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In classical physics we classify the possible phases by

symmetries of the system - if there is the change in symmetry,

then we have phase transition

The generic example is water-ice transition : Symmetry
Group (SG) of liquid water is the ISO(3) and of ice is one of

the 3D space groups.

The symmetry breaking is controlled by the order parameter
(e.g. magnetization M in magnetic systems) - if M = 0, the

system is in disordered phase.

Spin liquids are systems where the symmetry is not broken

even when T → 0, i.e. we can not use the SG classi�cation in

that case.
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Consider the Heisenberg Hamiltonian on the 2D triangular lattice:

H = J
∑
<ij>

Si · Sj , J > 0.

Let's try to do the standard Hartree-Fock decoupling:

(Si − 〈Si 〉) · (Sj − 〈Sj〉) ≈ 0⇒

HMF = J
∑
<ij>

(〈Si〉 · Sj + Si · 〈Sj〉 − 〈Si〉 · 〈Sj〉).

For spin liquid states the order parameter 〈Si 〉 = 0 - but then the

mean �eld Hamiltonian is trivial. One has to perform mean �eld

decoupling in more clever way!
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Schwinger boson representation for SU(2)

One can introduce bosonic operators ai , bi for each lattice site:

[ai , a
†
j ] = [bi , b

†
j ] = δij ,

[ai , aj ] = [bi , bj ] = [ai , bj ] = 0.

S+
i = a†i bi , S−i = b†i ai , Szi =

1

2
(a†i ai − b†i bi ).

Moreover, one has constraint setting the representation of SU(2)

(spin):

nia + nib = a†i ai + b†i bi = 2S = κ.
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Bond operators

One can introduce the following, nonlocal bond operators:

Fij =
1

2
(a†i aj + b†i bj),

Aij =
1

2
(aibj − ajbi ).

Mean-Field Hamiltonian

HMF = J
∑
ij

(f ?ij Fij + fij F
†
ij − a?ijAij − aijA

†
ij)+

−J
∑
<ij>

(f ?ij fij − a?ijaij) + µ

(∑
i

(a†i ai + b†i bi )− κ

)
.
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Diagonalization of the mean-�eld Hamiltonian

Hamiltonian HMF has only quadratic interactionsww�
Fourier and Bogoliubov transformationww�

ground state |ΨMF (fij , aij , µ)〉 + consistency relations:

〈ΨMF |Fij |ΨMF 〉 = fij , 〈ΨMF |Aij |ΨMF 〉 = aij (1)

Hilbert space of the mean �eld model is bigger then the

physical Hilbert space - one has to project mean �eld ground

state |Ψ(fij , aij)〉 onto the subspace de�ned by the constraint
nia + nib = 2S .
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Gauge symmetry of the ansatz

The Hamiltonian is symmetric with respect to the following local
gauge transformations:

âi → G (ri )âi ≡ e iφ(ri )âi , b̂i → G (ri )b̂i ≡ e iφ(ri )b̂i

fij → G †(ri ) fij G (rj) ≡ e−iφ(ri ) fij e
iφ(rj )

aij → G (ri ) aij G (rj) ≡ e iφ(ri ) aij e
iφ(rj )

Every gauge transformation G is associated with the function

φ(r) de�ned on the lattice.

Gauge transformations that do not change fij , aij (Invariant

gauge group) form Z2.
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In general gauge transformation changes the mean �eld ansaztz

(aij , fij) But the ansätze related by the gauge transformation give

the same ground state wave function after projection onto the

subspace determined by the constraint:∏
i

(1−G (nianib)) |ΨMF (G (fij , aij))〉 =
∏
i

(1−nianib) |ΨMF (fij , aij)〉

One has many-to-one labeling between mean �eld ansätze and

physical states!
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Not all local U(1) gauge transformations are allowed - they

have to be consistent with lattice symmetries (SG).

For triangular lattice there are 4 generators : T1, T2, R , σ
corresponding to translations, rotation through π

3
and

re�ection through origin.

They satisfy several relations, for example:

T−11 T2T1T
−1
2 = I. (2)

Every symmetry transformation can be written as a

composition of generators
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Symmetries of the mean-�eld ansatz

With every U ∈ SG one can associate gauge transformation GU :

aij = GU aU(i)U(j)

Generators T1, T2, R , σ correspond to space - dependent phases

φT1
(r), φT2

(r), φR(r), φσ(r).

Projective Symmetry Group (PSG) consists of transformations

of the form GU U - but relations between its elements have to be

consistent with relations for Symmetry Group (SG)!
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Equations for generators of lattice symmetry group ⇔
Equations for corresponding phases

Solution to Projective symmetry group equations on the triangular

lattice (F. Wang at al.,2006)

φT1
(r1, r2) = 0 (3)

φT2
(r1, r2) = p1πr1 (4)

φσ(r1, r2) = p2π/2 + p1πr1r2 (5)

2φR(r1, r2) = p3π + p1πr2(r2 − 1 + 2r1) (6)

where p1, p2, p2 ∈ {0, 1}.
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Classi�cation of spin liquid phases

Conjecture (X.G. Wen, Phys. Lett. A 300, 175(2002)) :

Di�erent Projective symmetry groups represent di�erent spin liquid

phases (i.e. they determine the di�erent universality classes) in the

similar way as di�erent Symmetry groups correspond to di�erent

phases in classical Landau theory.
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Nearest-neighbor models

Assuming that nearest-neighbor bonds aij are non-zero, one is left

with two-possible solutions:

Zero-�ux ansatz

p1 = 0, p2 = 0, p3 = 1

φT1
(r1, r2) = 0

φT2
(r1, r2) = 0

φσ(r1, r2) = 0

φR = π/2

π-�ux ansatz

p1 = 1, p2 = 1, p3 = 0

φT1
(r1, r2) = 0

φT2
(r1, r2) = πr1

φσ(r1, r2) = π/2 + πr1r2

φR = πr1r2 + (π/2)r2(r2 − 1)
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Z2 gauge theory

Zero �ux ansatz

a(r1,r2),(r1+1,r2) = a(r1,r2),(r1,r2+1) =

= −a(r1,r2),(r1+1,r2+1)

fij = const

π-�ux ansatz

a(r1,r2),(r1+1,r2) = −a(r1,r2),(r1+1,r2+1)

= (−1)r2+1a(r1,r2),(r1,r2+1)

fij = const = 0
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Aplications

Starting from the values a01 on particular bond and using

gauge transformations between di�erent sites of the lattice one

can generate aij for the whole lattice.

Zero energy gap ⇒ condensation of Schwinger bosons ⇒ long

range ordering of spins, equivalent to spin wave expansion

Non - vanishing gap indicates that the ground state of a model

does not break the symmetry and is probably a spin liquid state
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