Twistor Methods for AdS_{5}

Jack Williams, DAMTP
with David Skinner and Tim Adamo

Outline

1. Twistor theory motivation from 4D
2. Twistors into the bulk
3. Twistors for holography

What is a twistor space?
 Points in Minkowski space can be described by coordinates x^{μ}, but other choices are possible.

What is a twistor space?

One choice is to introduce coordinates $x^{\alpha \dot{\alpha}}$, where $x^{\alpha \dot{\alpha}}=\sigma_{\mu}^{\alpha \dot{\alpha}} x^{\mu}$. (This makes use of the isomorphism $S O(4) \cong S U(2) \times S U(2)$.)

This means points are represented by 2×2 complex matrices

$$
x^{\alpha \dot{\alpha}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
x^{0}+x^{3} & x^{1}+i x^{2} \\
x^{1}-i x^{2} & x^{0}-x^{3}
\end{array}\right) .
$$

What is a twistor space?

It is natural to let this matrix act on complex vectors as $\mu^{\dot{\alpha}}=x^{\alpha \dot{\alpha}} \lambda_{\alpha}$.

What is a twistor space?

The coordinates $\left(\mu^{\dot{\alpha}}, \lambda_{\alpha}\right)$ are homogeneous coordinates on twistor space $\mathbb{C P}^{3}$.

Points in spacetime correspond to lines in twistor space.

What is the point of this?

It helps us to solve equations.

Wave equation on spacetime

$$
\square \phi=\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi=0
$$

In twistor space becomes

$$
\square \phi=\varepsilon^{\alpha \beta} \varepsilon^{\dot{\alpha} \dot{\beta}} \partial_{\alpha \dot{\alpha}} \partial_{\beta \dot{\beta}} \phi=0
$$

What is the point of this?

Make a guess

$$
\phi=\oint_{L_{x}} f(\mu, \lambda)
$$

with $f(\mu, \lambda)$ any holomorphic function.

Then

$$
\begin{aligned}
\square \phi & =\varepsilon^{\alpha \beta} \varepsilon^{\dot{\alpha} \dot{\beta}} \partial_{\alpha \dot{\alpha}} \partial_{\beta \dot{\beta}} \phi \\
& =\oint \varepsilon^{\alpha \beta} \lambda_{\alpha} \lambda_{\beta} \varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial^{2}}{\partial \mu^{\dot{\alpha}} \partial \mu^{\dot{\beta}}} f\left(x^{\alpha \dot{\alpha}} \lambda_{\alpha}, \lambda_{\alpha}\right) \\
& =0
\end{aligned}
$$

What is the point of this?

Any holomorphic function $f(\mu, \lambda)$ gives us a solution to the wave equation

$$
\phi=\oint_{L_{x}} f(\mu, \lambda)
$$

This is the Penrose transform.

The Penrose transform of an arbitrary function on twistor space gives us a solution to the spacetime wave equation.

Analogy with Green's functions

We expect a solution to $\square \phi=0$ to be determined by data on a 3-dimensional boundary.

The function $f: \mathbb{C P}^{3} \rightarrow \mathbb{C}$ is also a function of three variables.

Other Penrose transforms

We can solve other equations too.

Wave	
equation	$\square \phi=0$

$\begin{gathered}\text { Dirac } \\ \text { equation }\end{gathered} \quad \nabla^{\alpha \dot{\alpha}} \phi_{\alpha}=0 \quad \phi_{\alpha}=\oint_{L_{x}} \lambda_{\alpha} f(\mu, \lambda)$

Higher spin $\quad \nabla^{\alpha \dot{\alpha}} \phi_{\alpha \cdots \beta}=0 \quad \phi_{\alpha \cdots \beta}=\oint_{L_{x}} \lambda_{\alpha} \cdots \lambda_{\beta} f(\mu, \lambda)$

Conformal invariance

In AdS/CFT, the boundary field theory is conformally invariant. Conformal invariance is naturally expressed in twistor variables.

Conformal invariance

Lorentz

$$
M_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)
$$

Translations

$$
P_{\mu}=-i \partial_{\mu}
$$

$$
D=-i x^{\mu} \partial_{\mu}
$$

Special
conformal

$$
K_{\mu}=i\left(x^{2} \partial_{\mu}-x_{\mu} x^{v} \partial_{\nu}\right)
$$

Conformal transformations act naturally on the twistor space $Z^{A}=\left(\mu^{\dot{\alpha}}, \lambda_{\alpha}\right)$.

Conformal invariance

The conformal transformations
$J_{B}^{A}=Z^{A} \frac{\partial}{\partial Z^{B}}$ generate linear maps on twistor space $Z^{A}=\left(\mu^{\dot{\alpha}}, \lambda_{\alpha}\right)$.

So lines get mapped onto other lines.

\mathbb{C}^{4}

Conformal invariance

The conformal group is $\operatorname{SL}(4, \mathbb{C})$ (scales don't count in $\mathbb{C P}^{3}$).

Example: Dilatation

$$
D=\mu^{\dot{\alpha}} \frac{\partial}{\partial \mu^{\dot{\alpha}}}-\lambda_{\alpha} \frac{\partial}{\partial \lambda_{\alpha}}
$$

Scales $\mu^{\dot{\alpha}}$ and λ_{α} oppositely. So the line

$$
\mu^{\dot{\alpha}}=x^{\alpha \dot{\alpha}} \lambda_{\alpha}
$$

gets mapped to a line with $x^{\alpha \dot{\alpha}}$ rescaled.

Twistor variables for AdS/CFT

Twistor variables describe the boundary theory nicely. But the bulk theory is supposed to be the same as the boundary.

Do these variables extend into the bulk?

(Ambi-)twistor space of AdS_{5}

There are two common constructions of AdS_{5}.

Hyperboloid Model

$$
d s^{2}=\eta_{\mu \nu} d X^{\mu} d X^{\nu}
$$

$$
X^{2}=1
$$

Poincaré coordinates

$$
\begin{aligned}
d s^{2} & =\frac{d r^{2}+d \vec{z}^{2}}{r^{2}} \\
r & >0, \vec{z} \in \mathbb{C}^{4}
\end{aligned}
$$

(Ambi-)twistor space of AdS_{5}

We can write the components of the flat 6 d X^{μ} in a 4×4 antisymmetric matrix $X^{A B}$ with the inner product

$$
\delta_{\mu \nu} X^{\mu} Y^{v}=X \cdot Y=\varepsilon_{A B C D} X^{A B} Y^{C D}
$$

Then AdS_{5} is the subset $X^{2}=1$ with this inner product.

(Ambi-)twistor space of AdS_{5}

Alternatively, we could regard the coordinates $X^{A B}$ as projective coordinates on

$$
\mathbb{C P}^{5} \backslash\left\{X^{2}=0\right\} \cong\left\{X^{2}=1\right\}=\operatorname{AdS}_{5}
$$

$\mathbb{C P}^{5}$ is compact, but $\operatorname{AdS}_{5}=\mathbb{C} \mathbb{P}^{5} \backslash\left\{X^{2}=0\right\}$ is not.

(Ambi-)twistor space of AdS_{5}

The conformal boundary of AdS_{5} is the set $X^{2}=0$ in $\mathbb{C P}^{5}$.

(Ambi-)twistor space of AdS_{5}

To make a connection to Poincaré coordinates, we will need to choose one point on the boundary, the infinity twistor $I^{A B}$.

Then a general point in $\mathbb{C P}^{5}$ can be written as

$$
X^{A B}=Z^{A B}+\frac{1}{2} r^{2} I^{A B}
$$

where $Z^{A B}$ is a boundary point and r is a real parameter.

(Ambi-)twistor space of AdS_{5}

$$
X^{A B}=Z^{A B}+\frac{1}{2} r^{2} I^{A B}
$$

(Ambi-)twistor space of AdS_{5}

The matrices $X^{A B}$ can act on complex 4 d vectors too.

$$
\mathrm{Z}^{A}=X^{A B} W_{B}
$$

This describes a line in $\mathbb{C P}^{3} \times \mathbb{C P}^{3}$. Because $X^{A B}$ is antisymmetric, we have $Z \cdot W=0$.

(Ambi-)twistor space of AdS_{5}

So each point in AdS_{5} corresponds to a hyperplane in $\mathrm{Q}=\{Z \cdot W=0\} \subset \mathbb{C P}^{3} \times \mathbb{C P}^{3}$, the ambitwistor space of AdS_{5}.

Twistor variables in AdS/CFT

Solutions to the wave equation in AdS_{5} can also be obtained as the Penrose transform of holomorphic functions on ambitwistor space.

$$
\phi=|X|^{\Delta} \int_{X} D^{3} W f(Z, W)
$$

Twistor variables in AdS/CFT

Solutions to the wave equation in AdS_{5} can also be obtained as the Penrose transform of holomorphic functions on ambitwistor space.

$$
\phi=|X|^{\Delta} \int_{X} D^{3} W f(X \cdot W, W)
$$

Twistor variables in AdS/CFT

Twistor variables are a natural description for both the conformal boundary and the bulk space.

Can we express the basic ingredients of AdS/CFT in a purely twistorial way?

One of the most important objects in holography is the bulk-to-boundary propagator.

Twistor variables in AdS/CFT

We can write the scalar bulk to boundary propagator in twistor notation.

The scalar field equation

$$
\square \phi=\Delta(\Delta-4) \phi
$$

has bulk-to-boundary propagator

$$
\phi(X ; Y)=\frac{|X|^{\Delta}}{(X \cdot Y)^{\Delta}}
$$

Twistor variables in AdS/CFT

This can be written as the Penrose transform of a function on twistor space!

$$
\phi(X ; Y)=|X|^{\Delta} \int_{X} D^{3} W \frac{\bar{\delta}^{3}(W, A)}{(Z \cdot B)^{\Delta}}
$$

This idea can also be extended to bulk-toboundary propagators of higher spin fields.

Canonical Pairing in Twistor space

For any Penrose representative f, one can construct an indirect Penrose representative \tilde{f}.

$$
\phi(X)=|X|^{-\Delta} \int_{X} D^{3} Z \tilde{f}(Z, W)
$$

The two-point function in the CFT can be obtained from f and its indirect partner \tilde{f} :

$$
\int_{Q} D^{3} Z D^{3} W \bar{\delta}(Z \cdot W) f(Z, W) \wedge \tilde{f}(Z, W)
$$

Canonical Pairing in Twistor space

 There is also a natural local action on twistor space for the scalar field.$S=\int_{Q} D^{3} Z D^{3} W \bar{\delta}(Z \cdot W) f(Z, W) \wedge \bar{\partial} \tilde{h}(Z, W)$
The equation of motion is simply that f must be holomorphic: $\bar{\partial} f=0$.

Conclusions and outlook

Conformal invariance of the boundary theory is most naturally expressed in twistor language.

Important ingredients on the bulk side also have a purely twistorial description.

Some bulk and boundary calculations can be performed twistorially.

