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Bose-Hubbard Model
Basic model of bosons in an optical lattice:

H = −t ∑
⟨i,j⟩

b†
i bj +

U

2
∑

i
ni(ni − 1) (+∑

i
εi b

†
i bi)

Here, U is contact interaction between two bosons at the same lattice site, which we can parametrize using effective
scattering length (as )

Two phases in limiting cases (for ρ = 1)

J ≫ U: superfluid (SF), delocalized wavefunctions

J ≪ U: Mott insulator (MI), localized wavefunctions

Experimentally realized in an optical lattice in 20021:

Absorption images at time of flight at 15ms, pictures a-h
correspond to V0/ER : 0, 3, 7, 10, 13, 14, 16 and 20

1Markus Greiner et al. “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold
atoms”. In: nature 415.6867 (2002), pp. 39–44.
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Extended Bose-Hubbard Model

Addition of nearest-neighbour tunneling to previous hamiltonian:

H = −t ∑
⟨i,j⟩

b†
i bj +

U

2
∑

i
ni(ni − 1)+V ∑

⟨i,j⟩
ni nj

V is mostly due to dipole-dipole interaction of bosonic particles:

Vdip(r − r ′) = Cdd

4π

1 − 3 cos2 θ

∣r − r ′ ∣3

For particles having magnetic dipole moment Cdd = µ0µ
2, and for particles having electric dipole moment

Cdd = d2/ε0.

Additional phases with this extension to BHM

density wave (DW) phase: U ≫ V ,U ≫ t : "checkerboard" density distribution

Haldane insulator: finite non-local string correlations: Cstr (r) = ⟨δnj e
iπ∑j<k<j+r δnk δnj+r ⟩.
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EBH phase diagram

The phase diagram of EBH for filling ρ = 1 has been
calculated using density matrix renormalization group
(DMRG) 2.

Different phases for V/U = 3/4 and varying filling (here
measured by chemical potential µ) - calculated using
DMRG (black lines) and Quantum Monte Carlo
(symbols)3.

2Davide Rossini and Rosario Fazio. “Phase diagram of the extended Bose–Hubbard model”. In: New Journal of
Physics 14.6 (2012), p. 065012
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3GG Batrouni et al. “Competing phases, phase separation, and coexistence in the extended one-dimensional
bosonic Hubbard model”. In: Physical Review B 90.20 (2014), p. 205123
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The model
We can extend our model even more by including next highest terms in our hamiltonian:4

HGBH = −t ∑
⟨i,j⟩

b†
i bj +

U

2
∑

i
ni(ni − 1) + V ∑

⟨i,j⟩
ni nj + Vnnn ∑

⟪i,j⟫
ni nj − T ∑

⟨i,j⟩
b†

i (ni + nj)bj +
P

2
b†2

i b†2
j

Additional terms:

Vnnn - next-nearest neighbour interaction

T - density dependent tunneling

P - pair tunneling

Describing states of the bosons using Wannier functions (wi(r) describing state at i-th site), we can express above
terms as:

t = −∫ drw∗i (r)
⎡⎢⎢⎢⎢⎣
−h̵2
∇

2

2m

⎤⎥⎥⎥⎥⎦
wj(r) (1)

Uijkl = g∫ d3r1d3r2w∗i (r1)w∗j (r2)U(r1 − r2)wk (r1)wl(r1) (2)

U = U1111, V = U1212, Vnnn = U1313, T = −U1112, P = U1122 (3)

4Omjyoti Dutta et al. “Non-standard Hubbard models in optical lattices: a review”. In: Reports on Progress in
Physics 78.6 (2015), p. 066001.
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Parameter values

For one-dimensional lattice (lattice potentials Vy = Vz = 50ER , Vx = V1):
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Total tunnelings and interactions are the sum of contact and dipole-dipole ones,
t = tc + tdd , U = Uc +Udd
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Engineering U/t and V /t

3 parameters we can adjust

V1: here I used range from 2ER to 20ER

as : scattering length of contact interactions - adjustable by Feshbach resonance

d = Cdd
4πER

, can be changed by adjusting the orientation of magnetic dipoles

For aforementioned lattice depths and set value of d , there is a specific range of V/t values we can get by modifying
V1 and as , which is marked here as a shaded region:

1 2 3 4 5
0

2

4

6

8

V/t
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Phase diagram for ρ = 1

For d = 0.25, V2 = 50ER and varying V1 and as phase diagram was calculated with open boundary conditions
DMRG for sizes up to 400 sites (using itensor library):
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Figure: Simple EBH phase diagram.
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For d = 0.25, V2 = 50ER and varying V1 and as phase diagram was calculated with open boundary conditions
DMRG for sizes up to 400 sites (using itensor library):
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Figure: U/t = 5.5
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For d = 0.25, V2 = 50ER and varying V1 and as phase diagram was calculated with open boundary conditions
DMRG for sizes up to 400 sites (using itensor library):
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Here V/U = 0.75, Vnnn = V/8, T and P are neglected. For various lattice fillings (from ρ = 1 to ρ = 2) phase
diagram was calculated with open boundary conditions DMRG with 192 sites:
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Here V/U = 0.75, Vnnn = V/8, T and P are neglected. For various lattice fillings (from ρ = 1 to ρ = 2) phase
diagram was calculated with open boundary conditions DMRG with 192 sites:
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Figure: Simple EBH phase diagram.
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Here V/U = 0.75, Vnnn = V/8, T and P are neglected. For various lattice fillings (from ρ = 1 to ρ = 2) phase
diagram was calculated with open boundary conditions DMRG with 192 sites:
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Here V/U = 0.75, Vnnn = V/8, T and P are neglected. For various lattice fillings (from ρ = 1 to ρ = 2) phase
diagram was calculated with open boundary conditions DMRG with 192 sites:
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Here V/U = 0.75, Vnnn = V/8, T and P are neglected. For various lattice fillings (from ρ = 1 to ρ = 2) phase
diagram was calculated with open boundary conditions DMRG with 192 sites:
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Here V/U = 0.75, Vnnn = V/8, T and P are neglected. For various lattice fillings (from ρ = 1 to ρ = 2) phase
diagram was calculated with open boundary conditions DMRG with 192 sites:
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Figure: Log-log plot of correlations, ρ = 7/4,
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Summary

Bose-Hubbard model can be generalized with additional terms
that can be calculated straightforwardly using Wannier functions
Including those additional terms do not qualitatively change
phase diagram, proving HI phase robustness
Including next-nearest neighbour interactions influences SS
regime extent for higher lattice fillings and creates additional DW
patterns
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