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Motivation
❖ How to introduce disorder in ultracold atoms

❖ Disordered potential:

❖ Extra speckle potentials

❖ Optical superlattices of incommensurate frequencies

❖ Holographic masks

❖ Different atomic species acting as impurities

❖ Disordered interaction terms:

❖ Magnetic Feshbach resonances

❖ Optical Feshbach resonances

❖ The spin-1 Bilinear-Biquadratic chain has been widely studied and its 
possible phases when no disorder is present are well known



Overview
❖ Method:

❖ Introduce randomness into self-interaction coefficients of the Bilinear-
Biquadratic model

❖ Allow coefficients to take values on either side of a first order phase transition

❖ Density matrix renormalisation-group (DMRG)

❖ Investigate disorder averaged order parameters

❖ Study entanglement entropy distributions

❖ Findings:

❖ Found an intermediate phase between the disordered ferromagnetic and the 
disordered dimer phases

❖ Proposed a modified Edwards - Anderson order parameter as the order 
parameter to characterise the intermediate phase

❖ Entanglement entropy distribution changes from broad in the intermediate 
phase to peaks in the disordered dimer phase



Bilinear-Biquadratic model

Effective Bose-Hubbard Hamiltonian for Spin-1 Bosons is:
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With filling per site 1 and t<<U0, this reduces to:

The Bilinear-Biquadratic Hamiltonian.
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J1i = f(U0, U2i , U2i+1) J2i = g(U0, U2i , U2i+1)

A. Imambekov et al.
Phys. Rev. A 68, 063602

(2003)



Homogeneous phase diagram
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Coupling relation
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Coupling relation

U2i = U2C + ⌘ (2⇣i � 1)
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Coupling relation
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Coupling relation
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Strong-disorder renormalisation-group

V. L. Quito et al.
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(2015)



Strong-disorder renormalisation-group
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 Local correlations with random interactions
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Nearest neighbour correlations with random interactions
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Nearest neighbour correlations with random interactions
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Dimer order parameter
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G. De Chiara et al.

Phys. Rev. A 83, 021604
(2011)



Average magnetisation
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Domain walls

Domain walls are identified by counting the sign changes
occurring in the nearest neighbour correlations.



Domain walls

Domain walls are identified by counting the sign changes
occurring in the nearest neighbour correlations.
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Modified Edwards - Anderson order parameter
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Modified Edwards - Anderson order parameter
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Von Neumann entropy
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Entropy distribution in dimer phase
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Conclusions and open questions

❖ Found evidence of an intermediate phase between the 
disordered ferromagnetic and disordered dimer phases

❖ Characterised by a finite EA order parameter

❖ Disordered dimer phase moves towards random singlet 
phase (RSP) as disorder increases

❖ Does phase scale with disorder?

❖ How does the intermediate phase react to the presence 
of uniaxial field?
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