A story of chaos and purity

Álvaro Véliz-Osorio

QMUL \& WITS

Zakopane, May 292016

Outline

Chaos

- Diagnosing chaos with out-of-time-order (OTO) correlators.
- Chaos at large central charge.
- OTO in $\operatorname{SU}(N)_{k}$ WZW models.
- OTO for rational CFT, and fractional statistics.

Purity

- Purity for excited states.
- Purity scrambling for large-c $S U(N)_{k}$.

Based on: 1602.06542 with P. Caputa and T. Numasawa

Diagnosing chaos with OTO

An indicator of the buterfly effect

$$
\left\langle\left[\mathcal{O}_{j}(0), \mathcal{O}_{i}(t)\right]^{2}\right\rangle_{\beta} \stackrel{?}{=} 0
$$

Larkin, Ovchinnikov '69, Kitaev '14
Maldacena, Shenker, Roberts, Stanford '15
Consider late times behaviour

$$
\begin{aligned}
-\left\langle\left[\mathcal{O}_{j}, \mathcal{O}_{i}(t)\right]^{2}\right\rangle_{\beta} & =\left\langle\mathcal{O}_{j} \mathcal{O}_{i}(t) \mathcal{O}_{i}(t) \mathcal{O}_{j}\right\rangle_{\beta}+\left\langle\mathcal{O}_{i}(t) \mathcal{O}_{j} \mathcal{O}_{j} \mathcal{O}_{i}(t)\right\rangle_{\beta} \\
& -\left\langle\mathcal{O}_{j} \mathcal{O}_{i}(t) \mathcal{O}_{j} \mathcal{O}_{i}(t)\right\rangle_{\beta}-\left\langle\mathcal{O}_{i}(t) \mathcal{O}_{j} \mathcal{O}_{i}(t) \mathcal{O}_{j}\right\rangle_{\beta}
\end{aligned}
$$

In general, first line $\sim\left\langle\mathcal{O}_{j} \mathcal{O}_{j}\right\rangle_{\beta}\left\langle\mathcal{O}_{i}(t) \mathcal{O}_{i}(t)\right\rangle_{\beta}$
If the second line vanishes the system is chaotic
The correlators in the second line are out-of-time-order (OTO)

OTO in CFT_{2}

Chaos indicator $\quad C_{i j}^{\beta}(t) \equiv \frac{\left\langle\mathcal{O}_{i}(t) \mathcal{O}_{j} \mathcal{O}_{i}(t) \mathcal{O}_{j}\right\rangle_{\beta}}{\left\langle\mathcal{O}_{i} \mathcal{O}_{i}\right\rangle_{\beta}\left\langle\mathcal{O}_{j} \mathcal{O}_{j}\right\rangle_{\beta}}=f(z, \bar{z})$
Cross-ratio z

OTOs $\left\langle\mathcal{O}_{i}(t) \mathcal{O}_{j} \mathcal{O}_{j} \mathcal{O}_{i}(t)\right\rangle_{\beta}$ go through the branch cut

Large-c and chaos

We can write (holography)

$$
f(z, \bar{z}) \rightarrow \mathcal{F}(z) \overline{\mathcal{F}}(\bar{z})
$$

For example, in the (heavy-heavy \rightarrow light-light) regime

$$
\mathcal{F}(z) \sim\left(\frac{z(1-z)^{-6 h_{w} / c}}{1-(1-z)^{1-12 h_{w} / c}}\right)^{2 h_{v}}
$$

Fitzpatrick, Kaplan, Walters '14
At late times the chaos indicator will vanish

$$
C_{i j}^{\beta}(t) \sim\left(1+\frac{2 \pi h_{w}}{\epsilon_{12}^{*} \epsilon_{34}} \exp \left(\frac{2 \pi}{\beta}\left(t-t_{*}\right)\right)\right)^{-2 h_{v}}
$$

Roberts, Stanford '15
Fast scrambling time $t_{*}=\frac{\beta}{2 \pi} \log (c)$

Large-c and chaos

We can write (holography)

$$
f(z, \bar{z}) \rightarrow \mathcal{F}(z) \overline{\mathcal{F}}(\bar{z})
$$

For example, in the (heavy-heavy \rightarrow light-light) regime

$$
\mathcal{F}(z) \sim\left(\frac{z(1-z)^{-6 h_{w} / c}}{1-(1-z)^{1-12 h_{w} / c}}\right)^{2 h_{v}}
$$

Fitzpatrick, Kaplan, Walters '14
Holographic theories display the butterfly effect

$$
C_{i j}^{\beta}(t) \sim\left(1+\frac{2 \pi h_{w}}{\epsilon_{12}^{*} \epsilon_{34}} \exp \left(\frac{2 \pi}{\beta}\left(t-t_{*}\right)\right)\right)^{-2 h_{v}}
$$

Roberts, Stanford '15
Matches bulk analysis (Shenker, Stanford '14)

WZW theories

CFT's that besides Virasoro they have an affine Lie algebra $\hat{\mathfrak{g}}_{k}$

$$
\left[j_{m}^{a}, j_{n}^{b}\right]=i \sum_{c} f^{a b c} j_{m+n}^{c}+k m \delta^{a b} \delta_{m+n}
$$

Virasoro and $\hat{\mathfrak{g}}_{k}$ must be compatible

$$
c=\frac{k \operatorname{dim} \mathfrak{g}}{k+C_{\mathfrak{g}}} \quad \text { dual Coexeter number } C_{\mathfrak{g}}
$$

We consider $S U(N)_{k}$ theories

$$
\operatorname{dim}(\mathfrak{g})=N^{2}-1 \quad C_{\mathfrak{g}}=N \quad c=\frac{k\left(N^{2}-1\right)}{k+N}
$$

't Hooft large-N

$$
N, k \rightarrow \infty \quad \lambda_{s}=\frac{N}{k} \quad \text { fixed }
$$

OTO in $S U(N)_{k}$ WZW

Affine primaries ($N-1$ rows, k columns)

Late time OTO fundamental (\square)

$$
C_{g g}^{\beta}(t) \rightarrow q^{\frac{1}{N}+\frac{1}{2}} \frac{\left(q^{-\frac{N+2}{2}}+[N-1]\right)}{[N]}
$$

Introducing the q-numbers

$$
[x]=\frac{q^{x / 2}-q^{-x / 2}}{q^{1 / 2}-q^{-1 / 2}} \quad q=e^{-\frac{2 \pi i}{N+k}}
$$

Key point

$$
\text { At large- } c \quad C_{g g}^{\beta}(t)=1
$$

Caputa, Numasawa, AVO '16

Late time OTO in RCFT

In a rational conformal field theory (RCFT)

$$
f(z, \bar{z})=\sum_{p} \mathcal{F}_{j j}^{i j}(p \mid z) \overline{\mathcal{F}}_{j j}^{i j}(p \mid \bar{z})
$$

We pick the monodromy

$$
\mathcal{F}_{j j}^{i i}(p \mid z) \rightarrow \sum_{q} \mathcal{M}_{p q} \mathcal{F}_{j j}^{i i}(q \mid z)
$$

Late time OTO

$$
C_{i j}^{\beta}(t) \rightarrow \frac{1}{d_{i} d_{j}} \frac{S_{i j}^{*}}{S_{00}}
$$

Quantum dimension
$\left(d_{i}\right)$
Modular S-matrix
$\left(S_{i j}\right)$
Caputa, Numasawa, AVO '16, Gu, Qi '16

What is the quantum dimension?

Modular S-matrix

$$
\chi_{i}(\tau)=\operatorname{Tr}_{\mathcal{H}_{i}}\left(e^{i \pi \tau\left(L_{0}-c / 24\right)}\right) \quad \chi_{i}(-1 / \tau)=\sum_{j} S_{i j} \chi_{j}(\tau)
$$

Quantum dimension of \mathcal{O}_{i}

$$
d_{i}=\lim _{\tau \rightarrow 0} \frac{\chi_{i}(\tau)}{\chi_{0}(\tau)} \quad d_{i}=\frac{S_{0 i}}{S_{00}}
$$

Dijkgraaf, Verlinde ' 88
Example: Ising model ($1, \sigma, \epsilon$)

$$
S_{i j}=\left(\begin{array}{ccc}
1 & \sigma & \epsilon \\
& \\
1 / 2 & 1 / \sqrt{2} & 1 / 2 \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
1 / 2 & -1 / \sqrt{2} & 1 / 2
\end{array}\right) \begin{array}{ll}
1 & \left|C_{\sigma \sigma}^{\beta}\right|=0 \\
\sigma & \left|C_{\epsilon \sigma}^{\beta}\right|=1 \\
\epsilon & \left|C_{\epsilon \epsilon}^{\beta}\right|=1
\end{array}
$$

Random OTO in $S U(N)_{2}, N=15$

Frequency
 ${ }^{106} 11$.
.

Random OTO in $S U(N)_{2}, N=50$

Frequency

$-\infty-$

Random OTO in $S U(N)_{2}, N=100$

Frequency

Random OTO in $S U(N)_{2}, N=150$

Frequency

Random OTO in $S U(N)_{2}, N=200$

Frequency

3d TQFT and anyon monodromy

Anyon worldlines
Hopf link

Caputa, Numasawa, AVO '16
Gu, Qi '16

This quantity can be measured in anyon interferometry experiments
Bonderson, Shtengel, Slingerland '06
Connections between the buterfly effect and fractional statistics?
OTO for Fractional Quantum Hall (FQH) fluids: Ising anyons, Fibonacci anyons, quantum magnets

Locally excited states

Physical setup:

Insert operator O

- Start with the ground state of a CFT_{2}.
- At $t=0$ insert an operator $\mathcal{O}(x, t)$ at $x=-l$.
- Smear the operator with ϵ.

Purity $\Delta S_{A}^{(n)}(t)$ corresponds to a four-point function.

$$
\text { Cross-ratios } z=z(I, L, t, \epsilon)
$$

Purity and quantum dimension

For a Rational CFT

$$
\Delta S_{A}^{(2)}(t) \simeq \begin{cases}0 & t \notin[I, L+I] \\ \log \left(d_{\mathcal{O}}\right) & t \in[I, L+I]\end{cases}
$$

He, Numasawa, Takayanagi, Watanabe '14; Caputa, AVO '15

Purity and quantum dimension

Quasiparticle interpretation

He, Numasawa, Takayanagi, Watanabe '14; Caputa, AVO '15

Purity in $S U(N)_{k} W Z W$

Some quantum dimensions

$$
\begin{array}{ll}
\square & d_{\mu}=[N] \\
\square & d_{\mu}=\frac{[N][N+1]}{[2]} \\
\square & d_{\mu}=\frac{[N][N-1]}{[2]}
\end{array}
$$

Removing the affine cut-off

$$
\lim _{k \rightarrow \infty}[x]=x
$$

Quantum dimension \longrightarrow irrep dimension
The jump in purities $\Delta S_{A}^{(2)}$ will diverge in the large-c limit.

Purity in $S U(N)_{k}$ WZW, large-c

The jump in purity comes from the divergence

$$
\mathcal{G}(z, \bar{z}) \rightarrow d_{\mathcal{O}}^{-1}((1-z) \bar{z})^{-2 h}+\ldots
$$

as $(z, \bar{z}) \rightarrow(1,0)$.
If we take $c \rightarrow \infty$ we find

$$
\Delta S_{A}^{(2)}(t) \simeq 2 h \log \left(\frac{2 t}{\epsilon}\right)-\log (2)
$$

This matches holographic computations.
Punchline
No quasiparticles \rightarrow Memory loss \rightarrow Entanglement scrambling
Caputa, Numasawa, AVO '16

Conclusions

- OTO correlators serve to characterize the buterfly effect.
- Late OTO in RCFT are captured by the (measurable) monodromy scalar.
- There are non-chaotic channels even at large-c.
- The purity grows logarithmically (scrambles) at large-c.

Puzzles

- What is the precise relationship between chaos, holography and scrambling?
- Fractional statistics and the butterfly effect?
- Other settings: Higher-spin, coset models, GCFT, LCFT ...
- Could OTO and purity be explored experimentally?
- Interesting models with signatures of chaos: Spin chains, SYK, FKV, etc
... and many other interesting questions?

The Butterfly Effect.

Thank you for your attention!!

Entanglement scrambling

After introducing a quench

The mutual information

$$
I(A, B)=S_{A}+S_{B}-S_{A \cup B}
$$

Displays a long term memory effect

Entanglement scrambling

Mutual information spike

Spike fades in holographic theories
Breakdown of quasiparticles \longleftrightarrow Entanglement scrambling
Asplund, Bernamonti, Galli, Hartman '15

