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Fig. 3: (Colour on-line) The distribution φ of scaled wave
function amplitudes x=N| ⟨a|E⟩ |2 for different values of h.
Upper panel: h= 1.2 in the middle of the ergodic phase where
the scaling is perfectly verified; lower panel: h= 4.2 in the
many-body localized phase. In each panel the different curves
correspond to different values of N , from 8 to 16. Each curve is
obtained by binning of not less than 3 106 squared amplitudes.

α= 1/2 and the large-x behavior is exponential [22] remi-
niscent of the Porter-Thomas distribution of RMT [23].
Comparing the power-law tail with the exponential one
of the delocalized phase in the Anderson problem, we
conclude that already deep in the delocalized region, there
are sign of pre-localization. The almost perfect collapse of
the curves in the upper panel of fig. 3 allows a much better
finite-size scaling analysis than any of its moments.
As h approaches hc ≃ 2.6 the elbow smoothens and α→1

so that we can identify hc as the point at which α= 1,
the distribution stops being summable and necessarily the
independence on N ceases3. This occurs at hc = 2.55±
0.05 as it can be seen in fig. 4. An explicit N -dependence
of φ means that the scaling of all the IPRs and of the
diagonal entropy with N change abruptly and ergodicity
is broken.
The exponent β governs the scaling of the various

IPRq’s. For 0< q < β− 1 the integral in (8) is finite and
IPRq ∼N 1−q. If instead β− 1< q, since the integral in (8)
is divergent the average of IPRq over the initial states |a⟩
does not exist, but the typical value for a state should

3As ⟨x⟩= 1 is fixed by normalization the divergence of ⟨1⟩ implies
a divergence of the first moment as well. In fact, β = 2 occurs at the
same value of hc.
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Fig. 4: (Colour on-line) The value of the exponent α (blue
squares) and β (pink circles) in eq. (9) for N = 16 (these
exponents are independent of N within the symbol size). The
exponent α crosses the value 1 required by summability, which
occurs at h≃ 2.55± 0.05, precisely where (within errors) β
crosses the value 2, required for the existence of the first
moment (normalization of the wave function).

be found by looking at the sum of N -independent and
identically distributed variables xqa. One then finds the
probability density for

∑
a≤N x

q
a ≡ Y (by computing and

then inverting its Laplace transform, provided β > 2) as

P (Y )∝ Y −
3−γ
4−2γ exp

⎛

⎝−C
(
N

1
γ−1

Y

) γ−1
2−γ
⎞

⎠ , (10)

where γ = 1+ (β− 1)/q, (1< γ < 2) and C is a constant
of O (1). This distribution has a power-law tail but the
typical value of the sum is set by the exponential as Y ∼
N 1/(γ−1)≫N . This implies typical values of the IPRq of
a state, when q > β− 1:

IPR(N)q ∼N−q+
q
β−1 . (11)

The different IPRq’s define different “critical points” hq
solutions of β(hq) = q+1. The real transition, signaled by
an explicitN -dependence of full distribution φ can then be
identified by the diagonal entropy (6), or the limit as q→ 1
of IPRq, therefore when β = 2. What is the possible origin
of the power-law tail at large x?4. This can be linked with
the existence of a many-body mobility edge at some energy
E∗(h), where eigenstates occupy O (N ) sites above E∗ and
O (N a) (a(h)< 1) below E∗ and to a competition between
the canonical entropy (the logarithm of the number of
states between energy E and E+dE) and the diagonal
entropy multiplied by q. This phenomenon deserves better
investigation in a future work.
Summarizing, the coincident divergence of ⟨1⟩ (a

non-summability of φ(x) at small x), and of ⟨x⟩ (non-
summability of xφ(x) at large x) signal the beginning
of the localized region. This implies an accumulation of
wave function amplitudes towards small values typical
of localized states [21]. We expect then that the scaling

4We thank V. Oghanesyan for discussions on this point.
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