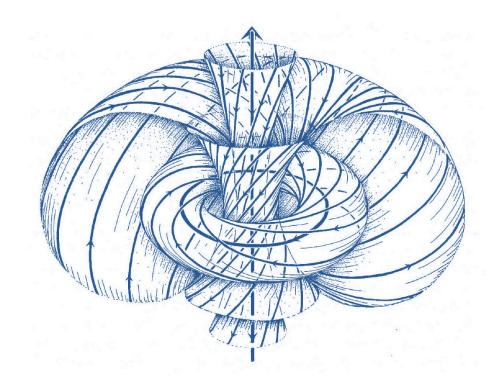
Twistor Methods for AdS₅

Jack Williams, DAMTP with David Skinner and Tim Adamo

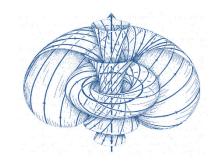


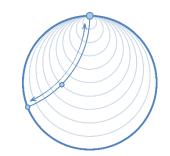
Outline

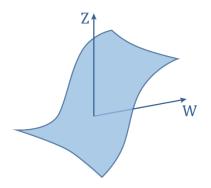
1. Twistor theory – motivation from 4D

2. Twistors into the bulk

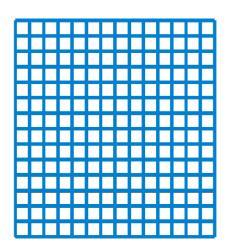
3. Twistors for holography

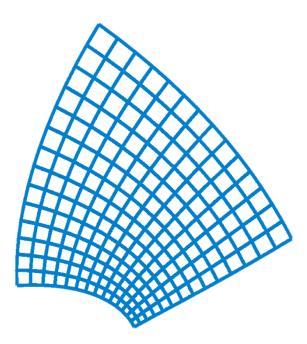






What is a twistor space? Points in Minkowski space can be described by coordinates x^{μ} , but other choices are possible.





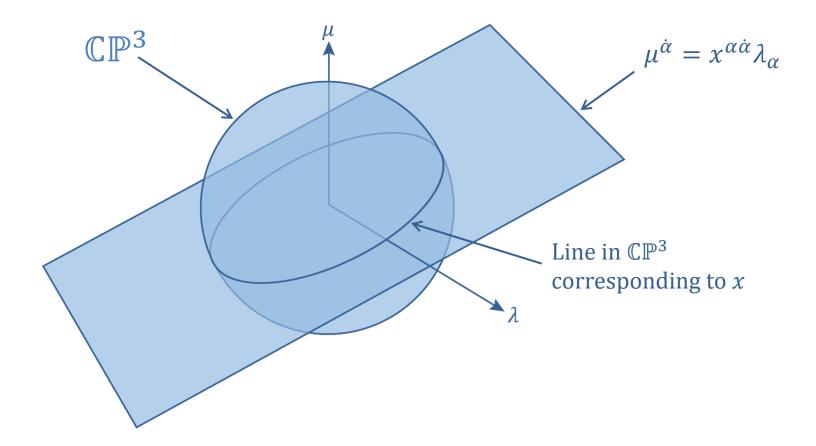
What is a twistor space?

One choice is to introduce coordinates $x^{\alpha \dot{\alpha}}$, where $x^{\alpha \dot{\alpha}} = \sigma_{\mu}^{\alpha \dot{\alpha}} x^{\mu}$. (This makes use of the isomorphism $SO(4) \cong SU(2) \times SU(2)$.)

This means points are represented by 2×2 complex matrices

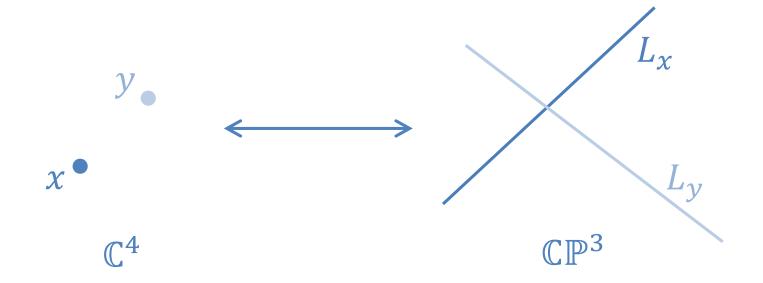
$$x^{\alpha \dot{\alpha}} = \frac{1}{\sqrt{2}} \begin{pmatrix} x^0 + x^3 & x^1 + ix^2 \\ x^1 - ix^2 & x^0 - x^3 \end{pmatrix}.$$

What is a twistor space? It is natural to let this matrix act on complex vectors as $\mu^{\dot{\alpha}} = x^{\alpha \dot{\alpha}} \lambda_{\alpha}$.



What is a twistor space? The coordinates $(\mu^{\dot{\alpha}}, \lambda_{\alpha})$ are homogeneous coordinates on *twistor space* \mathbb{CP}^3 .

Points in spacetime correspond to lines in twistor space.



What is the point of this? It helps us to solve equations.

Wave equation on spacetime

 $\Box \phi = \eta^{\mu\nu} \partial_{\mu} \partial_{\nu} \phi = 0$

In twistor space becomes

$$\Box \phi = \varepsilon^{\alpha\beta} \varepsilon^{\dot{\alpha}\dot{\beta}} \partial_{\alpha\dot{\alpha}} \partial_{\beta\dot{\beta}} \phi = 0$$

What is the point of this? Make a guess

 $\phi = \oint_{L_x} f(\mu, \lambda)$ with $f(\mu, \lambda)$ any holomorphic function.

Then $\Box \phi = \varepsilon^{\alpha\beta} \varepsilon^{\dot{\alpha}\dot{\beta}} \partial_{\alpha\dot{\alpha}} \partial_{\beta\dot{\beta}} \phi$ $= \oint \varepsilon^{\alpha\beta} \lambda_{\alpha} \lambda_{\beta} \varepsilon^{\dot{\alpha}\dot{\beta}} \frac{\partial^{2}}{\partial \mu^{\dot{\alpha}} \partial \mu^{\dot{\beta}}} f(x^{\alpha\dot{\alpha}} \lambda_{\alpha}, \lambda_{\alpha})$ = 0 What is the point of this? Any holomorphic function $f(\mu, \lambda)$ gives us a solution to the wave equation

$$\phi = \oint_{L_{\mathcal{X}}} f(\mu, \lambda)$$

This is the *Penrose transform*.

The *Penrose transform* of an arbitrary function on twistor space gives us a solution to the spacetime wave equation.

Analogy with Green's functions We expect a solution to $\Box \phi = 0$ to be determined by data on a 3-dimensional boundary.

The function $f: \mathbb{CP}^3 \to \mathbb{C}$ is also a function of three variables.

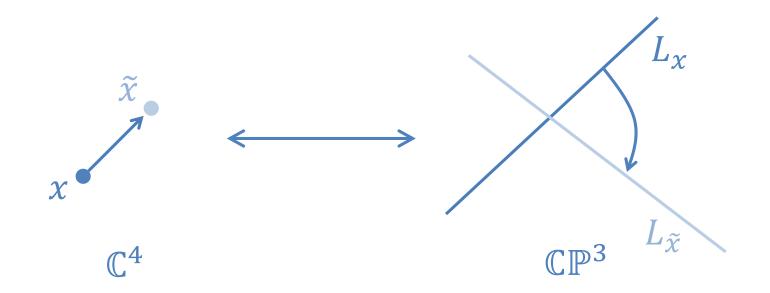


Other Penrose transforms We can solve other equations too.

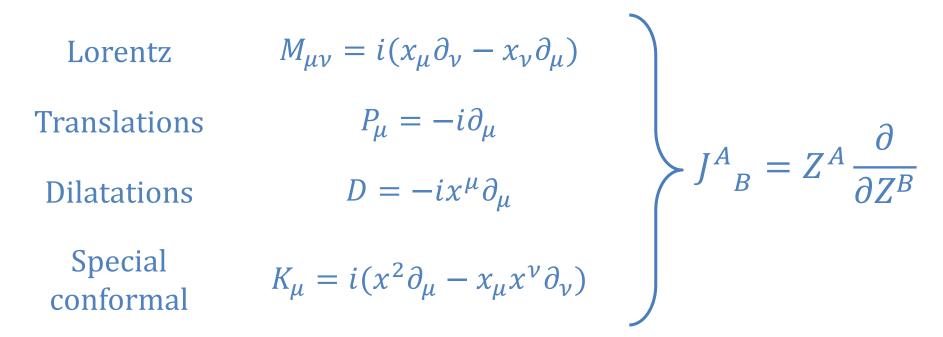
Wave $\phi = \oint_{L_{\alpha}} f(\mu, \lambda)$ $\Box \phi = 0$ equation $\phi_{\alpha} = \oint_{I_{\cdots}} \lambda_{\alpha} f(\mu, \lambda)$ Dirac $\nabla^{\alpha\dot\alpha}\phi_\alpha=0$ equation • • • $\nabla^{\alpha \dot{\alpha}} \phi_{\alpha \cdots \beta} = 0 \qquad \phi_{\alpha \cdots \beta} = \oint_{I} \lambda_{\alpha} \cdots \lambda_{\beta} f(\mu, \lambda)$ Higher spin

Conformal invariance

In AdS/CFT, the boundary field theory is conformally invariant. Conformal invariance is naturally expressed in twistor variables.



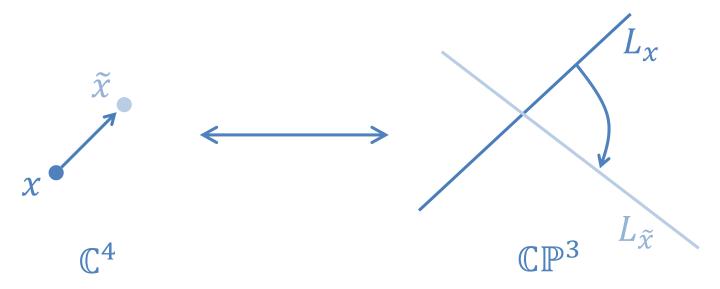
Conformal invariance



Conformal transformations act naturally on the twistor space $Z^A = (\mu^{\dot{\alpha}}, \lambda_{\alpha})$.

Conformal invariance The conformal transformations $J^{A}_{B} = Z^{A} \frac{\partial}{\partial Z^{B}}$ generate *linear* maps on twistor space $Z^{A} = (\mu^{\dot{\alpha}}, \lambda_{\alpha})$.

So lines get mapped onto other lines.



Conformal invariance The conformal group is $SL(4, \mathbb{C})$ (scales don't count in \mathbb{CP}^3).

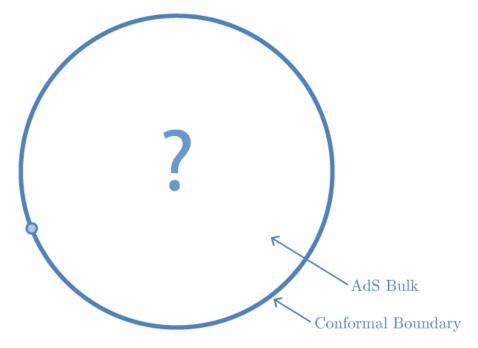
Example: Dilatation $D = \mu^{\dot{\alpha}} \frac{\partial}{\partial \mu^{\dot{\alpha}}} - \lambda_{\alpha} \frac{\partial}{\partial \lambda_{\alpha}}$ Scales $\mu^{\dot{\alpha}}$ and λ_{α} oppositely. So the line

$$\mu^{\dot{\alpha}} = x^{\alpha \dot{\alpha}} \lambda_{\alpha}$$

gets mapped to a line with $x^{\alpha \dot{\alpha}}$ rescaled.

Twistor variables for AdS/CFT Twistor variables describe the boundary theory nicely. But the bulk theory is supposed to be the same as the boundary.

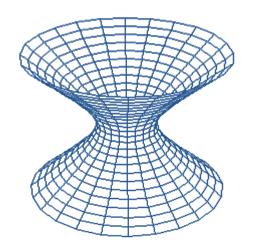
Do these variables extend into the bulk?

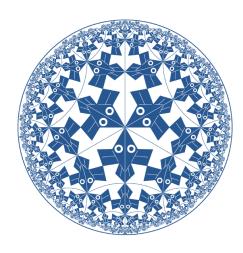


(Ambi-)twistor space of AdS_5 There are two common constructions of $AdS_{5.}$ Hyperboloid ModelPoincaré coordinates

 $ds^2 = \eta_{\mu\nu} dX^{\mu} dX^{\nu}$

 $X^{2} = 1$





$$ds^2 = \frac{dr^2 + d\vec{z}^2}{r^2}$$

$$r>0$$
 , $ec{z} \in \mathbb{Q}$

(Ambi-)twistor space of AdS_5 We can write the components of the flat 6d X^{μ} in a 4 × 4 antisymmetric matrix X^{AB} with the inner product

$$\delta_{\mu\nu}X^{\mu}Y^{\nu} = X \cdot Y = \varepsilon_{ABCD}X^{AB}Y^{CD}$$

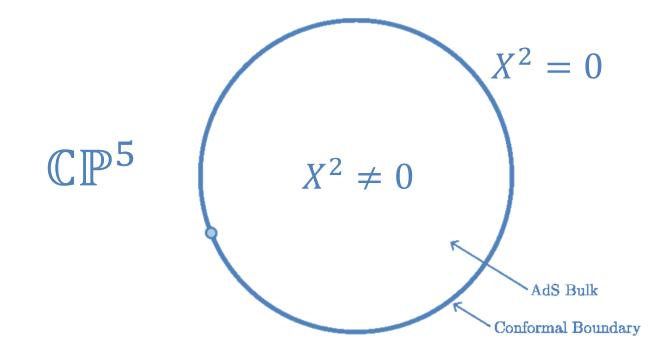
Then AdS_5 is the subset $X^2 = 1$ with this inner product.

(Ambi-)twistor space of AdS₅ Alternatively, we could regard the coordinates *X*^{*AB*} as projective coordinates on

$$\mathbb{CP}^5 \setminus \{X^2 = 0\} \cong \{X^2 = 1\} = \mathrm{AdS}_5$$

 \mathbb{CP}^5 is compact, but $AdS_5 = \mathbb{CP}^5 \setminus \{X^2 = 0\}$ is not.

(Ambi-)twistor space of AdS₅



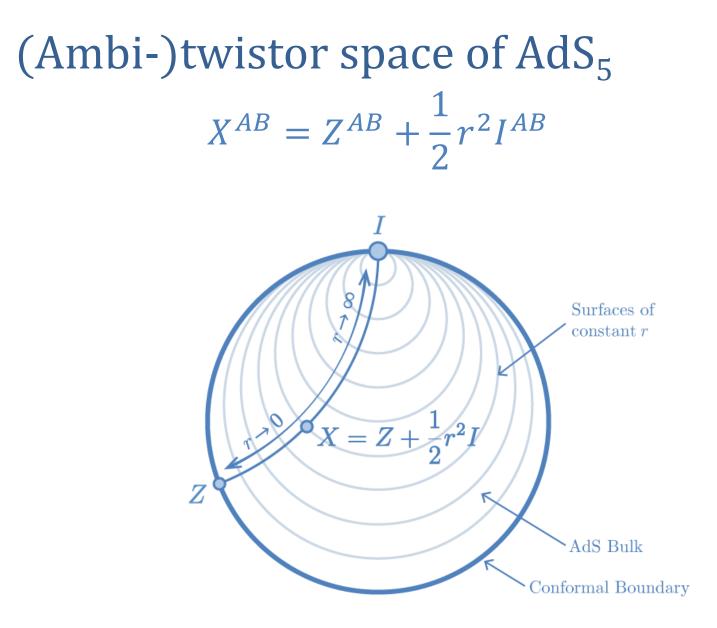
The conformal boundary of AdS_5 is the set $X^2 = 0$ in \mathbb{CP}^5 .

(Ambi-)twistor space of AdS_5 To make a connection to Poincaré coordinates, we will need to choose one point on the boundary, the *infinity twistor* I^{AB} .

Then a general point in \mathbb{CP}^5 can be written as

$$X^{AB} = Z^{AB} + \frac{1}{2}r^2 I^{AB}$$

where Z^{AB} is a boundary point and r is a real parameter.

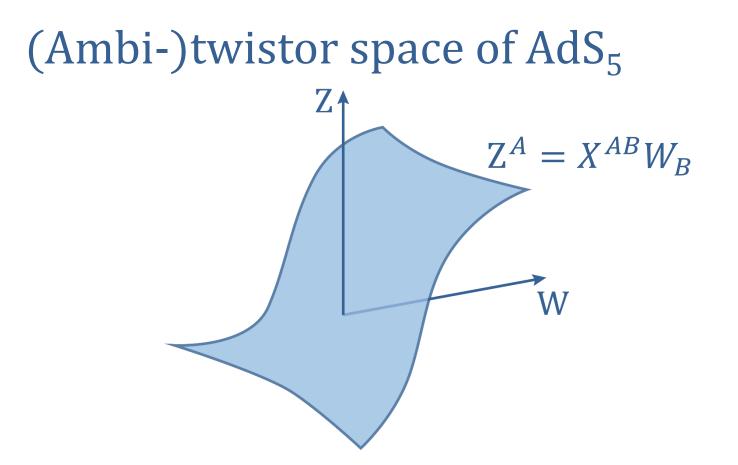


(Ambi-)twistor space of AdS₅

The matrices *X*^{*AB*} can act on complex 4d vectors too.

 $\mathbf{Z}^A = X^{AB} W_B$

This describes a line in $\mathbb{CP}^3 \times \mathbb{CP}^3$. Because X^{AB} is antisymmetric, we have $Z \cdot W = 0$.



So each point in AdS_5 corresponds to a hyperplane in $Q = \{Z \cdot W = 0\} \subset \mathbb{CP}^3 \times \mathbb{CP}^3$, the *ambitwistor space* of AdS_5 . Twistor variables in AdS/CFT Solutions to the wave equation in AdS_5 can also be obtained as the Penrose transform of holomorphic functions on ambitwistor space.

$$\phi = |X|^{\Delta} \int_{X} D^{3}W f(Z, W)$$

Twistor variables in AdS/CFT Solutions to the wave equation in AdS_5 can also be obtained as the Penrose transform of holomorphic functions on ambitwistor space.

$$\phi = |X|^{\Delta} \int_{X} D^{3}W f(X \cdot W, W)$$

Twistor variables in AdS/CFT Twistor variables are a natural description for both the conformal boundary and the bulk space.

Can we express the basic ingredients of AdS/CFT in a purely twistorial way?

One of the most important objects in holography is the *bulk-to-boundary propagator*.

Twistor variables in AdS/CFT We can write the scalar bulk to boundary propagator in twistor notation.

The scalar field equation

$$\Box \phi = \Delta (\Delta - 4) \phi$$

has bulk-to-boundary propagator

$$\phi(X;Y) = \frac{|X|^{\Delta}}{(X \cdot Y)^{\Delta}}$$

Twistor variables in AdS/CFT This can be written as the Penrose transform of a function on twistor space!

$$\phi(X;Y) = |X|^{\Delta} \int_{X} D^{3}W \frac{\bar{\delta}^{3}(W,A)}{(Z \cdot B)^{\Delta}}$$

This idea can also be extended to bulk-toboundary propagators of higher spin fields. Canonical Pairing in Twistor space For any Penrose representative f, one can construct an *indirect Penrose representative* \tilde{f} .

$$\phi(X) = |X|^{-\Delta} \int_X D^3 Z \, \tilde{f}(Z, W)$$

The two-point function in the CFT can be obtained from f and its indirect partner \tilde{f} :

 $\int_{Q} D^{3}Z D^{3}W \,\overline{\delta}(Z \cdot W) f(Z, W) \wedge \tilde{f}(Z, W)$

Canonical Pairing in Twistor space There is also a natural local action on twistor space for the scalar field.

$$S = \int_{Q} D^{3}Z D^{3}W \,\overline{\delta}(Z \cdot W) f(Z, W) \wedge \overline{\partial}\tilde{h}(Z, W)$$

The equation of motion is simply that f must be holomorphic: $\overline{\partial} f = 0$. Conclusions and outlook Conformal invariance of the boundary theory is most naturally expressed in twistor language.

Important ingredients on the bulk side also have a purely twistorial description.

Some bulk and boundary calculations can be performed twistorially.