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Scattering amplitudes in ' = 4 SYM

o Consider n-particle scattering amplitude

hnf 1

@ Planar amplitudes most conveniently expressed in color ordered formalism:

An({pishiyai}) =00 “p) D gttt g0o]
=1

0ESH/Zn
X An({pdla h01}7 SR {p017 h‘o'l};)\ = 92 N)

A,,: Color ordered amplitude. Color structure is stripped off.

Helicity of ith particle: h; = 0 scalar, h; = +1 gluon, h; = j:% gluino
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Spinor helicity formalism

@ Express momentum for massless particles via commuting spinors A%, A%:

. . + —3 .y -
P = (") pu = (510+ 593; ];10 —532> = AT =

& pupt =detp®® =0

@ Choice of helicity determines polarization vector €* of external gluon

. A - s

h=-1 =1L ) = € Najig

i ’

h=+1 Y% = oA (M) := eap \*uP
A

1, [t arbitrary reference spinors.
o E.g. scalar products: 2p; - pa = (A A2) [A2 M| = (12) [21]
@ Helicity assignments:

hOAY) = —1/2  h(XY) = +1/2
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Gluon Amplitudes and Helicity Classification

Classify gluon amplitudes by # of helicity flips
@ By SUSY Ward identities: A,(17,2%,....n")=0=A,(17,27,...,n")
true to all loops

e Maximally helicity violating (MHV) amplitudes

a4
+ . L + _ (4) . <Z]>
An(l R N R 1 ) (S ( EZ pl) <12> <23> .“ <n1> [Parke, Taylor]

° Next—to—maximally helicity amplitudes (NkMHV) have more involved structure!

N N
\ /' Ny /’

MHV / Apm s gy g™

[Picture from T. McLoughlin]
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Obvious symmetries

@ Translations:
with  p2% A, (A, Ai) =0

True in the distributional sense pJ(p) = 0, thanks to
An(Niy Ai) = 6D (32, pi) An(Ni, Ai) -
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Obvious symmetries

@ Translations:
with  p2% A, (A, Ai) =0

True in the distributional sense pd(p) = 0, thanks to
o Lorentz generators in the helicity spinor basis come in two pairs of symmetric
rank-two tensors /.3 and l orlgmatlng from the projections

LK (o‘uy)aﬁ = lag and LHY (Uuy)dﬁ‘ = laB’

aﬂ—ZA @0 lag =D Niwdp,

=1

where 0;, := a%' Oig := and 7,y = % (rap + 78a) denotes

8)\0‘
symmetrization with unit welght.
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@ Invariance of A,,(\;, 5\,;) under Lorentz-transformations

lag An(Xi; M) = 0 =15 An(Ni; M)

is manifest, as

n

lag <jk> = Z)\i(a 8z,8) )\;-y)\k,y = )\joz)\kﬂ — )\jﬁ)\ka + (Oé — ﬁ) =0.
i=1
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Less obvious symmetries: Dilatations

@ Scale transformations are generated by the dilatation operator d,

d= Z )\a(?m+ )\ 8¢d+d0), do €ER,

reflecting the dilatation weight % of the \; and \;, i.e. [d, \;] = %)\i and
[d, \i] = %/N\i. The constant dy is undetermined at this point. It may be fixed
by requiring invariance of the MHV amplitudes

4
S

The dilatation operator d simply measures the weight in units of mass of the
amplitude it acts on plus n dy

dA, = ([An] +ndo) An .
Note the weights [0(Y) (p)] = —4, [(As \)*] = 4 and [%] = —n, hence
dAMAY — (4 4+ 4 — n+4 ndy) APV

which vanishes for dy = 1.
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Less obvious symmetries: Special conformal transformation

® kaa = > iy 0ia Oia -

@ Let’s show invariance of the MHV amplitudes:

"9 9
ko AMHY = z e @ (51 (p) AMHV)

OnbP o
_ Z oy ( ;\a <8pﬂ5 5(4)(p)> Al‘{'Hv)

3} o 0
_ . 883 . ) 5@ AMHV
[(n Opo‘a P OpPe apaﬂ) (p )} "

0
Z A8 AM HV
Gpﬂo‘ . i 6)\0‘

For last term: Note the relation

n n 1
Z)‘iaaiﬁ - Z)‘Z(aazﬁ) + 56045 Z)\Zab'Y?
=1 i=1 p

which follows from decomposing the |.h.s. in a symmetric and anti-symmetric
piece. The blue term is the Lorentz generator l,5 which annihilates AMHY.
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The remaining operator just counts the # of A's

Z)‘z a/\a ANV = %55 Z/\?aiéA,'\lAHV: (4 —n) AMAV

Hence 5 5 9
~ AMHV __ B3 (4) MHV
676 — 4 — - T (5 A .
Indeed in a distributional sense we have
] 8 0 0
pr_—_ _— _sW(p Iy {C))

which one sees by integrating the second derivative expression against a test
function F(p),

s 0 0 0 0
4 pp_= = 5@ ) = [ gt _F(p)|26° :
/d pF(p)p TP et 6 (p) /d p([apﬁa (p)] 0o T [apaﬂ

—1 [l P )09,

F(p)} 255)

This proves the Poincare and conformal invariance of AMHV.
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On-shell superspace

@ Augment \{ and 5\;" by GraBmann-odd variables 77{'4 A=1,2,3,4 [Nair]
@ On-shell superspace (A?,S\d,nf‘) with on-shell superfield:

1 1 _
v(p,n) = GT(p) + n"Ta(p) + 577A773 Sap(p) + gnAnB n%eacpT? (p)

1 _
+ EnAnB nnP eapcpG~ (p)

19/16]



On-shell superspace

@ Augment \{ and 5\;" by GraBmann-odd variables 77{'4 A=1,2,3,4 [Nair]
@ On-shell superspace (A?,S\d,nf‘) with on-shell superfield:

1 1 _
v(p,n) = GT(p) + n"Ta(p) + 577A773 Sap(p) + gnAnB n%eacpT? (p)

B _C,D (p)

1 _
+E77A77 n-n" eapcpG

o Superamplitudes: <<p(>\1, A,m) (A2, A2, 1) -+ (A An,y 77n)>

+1/2

Packages all n-parton gluon*-gluino -scalar amplitudes

@ General form of tree superamplitudes:

A = S X A) 6B (32, Nimi)
" (12) (23) ... (n1)

Pa{re i)

Conservation of super-momentum: 6 (3, A%nft) = (32, Aon)®
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Superamplitudes and N*MHV expansion

i (T, A0RE) 5B (T, Aond)
An({ i Nismi}) = (1,2)(2,3)...(n,1)

P ({Xis Xiy mi})

@ n-expansion of P, yields N*MHV-classification of superamps as helicity
h(n) = —1/2

Po=1+0"Pp"V ) + 0 PR L) + TR (AN

@ Expansion in powers of 7% := eapean®n’n°n® due to R-symmetry R%, invariance
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The full su(2,2|4) symmetry

@ Superamplitude: (i =1,...,n)

SW (2, A0 6B (32, Aot
(12) (23) ... (n1)

A:{ee({/\i;xi’ni}) — ,Pn({AMS\’LanZ})

@ Representation of su(2,2[4) generators in on-shell superspace, e.g. [Witten]
n n
P = Z A A A= Z A% A = obvious symmetries
=1 =1
"9 0 0
kas = o Ara SaA = — = less obvious sym
[e76% ; ? a aA ; a/\la 877;4 Y

° Invarlance {p7 k? m7 m? d7 T? q7 Q7 S’ 5’ CZ} O‘A:{ee({A? ;/17’,77:(4}) = O

o N.B.: Local invariance h; A, =1 A4,

Helicity operator: hi=—3 )\"‘8 +3 )\0‘8 + 2 77z Oia=1-—¢
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su(2,2[4) invariance

@ The representation of the su(2,2|4) generators in on-shell superspace

(A, A8, 1)
P =Y AN,
los = Z Ni(aOig),
d= ZZ[%A?&Z-Q + 10054 + 1],
g4 - > A,
SaA = i Dia0ia,

0
8@'a = 67)\?
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koo = Z OiaOia ,
lag = Z Aia9ig)

Ap = [-n'0iz + 1055 dic],

\3
w
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Dual conformal and Yangian symmetries

@ Superconformal + Dual superconformal algebra [Drummod, Henn Korchemsky, Sokatchev]
= Yangian Y[psu(2,2|4)] algebra [Drummond, Henn, JP]
[J, J©) JO)} fap® JO conventional superconformal symmetry

70, J“} far® I
IO TN = fc I8 +gab<J<0>,J<”>

from dual conformal symmetry

and super Serre relations [Dolan,Nappi, Witten]
o Coproducts:
AJO) = JO21+10J0  AJWD) = JVe1+10J0+ 12 7070
@ Or explicitly
Local generators  J(¥) = zn:Jlg?i)

Nonlocal generators J,El) = Z J(1 + f, Z JZ((;) JJ(C)
i=1 1<j<i<n
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Yangian symmetry of scattering amplitudes in N’ = 4 SYM

@ Evaluation representation J(gli) =y Jéoi)
n
1 0 b 0 0
S W R W
i=1 1<j<i<n
@ For tree-level superamplitudes u; = 0 (trivial evaluation representation)
@ Explicit example: Bosonic invariance p((llo)[ Ay, = 0] with

P =

(I+l—-d)p+q®q
> i, 0% + 15,6700 — di 6162) pi, i + Giac 45 — (i ¢ J)

1<j

[l

|
N[

o |In fact J.” and p®) generate all of ¥ [psu(2,2[4)]
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Proof of Yangian invariance for MHV super-amplitudes

paa AMHV 0
P =1 3 W00 + 13,6767 — di 6367) pjs + Giac ¢S — (i 6 )
1<J
This is a non-local single derivative operator.
@ Action on delta-function cancels straightforwardly and one is left with

1 - -
Pod o = > (Na Aea (k0;) = Aka Ak dj)

(2) - (nl) ~ 2 —ek

-
(12) ... (nl)

@ Standard manipulations and shifts in summation variables yield

p(l AMHV Al'y)‘na‘*‘)‘la)\mpy AMHV 0
[e70% <n1>
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Cyclicity?

@ While amplitudes are cyclic the level one generators are not:

T =fhe TG T TN =ge Y ag I

1<j<i<n 2<j<i<n+1

o Difference of the two
J(;(L ) (1) fbc fbc Jl a— f(lz)CJl J¢

Acting on an amplitude the second term vanishes by superconformal invariance.
First term vanishes for psu(2,2[4) as its dual coxeter number is zero.
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Cyclicity?

@ While amplitudes are cyclic the level one generators are not:

=g XA a0 =ge XA

1<j<i<n 2<j<i<n+1

o Difference of the two
J( ) J(l) fbc beJ Ld— beJb J¢

Acting on an amplitude the second term vanishes by superconformal invariance.
First term vanishes for psu(2,2[4) as its dual coxeter number is zero.

@ This prooves the Yangian invariance of the tree-level MHV amplitudes

@ General proof of Yangian invariance of superamplitudes works via super-BCFW
recursion.

@ The Yangian symetry may be extended to loop-order, and in fact constrain
amplitudes as well as integrands of amplitudes. Again sees deformations of the
generators. Yet, the status is not satisfactory. Problem: IR divergencies need a
regulator which breaks conformal and Yangian symmetry.
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