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Classical dynamics in a disordered potential
Particle in a disordered (random) potential:

When                    , the particle is classically trapped in the 
potential wells.
When                    , the classical motion is ballistic in 1d, typically 
diffusive in dimension 2 and higher.

Particle with energy E

Disordered potential V(z) (typical value V0)

One-dimensional system Two-dimensional 
system



Short-time dynamics of a Gaussian wavepacket
In the presence of a moderate disorder

1. Very short 
time: The atoms 
fall into the 
potential minima 
and convert 
potential energy 
into kinetic energy

2. The atomic 
matter wave is 
later scattered by 
the potential hills



Beyond the single scattering time

Diffusive motion: 



Long time dynamics: towards 2d Anderson localization



Anderson (a.k.a. Strong) localization
Particle in a disordered (random) potential:

When                    , the particle is classically trapped in the 
potential wells.
When                    , the classical motion is ballistic in 1d, typically 
diffusive in dimension 2 and higher.
Quantum interference may inhibit diffusion at long times =>

Anderson localization

Particle with energy E

Disordered potential V(z) (typical value V0)

One-dimensional system Two-dimensional 
system



Anderson localization in 1d
Anderson localization is the generic behavior, even for small disorder!
Simple Anderson model: discretized Schroedinger equation on a 1d lattice.

Schroedinger equation at energy  E :

Can be rewritten 

Sites

: diagonal disorder ²n

with the transfer matrix:

t=1: hopping



Anderson localization in 1d
Propagation of the transfer matrix:

   is the product of independent random matrices with unit 
determinant => the eigenvalues of       typically behave like          
                  at large n.
Boundary conditions forbid exponential growth at large distance.

Exponential localization of the wavefunction

T
T

exp(§¸n)

: localization length

mean free path



Anderson localization in 1d
Continuous Schroedinger equation:

=> back to Anderson model with correlated disorder
Typical exponential localization of an eigenstate:

Strong fluctuations on top of average exponential decay.

Spatial discretization: Ã((n+ 1)±) + Ã((n¡ 1)±)¡ 2Ã(n±)

±2

¡ ~
2

2m
¢Ã(z) + V (z)Ã(z) = EÃ(z)

zoom

Superposition of 
forward and backward 
propagating waves



Anderson localization in 1d
Propagation of an initially localized wave-packet:

Initial
Gaussian 

wavepacket Log 
scale

Exponential localization
at long time

Both             and         
                display 
signatures of 
Anderson localization



Anderson localization in 1d
When averaged over time and/or different realizations of the 
disorder, the fluctuations are smoothed out:

Log scale

Averaged over 
800 realizations 
of the disorder

Approximate
exponential localization



1d Anderson localization
“Dilute” system:

Everything can be computed analytically using e.g. the DMPK 
(Dorokov, Mello, Pereyra, Kumar) equations. 

“Optical thickness” of the sample:

Typical transmission T:
                             =>            is self-averaging at large t.

But:

Approximately log-normal distribution:

wavevector of the particle scattering mean free path

weak disorder approximation

system size

localization length=

T is not self-averaging



1d Anderson localization
The full (localized at infinite time) density profile is perfectly 
well predicted by the DMPK equations.
N.B.: Temporal dynamics can also be computed.

  
DMPK prediction

Numerical
simulation



Quasi-1d Anderson localization
   transverse channels:

Transfer matrix is now a                 matrix.
Exact solution known in the weak scattering regime
Localization length:

Classical dynamics (and quantum dynamics before 
localization sets in) is diffusive with diffusion coefficient:
 

: on-site disorder

number of channels
mean free path

particle velocity



Outline

Lecture 1
What is Anderson localization?
1d systems
Scaling theory of Anderson localization

Lecture 2
How to observe Anderson localization?
Cold atoms and disorder
Critical analysis of experimental results

Lecture 3
Alternative characterizations of Anderson localization
Towards many-body localization 



Length scales – time scales
Microscopic quantities

     : mean free path
     : mean scattering time
                 : de Broglie wavelength

 Macroscopic quantities:
Diffusion coefficient 
Localization length 
System size 

Two very important time scales for a finite system
Thouless time: time for a diffusive particle to cross the system

Heisenberg time: time to resolve the discrete energy spectrum

mean level spacing

density of states 
per unit volume



Time scales: the Heisenberg time 

Quantum autocorrelation function 
for a chaotic or disordered 
system 

Fourier transform at short time

The peaks associated with individual 
energy levels are not resolved!

Fourier transform at long time 
(longer than the Heisenberg time)

The peaks  are resolved!



Heisenberg vs. Thouless

If                     , the system “feels” the discreteness of the 
energy spectrum before touching the edges => expect 
localization with
If                     , do no expect localization.  

Einstein conductivity Conductance

Dimensionless
conductance

Area

Anderson insulator

Ohmic metal



What did we learn so far?
Anderson localization is a generic localization behavior for 
quantum disordered one-body systems.
It is due to quantum interference between multiply scattered 
paths.
It exists in dimension 1, 2, 3...
It can be studied and understood in details in 1d.
Scaling properties of the quantum dynamics show that the 
dimensionless conductance g is THE important parameter

Area
Anderson insulator

Ohmic metal



Scaling theory of localization

Proposed by the “gang of four” (Abrahams, Anderson, 
Licciardello, Ramakrishnan, 1979).
Approximate theory neglecting (large) fluctuations.
Assume that localization/delocalization properties are determined 
by the dimensionless conductance g and its dependence on the 
system size L.
Define:

Hypothesis: one parameter scaling law.



Scaling theory in 1d

Landauer formula for the dimensionless conductance:

Neglect all fluctuations and use:

Then: 



Scaling function in 1d                      

Localized regime

microscopic scale
(one mean free path)

The dynamics is never
diffusive in 1d systems!

Diffusive regime



Scaling function in 1d and quasi-1d

Localized regime

microscopic scale
(one mean free path)

The dynamics is diffusive 
at short times in quasi-1d systems

Diffusive regime



2d Anderson localization takes a VERY long time!

On a long time 
scale:

Average spatial 
density:

Position (along x or y)

Gaussian profile at 
short time

Approximately 
exponential profile 

at long time

ANDERSON LOCALIZATION



Anderson localization in 2d systems
Dimensionless conductance in the “classical” diffusive regime

For time-reversal invariant systems, the constructive 
interference between time-reversed paths increase the 
probability to come back at the initial point (enhanced return to 
origin) and decrease the conductance (weak localization) 



Scaling function in dimension d
Localization is proved for sufficiently strong disorder (see 
lectures of A. Scardicchio), i.e. sufficiently small     .
(Over)simple model: an hyper-cube of size    is equivalent to 
           1d resistances of length     in parallel.

prefactor known to be wrong
(weak localization correction)



Scaling function in dimension d

ln(g)



Prediction of the scaling theory
Dimension 1: (almost) always localized. 
 

Localization length                                         : mean free path.

Dimension 2: marginally localized.
 

Localization length

Non-time reversal-invariant spinless systems: localization

Time-reversal invariant half-integer spin systems: transition 

`



Scaling function in dimension d

ln(g)

Critical point



Anderson localization in 3d (and beyond)
For weak disorder, the quantum motion is diffusive (weak 
localization) => metallic behaviour.
For strong disorder, Anderson localization takes place => 
insulator.
The metal-insulator transition (Anderson transition) takes place at 
the “mobility edge”. It is controlled by the      parameter. The 
critical point is approximately given by:

The Anderson transition is a second-order transition. On the 
insulating side, the localization length diverges like:

On the metallic side: 

 

k`

(non universal) Ioffe-Regel criterion



Anderson localization in 3d (and beyond)
For weak disorder, the quantum motion is diffusive (weak 
localization) => metallic behaviour.
For strong disorder, Anderson localization takes place => 
insulator.
The metal-insulator transition (Anderson transition) takes place at 
the “mobility edge”. It is controlled by the      parameter. The 
critical point is approximately given by:

The Anderson transition is a second-order transition. On the 
insulating side, the localization length diverges like:

On the metallic side: 
Numerical results suggest                  in 3d.
A simple “mean field” approach also finds
There are perturbative expansions in dimension 
 

k`

º = 1

(non universal) Ioffe-Regel criterion



Mobility edge in 3d (and higher dimensions)
Continuous system, the mean free 
path usually increases with energy.
          is reached at a given energy
called the mobility edge.

For particles on a lattice (e.g. Anderson model):

Energy

all states 
are localized

all states 
are extended

increases with the disorder strength
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Metal-insulator transition d=3

C
o
n
d

u
ct

iv
it

y
Impurity concentration

Critical point

Linear behaviour
critical exponent=1

Effect of electron-electron
 interaction?Anderson 

insulator

S. Katsumoto et al, J. Phys. 
Soc. Japan, 56, 2259 (1987)



How to observe Anderson localization with 
atomic matter waves?

Direct measurement of a “conductance” is difficult.
Ioffe-Regel criterion            (   : atomic wavevector    : mean-
free path) requires correlation length in the sub micrometer 
range, in the three spatial directions.

Measure atomic 
density in 
configuration or 
momentum space

Prepare BEC 
or Fermi 
degenerate 
gas in a trap

Time

Let the atomic 
cloud expand 
in the presence 
of disorder

Must be very long
(of the order of seconds)

Switch off 
trap and 
ramp up 
disorder

Can be sudden or 
adiabatic. Final atomic 
state (energy, momentum) 
not very well controled



Quantum dynamics of the external motion of cold atoms
Control of the dynamics with laser fields, magnetic fields, gravitational field.
Orders of magnitude:

Velocity: cm/s
De Broglie wavelength: mm
Time: ms-ms

One-body (if sufficiently dilute) zero-temperature quantum dynamics with small 
decoherence. For dense gases, use Feshbach resonances to control atom-
atom interaction.
Interaction with quasi-resonant light

“Real” scattering of photons kills phase coherence => use a large detuning

Dominant effect: light-shift 
of the atomic transition 
proportional to the intensity I 
seen by the atom.

Effective optical potential for the motion of the atom center of mass

Very favorable!

Ground state

Excited state, width Γ
Detuning

Scattering 
amplitude

 



Speckle optical potential (2D version)
Speckle created by shining a laser on a diffusive plate:

The speckle electric field is a (complex) random variable with 
Gaussian statistics. All correlation functions can be computed.
Depending on the sign of the detuning, the optical potential is 
bounded either from above or from below

Courtesy of V. Josse,
Institut d'Optique
(Palaiseau)

Speckle spot size

l : laser wavelength
θ0 : Numerical Aperture

θ0



A typical realization of a 2D blue-detuned 
speckle potential

Dark region
(low potential,
zero energy)

Bright spot
(high potential)

Distribution of potential value

Rigorous low energy bound, no high energy bound



Spatial correlation function for speckle potential

correlation length
2D

3D

* Important energy scales:  energy of the atoms E
                                            potential strength
                                            correlation energy 

* When               the de Broglie wavelength is equal to σ 

“quantum” regime “classical” regime
* Anderson localization is expected for 
* Weak disorder calculations (mean free path, diffusion constant...) are 
possible for                  , but not valid in the strong localization regime



1d Anderson localization of  atomic matter waves

 

Disordered potential 
(optical “speckle” potential)

Final atomic density
(after 1 second)

Laser beam for 
transverse confinement 

Initial atomic density

J. Billy et al, Institut d'Optique (Palaiseau, France), Nature, 453, 891 (2008) 



1d Anderson localization of  atomic matter waves

The final atomic density shows exponential localization 
with localization length of few 100µm!

Log scale

 J. Billy et al, Institut d'Optique (Palaiseau, France), Nature, 453, 891 (2008) 



Temporal dynamics for 1d Anderson localization 
of atomic matter waves

 

J. Billy et al, Institut d'Optique (Palaiseau, France), Nature, 453, 891 (2008) 



1d Anderson localization of atomic matter waves
Initial atomic cloud produced from dilution of a Bose-Einstein 
condensate => non mono-energetic initial wave-packet.
All k atomic wavectors in a range [{kmax,kmax] are populated 
=> the long distance behaviour is dominated by kmax.
Fluctuations are smoothed out by incoherent superposition of 
various k values.
Lowest perturbation order (Born approximation) for the 
localization length:

Observation of Anderson localization requires small
Very cold atoms
Very small speckle spots

 Apparent mobility edge at                     , but no real metal-
insulator transition.

potential strength

correlation length
of the potential



Comparison between the measured and 
calculated localization lengths

Disordered potential strength

J. Billy et al, Institut d'Optique (Palaiseau, France), Nature, 453, 891 (2008) 



Anderson localization of electrons in a quasi-1d wire

Measure resistance of a 1d 
wire vs. temperature
When the phase coherence 
length becomes longer than 
the localization length => 
exponential increase of the 
resistance
The phase coherence length 
is a smooth function of 
temperature

Y. Khavin et al, Phys. Rev. B 
58, 8009 (1998) 



Anderson localization of atomic matter waves in 
 higher dimension?

In 2 dimensions:

Practical observation of Anderson localization requires very strong 
scattering:

Very cold atoms
Powerful laser
State of the art 2d (or, even worse, 3d) speckle pattern

k` ¼ few units

` : mean free path



Localization length in a 2D blue speckle potential

Sea levelOcean floor Classical
percolation
threshold
L. Pezzé et al., NJP 13, 095105 (2011)
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Anderson localization in 2d

Choi et al, Science, 352, 1547 (2016) 

Low boson density

Theoretical prediction



Anderson localization in 2d
Numerical results
without interactions

Choi et al, Science, 352, 1547 (2016) 

System size

Apparently
delocalized

atoms

Localized
atoms

Localized
atoms

Numerical calculation for 
Coexistence of atoms with 
various energies and vastly 
different localization lengths



Anderson localization in 2d photonic lattices

Ballistic regime 
(no disorder)

Diffusive regime
(small disorder)

Localized regime
(large disorder)

Gaussian shape

Exponential shape

T. Schwartz et al, Nature, 446, 52 (2007)

ln(jÃ(x)j2)

ln(jÃ(x)j2)



Two-dimensional Anderson localization
Exponential dependence of the localization length with 
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I. Manai et al., Phys. Rev. Lett. 115, 240603 (2015), arXiv:1504.04987 

Experimental 
results on the 
atomic kicked 

rotor



Anderson localization of atomic matter waves in 
 higher dimension?

In 2 dimensions:

In 3 dimensions, Ioffe-Regel criterion: 
Practical observation of Anderson localization requires very strong 
scattering:

Very cold atoms
Powerful laser
State of the art 2d (or, even worse, 3d) speckle pattern

(k`)c = 1

k` ¼ few units

` : mean free path



Temporal dynamics in configuration space
The asymptotically localized density in configuration space 
is reached very slowly (in any dimension).
3D dynamics close to the mobility edge is “critical” at short 
time => enormously long time to determine whether the 
dynamics is diffusive or localized.

Time

Localized

Diffusive
Critical regime
(at the mobility edge):

Critical region  around 
the mobility edge



Temporal dynamics in configuration space
The asymptotically localized density in configuration space 
is reached very slowly (in any dimension).
3D dynamics close to the mobility edge is “critical” at short 
time => enormously long time to determine whether the 
dynamics is diffusive or localized.

Time

Localized

Diffusive
Critical regime
(at the mobility edge):

Critical region  around 
the mobility edge

● At the critical point:

● Hence the scaling:



Temporal dynamics in configuration space
The asymptotically localized density in configuration space 
is reached very slowly (in any dimension).
3D dynamics close to the mobility edge is “critical” at short 
time => enormously long time to determine whether the 
dynamics is diffusive or localized.

Time

Localized

Diffusive
Critical regime
(at the mobility edge):

Critical region  around 
the mobility edge



Where is the 3d mobility edge in a speckle optical potential?

Three different experiments give very different results...
                                      

Urbana-Champaign experiment

Florence experimentPalaiseau
experiment

V0: disorder amplitude 
Ec: mobility edge

Average potential

Potential minimum

Anderson localization, or not?

Anderson localization, or not?



Numerical results for the mobility edge

Blue-detuned 3D spherical speckle

Forbidden
region 
(below potential
minimum)

Average potential

Mobility edge
         significantly below
                 the average potential

Can be semi-quantitatively predicted using 
self-consistent theory of localization...



Anisotropic correlated speckle potential
3D speckle has anisotropic correlation functions, depending on the 
numerical aperture NA of the laser beam

Crucial question: what is the relevant energy scale (correlation energy)?

Define an energy scale independent of θ0: 

Speckle spot size in the 
transverse direction:

l : laser wavelength θ0=NA: Numerical Aperture

Speckle spot size in the 
longitudinal  direction x:

courtesy V. Josse

some other combination?

Laser wave-vector

θ0



Mobility edge Ec for an anisotropic speckle 
Ec is negative (below average potential V0) for a blue-detuned speckle

Strongly depends on θ0.  

“Classical” regime 

“Quantum” regime

Pasek et al, PRL 118, 170403 (2017)



What is the correlation energy for anisotropic disorder?

In the vicinity of a potential minimum, the “typical” potential is:

Because the random disorder couples the 3 directions, the 
ground state energy in this potential is IRRELEVANT.
What matters is the geometry of the energy shell.
The relevant parameter is thus 
Same scaling obtained when computing the weak localization 
correction (minimum size of the closed loops).
Correlation energy: 



Approximate scaling property for the mobility edge
Define a proper “correlation” energy:

“Universal” curve!

“Quantum” regime

“Classical” regime

at small 

Pasek et al, PRL 118, 170403 (2017)



Two (coherent) crossed speckles

Use  two different interfering (coherent) crossed speckles 

Shamelessly stolen from  G. Semeghini et al., Nat. Phys. 11, 554 (2015) 

Disorder correlation 
functions

Short correlation 
length in all
3 directions!

Which scale
along the y axis

is relevant?



Mobility edge Ec for two crossed speckles
The relevant energy scale is smaller than for isotropic speckle, but 
larger than for a single anisotropic speckle
The mobility edge Ec is always negative for a blue-detuned speckle

Again, strong dependence with the numerical aperture θ0



Mobility edge Ec for two crossed speckles
The relevant energy scale is smaller than for isotropic speckle, but 
larger than for a single anisotropic speckle
The mobility edge Ec is always negative for a blue-detuned speckle

Again, approximate scaling for the relevant correlation energy:

Pasek et al, PRL 118, 170403 (2017)



Experimental results on the mobility edge
1. Group of B. De Marco (Urbana Champaign). Very 
anisotropic single speckle. Relatively well defined energy 
(fermionic atoms). Duration of the experiment too short to 
detect slow diffusion above the mobility edge.

“Universal” curve

Experimental results
Kondov et al,
Science 334, 66 (2011)

MUCH too high mobility edge!

V0: disorder amplitude 
Ec: mobility edge



Experimental results on the mobility edge
2. Group of V. Josse (Palaiseau). Two crossed speckles, rather 
low fraction of atoms below the mobility edge (energy distribution 
is not directly measured). 

Start with atom with k=0, but disorder is branched abruptly
The energy distribution is given by the spectral function at k=0

The spectral function is broad for strong disorder => atoms are 
excited on both sides of the mobility edge.
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3d localization with ultra-cold bosons (Palaiseau)

Temporal expansion of a 
localized wavepacket in 
the presence of disorder

small disorder (no localization)

large disorder (partial localization)

fraction of 
localized atoms

potential strength

Self-consistent 
theory (corrected by 
“heuristic” shift)

experiment

F. Jendrzejewski et al, 
Nature Physics 8, 398 
(2012)
Institut d'Optique 
(Palaiseau)



Experimental results on the mobility edge
2. Group of V. Josse (Palaiseau). Two crossed speckles, rather 
low fraction of atoms below the mobility edge (energy distribution 
is not directly measured). Measured mobility edge below zero, in 
decent agreement. Mostly in the “quantum” regime.   

“Universal” curve

Experimental results
Palaiseau
F. Jendrzejewski et al.,
Nat. Phys. 8, 398 (2012)

V0: disorder amplitude 
Ec: mobility edge



Experimental results on the mobility edge
3. Group of G. Modugno (Florence).Two crossed speckles, 
large localized fraction, thanks to control of atom-atom  
interactions. Qualitative behavior of the mobility edge with V0 is 
not too bad. Mobility edge is quantitatively too high.  

“Universal” curve

Experimental result
Florence
Semeghini et al, 
Nat. Phys 11, 554 (2015)

Pasek et al, PRL 118, 170403 (2017)

V0: disorder amplitude 
Ec: mobility edge



Temporal dynamics in momentum space
Start from a wavepacket with non-zero initial velocity.
Weak disorder: scattering by disorder to different direction, 
but with roughly the same velocity => isotropization of the 
momentum distribution



Coherent back-scattering (CBS) of light

In general, the interference 
between multiply scattered 
paths produces a random 
pattern => speckle

When averaged over disorder 
realizations, the fluctuation are 
washed out, except in the 
backward direction => CBS
The physics of CBS:

Constructive interference between any 
pair of reversed paths in the back-

scattering direction => enhancement 
factor of the order of 2.

1k⃗ i

k⃗ f

k⃗ f


2

3

Phase difference between the two 
contributions:

: direct path
: reversed path



Experimental observation of CBS with cold atoms  (2D)
Experiment at Institut d'Optique (Palaiseau), weak disorder
One measures the momentum space distribution 

Coherent Back-scattering of atomic matter waves
(signature of quantum transport preserving interference)

F. Jendrzejewski et al, PRL 109, 195302 (2012)

Initial momentum
distribution (along z)

Scattering modifies p,
at fixed ||p||



Coherent Back-Scattering as a probe of 
Anderson localization

Measure the width of the CBS peak as a function of time:
Probe of the localized/diffusive dynamics in configuration space:

In the diffusive regime:
In the localized regime:
At the mobility edge (critical point):

It should be possible to measure it experimentally
Numerical simulations using a 3D speckle potential:

Initial state: plane wave with wavevector
Propagate in the presence of disorder
Measure the (average) momentum distribution at time t
Measure the angular width of the CBS peak around



CBS as a smoking gun of 3D Anderson localization
Results of numerical simulations:

Localized 

Critical

Diffusive

S. Ghosh et al., Phys. Rev. Lett. 115, 200602 (2015)



Scaling law for CBS
Effective size of the system: 
(size where the Heisenberg time is t)

Scaled quantity 

: density
of states

1
/lo
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th From transfer matrix

From CBS



Temporal dynamics in momentum space
Rather strong disorder => 2D Anderson localization on a 
not-too-long time scale.



Coherent back and forward scattering
Cuts of the momentum distribution along the x (// initial 
velocity) and y axes 

Momentum

t=100 t=1000

CBS CFS

Enhancement factor smaller than 2 because 
of the initial momentum dispersion



CBS and CFS twin peaks (2D)
Initial state: pure plane wave
At long time, twin CBS and CFS peaks with enhancement 
factor 2, i.e. contrast 1.
Width of the peaks:



Contrasts and widths of the CBS/CFS peaks vs. time (2D)

Perfect contrast at 
long time
Characteristic 
time scale for CFS 
is      , the 
Heisenberg time 
Both peaks have 
the same width      
      in momentum 
space at long time
Perfect twin peaks 
at long time
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Why are CBS and CFS twins?
Solution of the Schrödinger equation: expansion on the 
eigenbasis of the (time-independent) Hamiltonian H:

where                               and 
Expectation value of any operator O:

In the long time limit, all non-diagonal terms are scrambled:

Take                                  and 
 Density-density 

correlator in 
momentum space



Why are CBS and CFS twins?
In a disordered system, the momentum densities of eigenstates 
              have strong “speckle” fluctuations, with “speckle” spots 
of size           .
Simple model (Random Matrix Theory):           is a complex 
random variable with Gaussian distribution => the CFS peak at  
             has a contrast 1 and a width           . 

For a time-reversal invariant system localized in a finite region 
of space, all eigenfunctions           can be chosen REAL =>

Thus:

N.B.: If time-reversal invariance is broken, CBS disappears but 
CFS survives.
Important question: how long does it take?    

CBS and CFS are 
exact twins in the 
infinite time limit!



Characteristic time for the onset of CFS

How long does it take to scramble all non-zero phases?
Only states within one localization volume of size        
contribute to the dynamics.

The density of such states is                where            is the 
density of states per unit volume.
All phases are scrambled when:

Confirmed by diagrammatic expansions at short time
Exactly solvable in 1D (Micklitz, Müller, Altland, PRL '14)
Approximate asymptotic expression known at long time
Diffusive regime:                     , no CFS...

Heisenberg time



Contrasts and widths of the CBS/CFS peaks vs. time (2D)

Perfect contrast at 
long time
Characteristic 
time scale for CFS 
is      , the 
Heisenberg time 
Both peaks have 
the same width      
      in momentum 
space at long time
Perfect twin peaks 
at long time
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Coherent Forward Scattering in 3D

Localized regime:
CFS is present 
and twin of CBS

Diffusive regime:
no CFS!

Critical regime

3D Anderson
 model

S. Ghosh et al, 
PRA 95, 041602 
(2017) 

CFS is a 
smoking gun 
of Anderson 
localization!



CFS contrast for the 3D Anderson model:
an effective order parameter of the Anderson transition

C
F

S
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o
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tr
a

st
Critical
disorder
W/J=16.5

Diffusive regime:
Localized regime:

S. Ghosh et al, 
PRA 95, 041602 (2017) 



CFS at the critical point
The contrast of the CFS peak at criticality is universal 
(identical for various disorder models)

Conjecture: it is directly related to statistical properties of the 
energy spectrum close to the critical point, itself related to 
the multifractal dimension D1. Work in progress...



Quantum boomerang
or

“Get back to where you once belonged”
Exactly solvable in 1D for weak disorder.
Start from a localized initial wavepacket with non-zero velocity.
At infinite time, same symmetric distribution in configuration 
space irrespective of initial velocity!

Prat et al, arxiv:1704:05241
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Quantum boomerang
Using the Berezinskii/DMPK method, we derive the long-time behavior:

Classical dynamics does NOT return to the origin:

Return to the origin 
is a smoking gun of 
coherent evolution!

Prat et al, arxiv:1704:05241



Why does a wavepacket return to its origin?
Start from the long time limit of:

Choose             and           as a wavepacket with initial 
momentum     .

Expression unchanged when time is reversed
When averaging over disorder realizations, statistical 
invariance by translation and parity is restored =>

Characteristic time scale: Heisenberg time. Truly phase 
coherent quantum effect.
No simple perturbative/diagrammatic explanation (yet).
Is not expected for a non-localized system. 



Quantum boomerang in 2D
No detailed theory yet.
Numerics: return to origin on the time scale of the 
localization time.
Even slower than in 1D, maybe like 1/t.

Localization time around 200τ Prat et al, arxiv:1704:05241



Quantum boomerang in 3D

Expected to be a smoking gun of Anderson localization.
Work in progress...



Alternative signatures of Anderson localization 
for many-body systems?

Coherent back-scattering is a good probe of phase 
coherence. Could be observable on many-body systems. 
Scaling of the CBS peak near the many-body mobility edge 
is unknown.
Coherent Forward Scattering is a signature of one-body 
localization. Not yet observed with cold atomic in disordered 
potentials (recent observation of the kicked rotor…). 
Existence/relevance/properties for many-body systems is a 
completely open question.
Quantum boomerang is another signature, known to be 
affected by decoherence. Unknown behavior in the many-
body regime. 



Towards many-body localization

Anderson localization in high (>>3) dimensions
Critical disorder strength increases
Each site is coupled to more and more (2*d) sites
Loops are less and less probable
The ergodic regime is further and further from the critical point
Upper critical dimension??

Simpler model: Bethe lattice without loops
Localized phase for strong disorder
Non ergodic states below the mobility edge
Drawback: plenty of edge sites

Random regular graphs
Mainly long loops
No edge sites
Controversy on the existence of 
delocalized non-ergodic states
(large finite-size effects in numerics)

K.S. Tikhonov et al, PRB 94, 220203(R) (2016)
B.L. Altshuler et al, PRL 94, 156601 (2017)

G. Biroli et al, arxiv:1211.7334

I. Garcia-Mata et al, arxiv:1609.05857



Beyond the average Green function : 
multifractality of the wavefunctions

At the critical point, the eigenstates display strong fluctuations:
Regions where the wavefunction is exceptionally large;
Regions where the wavefunction is exceptionally small;

A typical eigenstate of 
the 3d Anderson model 
at the mobility edge

L.J. Vasquez et al. PRB 78, 195106 (2008) 



Beyond the average Green function : 
multifractality of the wavefunctions

At the critical point, the eigenstates display strong fluctuations:
Regions where the wavefunction is exceptionally large;
Regions where the wavefunction is exceptionally small;

Can be quantitatively studied using the multifractality spectrum.
Finite system of size L in dimension d.

In the diffusive regime, the average behaviour is:
In the localized  regime:

Multifractality spectrum f(®) : measure of the regions of space 
where:

Directly related (Legendre transform) to the "mass exponent"     
       of the generalized Inverse Participation ratio:



Multifractality spectrum

 ® 

At the critical point, the whole curve scales with the system size



Multifractality spectrum for the 3d Anderson 
model at the critical point

Fixed system size L Rescaled data for various sizes

Eigenstates of the critical 3d Anderson model
Rodriguez et al, PRL 102, 106406 (2009)



Multifractality spectrum of the 3d Anderson model at the critical point

Eigenstates of the critical Anderson model  [Rodriguez et al,       
                                                                           PRL 102, 106406 (2009)]

The most probable value of             is          with   
Expansions in dimension 2+ε predicts  
With increasing dimension, the multifractality spectrum 
becomes broader and less parabolic
A similar behavior could exist for many-body states at the 
critical point.

Fixed system size L Rescaled data for various sizes



Anderson localization of electromagnetic waves
All claims of experimental observation of Anderson localization 
of light have been withdrawn, see S.E. Skipetrov and J. Page, 
NJP 18, 021101 (2016) 
Observation with microwaves (transmission and fluctuations):

Microwave propagation
in a mixture of Teflon and

Aluminium spheres
N. Garcia and A.Z. Genack, PRL, 66, 1850 (1991)

Diffusive regime
(Ohm's law)

Critical regime
1/L2



Anderson localization of acoustic waves
Packed (disordered) aluminium beads
Inject acoustic wave at a given point

Look at the spatial profile of the transmitted intensity
In the diffusive regime, expect a Gaussian profile (even in the 
presence of absorption!)
Theory uses a position-dependent diffusion coefficient (B. v. 
Tiggelen et al, LPMMC Grenoble)
Experiment in the group of J. H. Page (Winnipeg)



Anderson localization of acoustic waves
t

Spatial profile on the outgoing face Total transmitted intensity
H. Hu et al, Nat. Phys. 4, 495 (2008), group of J. H. Page (Winnipeg) 



Anderson localization of acoustic waves: fluctuations

H. Hu et al, Nat. Phys. 4, 495 (2008), group of J. H. Page (Winnipeg) 

Diffusive regime Localized regime

See also multifractality of the intensity distribution: 
S. Faez et al, PRL 103, 155703 (2009)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 66
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117

