Lagrange inversion theorem:

$$
\begin{gathered}
T_{n}=\lim _{T \rightarrow 1} \frac{1}{n!} \frac{d^{n-1}}{d T^{n-1}}\left(\frac{T-1}{f(T)-0}\right)^{n} \\
T_{n}=\frac{1}{2 n+1}\binom{3 n}{n} \sim\left(\frac{27}{4}\right)^{n}
\end{gathered}
$$

Counting diagrams

Assignment of indices defines the spatial structure of the excitations

e.g. ballistic excitation

$$
K=\xi / a
$$

It is convenient to consider the picture of a particle which hops from volume to volume leaving a trail of excitations

Local IOM

The important processes are those in which an excitation can travel staying (almost) in resonance

$$
\begin{gathered}
\Delta E=\left(E_{1}-E_{2}\right)+\left(E_{3}-E_{4}\right)+\left(E_{5}-E_{6}\right) \lesssim \delta_{\xi} \\
T \ll W: K \sim T / \delta_{\xi} \quad T \gg W: K \sim W / \delta_{\xi}
\end{gathered}
$$

We need to estimate the probability that a resonance occurs far away

Counting diagrams

Assigning indices: describing the trail of excitations In every box i there are m excitations

$$
\mathcal{N}_{N} \approx \overline{\mathcal{P}(d)} \sum_{\left\{m_{i}\right\} \mid \sum_{i} m_{i}=N} \frac{1}{2} \prod_{i=1}^{n}\left[2 \mathcal{K}^{m_{i}} m_{i} \mathcal{T}_{m_{i}}\right]
$$

We need to maximize this number over the m's

$$
\mathcal{N}_{N} \approx\left(\mathcal{K} e^{\mu}\right)^{N} \approx(10.6 \mathcal{K})^{N}
$$

Counting diagrams

Figure 6: The plot (a) shows the distribution of the number n_{m} / N of groups of m particle-hole pairs in necklace diagrams dominating \mathcal{N}_{N}. The plot (b) shows the probability $m n_{m} / N$ that a given pair belongs to a group containing m pairs.

Recapitulate

- I) Find distribution of amplitudes of a single diagram giving a long operator inside I_{α}
- 2) Count the number of diagrams
- 3) Count the number of spatial processes pertaining to a given assignment of indices

Result

for $\quad \lambda<\lambda_{c}=\frac{\sqrt{2 \pi}}{\nu(1-\nu) 2 e C} \frac{1}{K \ln K}$

$$
\begin{gathered}
18.97<C<36.25 \\
K \sim T / \delta_{\xi} \\
K \sim W / \delta_{\xi}
\end{gathered}
$$

we can find operators I_{α} (one per site) $I_{\alpha}=0,1$

$$
\left[H, I_{\alpha}\right]=0
$$

Then the eigenstates can be written as bit strings

$$
\left|E_{m}\right\rangle=|0,1,0,0,0 \ldots, 1\rangle
$$

each bit is the eigenvalue of a local operator

$$
\operatorname{Tr}\left(I_{\alpha} c_{r}^{\dagger} c_{r}\right) \sim e^{-d(\alpha, r) / \ell}
$$

Convergence of p.t. for LIOMs

We found that the IOM are local for

$$
\lambda<\lambda_{c}=\frac{\sqrt{2 \pi}}{\nu(1-\nu) 2 e C} \frac{1}{K \ln K}
$$

For $\lambda>\lambda_{c}$ there are several different scenarios
a) All LIOMs die, becoming non-local b) Some LIOMs "die," some don't (a la KAM)

This problem is open

Conclusions

- MBL phenomenology can be recovered by conjecturing the existence of local IOMs
- We can show, under the same approximations of BAA, that LIOMs exist for weak interactions/strong disorder
- We can find the radius of convergence of the perturbation theory

