57 Cracow School of Theoretical Physics: Entanglement and Dynamics

Magnetic phases of spin-1 lattice gases with random interactions

Kenneth McAlpine

Queen's University Belfast

Outline

- Motivation
- * Bilinear-Biquadratic model
- Homogeneous phase diagram
- * Results
- Conclusions and open questions

Motivation

- How to introduce disorder in ultracold atoms
 - * Disordered potential:
 - Extra speckle potentials
 - * Optical superlattices of incommensurate frequencies
 - Holographic masks
 - * Different atomic species acting as impurities
 - Disordered interaction terms:
 - Magnetic Feshbach resonances
 - * Optical Feshbach resonances
- * The spin-1 Bilinear-Biquadratic chain has been widely studied and its possible phases when no disorder is present are well known

Overview

- * Method:
 - Introduce randomness into self-interaction coefficients of the Bilinear-Biquadratic model
 - * Allow coefficients to take values on either side of a first order phase transition
 - Density matrix renormalisation-group (DMRG)
 - Investigate disorder averaged order parameters
 - Study entanglement entropy distributions
- * Findings:
 - Found an intermediate phase between the disordered ferromagnetic and the disordered dimer phases
 - Proposed a modified Edwards Anderson order parameter as the order parameter to characterise the intermediate phase
 - Entanglement entropy distribution changes from broad in the intermediate phase to peaks in the disordered dimer phase

Bilinear-Biquadratic model

Effective Bose-Hubbard Hamiltonian for Spin-1 Bosons is:

$$H = \frac{U_0}{2} \sum_{i} n_i (n_i - 1) + \frac{U_2}{2} \sum_{i} (\mathbf{S}_i^2 - 2n_i) - \mu \sum_{i} n_i \\ - t \sum_{i,\sigma} \left(a_{i,\sigma}^{\dagger} a_{i+1,\sigma} + a_{i+1,\sigma}^{\dagger} a_{i,\sigma} \right)$$

With filling per site 1 and $t << U_0$, this reduces to:

$$H = \sum_{i}^{L-1} J_{1i} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} \right) + \sum_{i}^{L-1} J_{2i} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} \right)^{2}$$
$$J_{1i} = f(U_{0}, U_{2i}, U_{2i+1}) \qquad J_{2i} = g(U_{0}, U_{2i}, U_{2i+1})$$

The Bilinear-Biquadratic Hamiltonian.

A. Imambekov et al. Phys. Rev. A 68, 063602 (2003)

Homogeneous phase diagram

 $U_{2i} = U_{2C} + \eta \left(2\zeta_i - 1 \right)$

 $U_{2i} = U_{2C} + \eta \left(2\zeta_i - 1 \right)$

 $U_{2i} = U_{2C} + \eta \left(2\zeta_i - 1 \right)$

Strong-disorder renormalisation-group

Strong-disorder renormalisation-group

Local correlations with random interactions

Local correlations with random interactions

Nearest neighbour correlations with random interactions

Nearest neighbour correlations with random interactions

Dimer order parameter

Average magnetisation

$$m_A = \frac{1}{L} \sum_i \left[\langle S_{zi} \rangle \right]_D$$

Domain walls

Domain walls are identified by counting the sign changes occurring in the nearest neighbour correlations.

Domain walls

Domain walls are identified by counting the sign changes occurring in the nearest neighbour correlations.

Modified Edwards - Anderson order parameter

$$q = \frac{1}{L} \sum_{i} \left[\langle S_{zi} \rangle^2 \right]_D - \left[\langle S_{zi} \rangle \right]_D^2$$

Modified Edwards - Anderson order parameter

$$q = \frac{1}{L} \sum_{i} \left[\langle S_{zi} \rangle^2 \right]_D - \left[\langle S_{zi} \rangle \right]_D^2$$

Von Neumann entropy

Entropy distribution in dimer phase

$$U_{2C} = 0.1$$

Conclusions and open questions

- * Found evidence of an intermediate phase between the disordered ferromagnetic and disordered dimer phases
- * Characterised by a finite EA order parameter
- Disordered dimer phase moves towards random singlet phase (RSP) as disorder increases
- * Does phase scale with disorder?
- * How does the intermediate phase react to the presence of uniaxial field?

Collaborators

Gabriele De Chiara Queen's University Belfast

Simone Paganelli University of L'Aquila

Sergio Ciuchi University of L'Aquila

Anna Sanpera Autonomous University of Barcelona