Lecture 1

Yangian Symmetry and the Dilatation operator

Jan Plefka
Humboldt-Universität zu Berlin

Before we begin ...

Integrability in Gauge and String Theory 2016

22-26 August Humboldt-Universität zu Berlin

 Campus AdlershofSpeakers include: Nima Arkani-Hamed Ines Aniceto Zoltan Bajnok Benjamin Basso Burkhard Eden Valentina Forini Victor Gorbenko Nikolay Gromov Song He

Vladimir Kazakov Zohar Komargodski Rafael Nepomechie Amit Sever Volker Schomerus Tadashi Takayanagi Arkady Tseytlin Cristian Vergu Konstantin Zarembo

Advisory Board:
Gleb Arutyunov
Niklas Beisert
Romuald Janik
Charlotte Kristjansen
Pedro Vieira

 ikolay Gromov (King's College London) Jason Harris* (Wolfram Research, US) Vladimir Kazakov
(ENS Paris)
Alexander Migdal Alexei Morozov (ITEP, NRNU MEPhI, IITP Moscow) Pedro Vieira (PI Canada)

http://msstp.org/

Recap

$\mathcal{N}=4$ super Yang-Mills

drosophila melanogaster

$\mathcal{N}=4$ SYM - The drosophila of quantum field theory

Field content of $\mathcal{N}=4 \mathrm{SYM}:$

- One gauge field/gluon
$A_{\mu}=A_{\mu}^{n} T^{n}$
$T^{n}: \operatorname{SU}(N)$ generators
- Six real scalars

$$
\begin{aligned}
& \phi^{i}=\phi^{i, n} T^{n} \\
& \psi^{a \alpha}=\psi^{a \alpha, n} T^{n}, \bar{\psi}_{a}^{\dot{\alpha}}=\bar{\psi}_{a}^{\dot{\alpha}, n} T^{n}
\end{aligned}
$$

- Four complex fermions

All fields transform in the adjoint rep of $\mathrm{SU}(N): \quad U(x)=e^{i \xi^{n}(x) T^{n}}$

$$
A_{\mu} \rightarrow U(x)\left(A_{\mu}+\partial_{\mu}\right) U^{\dagger}(x) \quad\left(\phi^{i}, \psi^{a \alpha}, \bar{\psi}_{a}^{\dot{\alpha}}\right) \rightarrow U(x)\left(\phi^{i}, \psi^{a \alpha}, \bar{\psi}_{a}^{\dot{\alpha}}\right) U^{\dagger}(x)
$$

Action:

$$
\begin{aligned}
S_{\mathcal{N}=4}=\frac{1}{g_{\mathrm{YM}}^{2}} \int \mathrm{~d}^{4} x \operatorname{Tr}\{ & -\frac{1}{2} F_{\mu \nu}^{2}-\left(D_{\mu} \phi^{i}\right)^{2}-\frac{1}{2}\left[\phi^{i}, \phi^{j}\right]\left[\phi_{i}, \phi_{j}\right]-2 \bar{\psi}_{a}^{\dot{\alpha}} \sigma_{\mu, \alpha \dot{\alpha}} D^{\mu} \psi^{a \alpha} \\
& \left.-\psi^{a \alpha} \sum_{a b}^{i} \varepsilon_{\alpha \beta}\left[\phi_{i}, \psi^{b \beta}\right]-\bar{\psi}_{a}^{\dot{\alpha}} \bar{\Sigma}^{i, a b} \varepsilon_{\dot{\alpha} \dot{\alpha}}\left[\phi_{i}, \bar{\psi}_{d}^{\dot{\beta}}\right]\right\}
\end{aligned}
$$

$\mathcal{N}=4$ SYM has two freely tunable parameters (N, g_{YM}) and we shall consider the theory in the planar limit $\left(N \rightarrow \infty, g_{\mathrm{YM}} \rightarrow 0\right.$ with $\lambda:=g_{\mathrm{YM}}^{2} N=$ const. $)$.

$\mathcal{N}=4$ SYM - Symmetries

Global symmetries of the classical theory:

Symmetry	Generators	Algebra	
Translations	P^{μ}		
Lorentz-trans.	$\mathrm{M}^{\mu \nu}$	$\mathfrak{s o}(2,4) \simeq$	
conf. boosts	K^{μ}	$\mathfrak{s u}(2,2)$	
Dilatations	D		$\mathfrak{p s u}(2,2 \mid 4)$
Supertranslations	$\mathrm{Q}_{a \alpha}, \overline{\mathrm{Q}}_{\dot{\alpha}}^{a}$		
Superboosts	$\mathrm{S}^{a \alpha}, \overline{\mathrm{~S}}_{a}^{\alpha}$		
R-Symmetry	$\mathrm{R}^{a}{ }_{b}$	$\mathfrak{s u}(4)$	

Symmetries of the quantized theory:

$$
\beta\left(g_{\mathrm{YM}}\right)=0 \quad \rightarrow \text { Symmetry algebra } \mathfrak{p s u}(2,2 \mid 4) \text { is unbroken }
$$

Yangian Symmetry: A hallmark of integrability

The Yangian algebra $Y[\mathfrak{g}]$ of a semi-simple Lie algebra \mathfrak{g} is a quantum algebra spanned by
[Drinfeld]

$$
\text { Level-0: }\left\{\mathrm{J}^{\kappa}\right\} \quad \text { Level- } 1:\left\{\widehat{\mathrm{J}}^{\kappa}\right\}
$$

satisfying the following axioms
(1) Lie Algebra

$$
\begin{aligned}
& {\left[\mathrm{J}^{\kappa}, \mathrm{J}^{\rho}\right]=f^{\kappa \rho}{ }_{\delta} \mathrm{J}^{\delta}} \\
& {\left[\mathrm{J}^{\kappa}, \widehat{\mathrm{J}}^{\rho}\right]=f^{\kappa \rho} \widehat{\mathrm{J}}^{\delta}} \\
& {\left[\mathrm{J}^{\kappa},\left[\widehat{\mathrm{J}}^{\rho}, \widehat{\mathrm{J}}^{\delta}\right]\right]+\text { cyclic }=f^{\kappa \mu}{ }_{\sigma} f^{\rho \nu}{ }_{\omega} f^{\delta \eta}{ }_{\gamma} f_{\mu \nu \eta} \mathrm{J}^{(\sigma} \mathrm{J}^{\omega} \mathrm{J}^{\gamma)}}
\end{aligned}
$$

(2) Level-one Relation
(3) Serre Relation
$Y(\mathfrak{g})$ is an infinite-dimensional, graded algebra.

$$
\left[\widehat{\mathrm{J}}^{\kappa}, \widehat{\mathrm{J}}^{\rho}\right]=f^{\kappa \rho} \widehat{\widehat{J}}^{\delta}+X^{\kappa \rho}(\mathrm{J}, \widehat{\mathrm{~J}})
$$

Coproduct:

$$
\Delta\left(\mathrm{J}^{\kappa}\right)=\mathrm{J}^{\kappa} \otimes \mathbb{1}+\mathbb{1} \otimes \mathrm{J}^{\kappa} \quad \Delta\left(\widehat{\mathrm{J}}^{\kappa}\right)=\widehat{\mathrm{J}}^{\kappa} \otimes \mathbb{1}+\mathbb{1} \otimes \widehat{\mathrm{J}}^{\kappa}+\frac{1}{2} f^{\kappa}{ }_{\rho \delta} \mathrm{J}^{\delta} \otimes \mathrm{J}^{\rho}
$$

Tensor space representation(spin chains, scattering amplitudes, etc.):

$$
\mathrm{J}^{\kappa}=\sum_{i} \mathrm{~J}_{i}^{\kappa} \quad \widehat{\mathrm{J}}^{\kappa}=\sum_{i} c_{i} \mathrm{~J}_{i}^{\kappa}+f^{\kappa}{ }_{\rho \delta} \sum_{i<j} \mathrm{~J}_{i}^{\delta} \mathrm{J}_{j}^{\rho}
$$

- Symmetry generators get deformed by radiative corrections but algebra is stable

$$
J^{a}(\lambda)=J^{a}+\delta J^{a}(\lambda) \quad \text { with } \quad\left[J^{a}(\lambda), J^{b}(\lambda)\right]=f_{c}^{a b} J^{c}(\lambda)
$$

- Dilatation operator:

Scaling dimensions $\Delta_{\mathcal{A}}$ are eigenvalues of the dilatation operator $D(\lambda)=D+\delta D(\lambda)$

$$
D(\lambda)|\mathcal{O}\rangle=\Delta_{\mathcal{A}}|\mathcal{O}\rangle \quad \text { with } \quad|\mathcal{O}\rangle=\sum_{\left\{i_{k}\right\}} c^{i_{1} \ldots i_{L}}\left|X_{i_{1}} \ldots X_{i_{L}}\right\rangle
$$

- Captured by mixing matrix Z of renormalization of $\mathcal{O}_{\mathcal{A}}$

$$
\delta D \sim Z^{-1} \mu \frac{d Z}{d \mu}
$$

Constructable from Feynman diagrammatics

- δD is invariant under $\mathfrak{p s u}(2,2 \mid 4)$

$$
\begin{aligned}
{\left[D, J^{a}\right] } & =\underbrace{\Delta^{a}}_{\text {number }} J^{a} \Rightarrow\left[D(\lambda), J^{a}(\lambda)\right]=\Delta^{a} J^{a}(\lambda) \\
& \Rightarrow \quad\left[D, \delta J^{a}\right]+\left[\delta D, J^{a}\right]=\Delta^{a} \delta J^{a}
\end{aligned}
$$

in perturbation thy operators only mix with other operators of the same classical dimension, hence $\left[D, \delta J^{a}\right]=\Delta^{a} \delta J^{a}$ thus

$$
\left[\delta D, J^{a}\right]=0
$$

- One loop dilatation operator:

Look at simple subsector closed under renormalization
$X=\phi_{1}+i \phi_{2} \quad Y=\phi_{3}+i \phi_{4} \quad Z=\phi_{5}+i \phi_{6}$

- Groundstate: $\left|0_{L}\right\rangle \hat{=} \operatorname{Tr}\left(Z^{L}\right) \quad$ indeed $\Delta_{0_{L}}=0$ ($1 / 2 \mathrm{BPS}$ state)
- Consider excitations (insert W 's) $\Rightarrow \mathrm{SU}(2)$ sector $\quad|\uparrow\rangle \hat{=} Z|\downarrow\rangle \hat{=} W$ $\operatorname{Tr}(Z \ldots Z W Z \ldots W) \hat{=}|\uparrow\rangle \otimes \ldots|\uparrow\rangle \otimes|\downarrow\rangle \otimes|\uparrow\rangle \otimes \ldots|\uparrow\rangle$
- δD is invariant under $\mathfrak{p s u}(2,2 \mid 4)$

$$
\begin{aligned}
{\left[D, J^{a}\right] } & =\underbrace{\Delta^{a}}_{\text {number }} J^{a} \Rightarrow\left[D(\lambda), J^{a}(\lambda)\right]=\Delta^{a} J^{a}(\lambda) \\
& \Rightarrow \quad\left[D, \delta J^{a}\right]+\left[\delta D, J^{a}\right]=\Delta^{a} \delta J^{a}
\end{aligned}
$$

in perturbation thy operators only mix with other operators of the same classical dimension, hence $\left[D, \delta J^{a}\right]=\Delta^{a} \delta J^{a}$ thus

$$
\left[\delta D, J^{a}\right]=0
$$

- One loop dilatation operator:

Look at simple subsector closed under renormalization $X=\phi_{1}+i \phi_{2} \quad Y=\phi_{3}+i \phi_{4} \quad Z=\phi_{5}+i \phi_{6}$

- Groundstate: $\left|0_{L}\right\rangle \hat{=} \operatorname{Tr}\left(Z^{L}\right) \quad$ indeed $\Delta_{0_{L}}=0$ ($1 / 2$ BPS state)
- Consider excitations (insert W 's) $\Rightarrow \mathrm{SU}(2)$ sector $\quad|\uparrow\rangle \hat{=} Z|\downarrow\rangle \hat{=} W$

$$
\operatorname{Tr}(Z \ldots Z W Z . . W) \hat{=}|\uparrow\rangle \otimes \ldots|\uparrow\rangle \otimes|\downarrow\rangle \otimes|\uparrow\rangle \otimes \ldots|\uparrow\rangle
$$

- Explixit computation in $\operatorname{SU}(2)$ sector yields

$$
\delta D_{S U(2)}=\frac{\lambda}{2} \sum_{k=1}^{L}\left(\mathbf{1}_{k}-\mathbb{P}_{k, k+1}\right)+\mathcal{O}\left(\lambda^{2}\right) \quad \mathbb{P}_{k, k+1}=\vec{\sigma}_{k} \cdot \vec{\sigma}_{k+1}
$$

- Obviously $\delta D_{S U(2)}$ is invariant under su(2): For $J_{a} \in \operatorname{su}(2)$

$$
\left[J_{a}, \delta D_{S U(2)}\right]=0 \quad \text { with } \quad J_{a}=\frac{1}{2 i} \sum_{k=1}^{L} \sigma_{a, k}
$$

- Yangian symmetry $Y[\mathfrak{s u}(2)]$

Level one generators (in trivial evaluation representation):

$$
\hat{J}_{a}=\epsilon_{a b c} \sum_{1 \leq k<j \leq L} J_{b, j} J_{c, k}
$$

Note: Definition singles out site 1 and L! Breaks cyclicity.

- Explixit computation in $\operatorname{SU}(2)$ sector yields

$$
\delta D_{S U(2)}=\frac{\lambda}{2} \sum_{k=1}^{L}\left(\mathbf{1}_{k}-\mathbb{P}_{k, k+1}\right)+\mathcal{O}\left(\lambda^{2}\right) \quad \mathbb{P}_{k, k+1}=\vec{\sigma}_{k} \cdot \vec{\sigma}_{k+1}
$$

- Obviously $\delta D_{S U(2)}$ is invariant under su(2): For $J_{a} \in \operatorname{su}(2)$

$$
\left[J_{a}, \delta D_{S U(2)}\right]=0 \quad \text { with } \quad J_{a}=\frac{1}{2 i} \sum_{k=1}^{L} \sigma_{a, k}
$$

- Yangian symmetry $Y[\mathfrak{s u}(2)]$

Level one generators (in trivial evaluation representation):

$$
\hat{J}_{a}=\epsilon_{a b c} \sum_{1 \leq k<j \leq L} J_{b, j} J_{c, k}
$$

Note: Definition singles out site 1 and L! Breaks cyclicity.

Level one generator in $\mathrm{su}(2)$ sector

$$
\hat{J}_{a}=\epsilon_{a b c} \sum_{1 \leq k<j \leq L} J_{b, j} J_{c, k}
$$

- One shows: $\quad \epsilon_{a b c}\left[J_{b} \otimes J_{c}, \sigma_{d} \otimes \sigma_{d}\right]=J_{a} \otimes \mathbf{1}-\mathbf{1} \otimes J_{a}$
- Thus with $\delta D_{S U(2)}=\sum_{k=1}^{L}\left(\mathbf{1}_{k}-\mathbb{P}_{k, k+1}\right)$

$$
\left[\hat{J}_{a}, \delta D_{S U(2)}\right]=J_{a, 1}-J_{a, L} \hat{=} J_{a} \otimes \mathbf{1} \otimes \ldots \otimes \mathbf{1}-\mathbf{1} \otimes \mathbf{1} \otimes \ldots \otimes J_{a}
$$

- Hence $\delta D_{S U(2)}$ is invariant up to boundary terms!
- Consequence on non-cyclicity of \hat{J}.

Full $\mathfrak{p s u}(2,2 \mid 4)$ spin chain

Message: Surprisingly little changes

- Let V_{F} be 1-particle states in free $\mathcal{N}=4 \mathrm{SYM}$
- δD acts on 2-particle states in $V_{F} \otimes V_{F}$
- Decomposition of $V_{F} \otimes V_{F}$ into irreps of $\mathfrak{p s u}(2,2 \mid 4)$ surprisingly simple

$$
V_{F} \otimes V_{F}=\bigoplus_{j=0}^{\infty} V_{j}
$$

j characterizes the multiplet whose conformal primary is an R-singlet of angular momentum ($j-2$).

- Quadratic Casimir operator of the 2-particle system acts as

$$
J_{12}^{2} V_{j}=\left(J_{1}^{a}+J_{2}^{a}\right)^{2} V_{j}=j(j+1) V_{j} \quad j=0,1,2, \ldots
$$

Just as in SU(2)!

- Allows us to write an $\mathfrak{p s u}(2,2 \mid 4)$ invariant ansatz for the one-loop dilatation operator δD :

$$
\delta D=\sum_{j=0}^{\infty} h(j) P_{12, j} \quad P_{12, j}: \text { Projector of } V_{F} \otimes V_{F} \text { on } V_{j}
$$

- Yangian symmetry $\left[\hat{J}^{a}, \delta D\right]=J_{1}^{a}-J_{L}^{a}$ demands $h(j)=\sum_{n=1}^{j} \frac{2}{n}$
- Proof:

Define $\hat{J}_{i j}^{a}:=f_{b c}^{a} J_{i}^{a} J_{j}^{b}$. We note $\hat{J}_{i j}^{a}=\frac{1}{4}\left[J_{i j}^{2}, q_{i j}^{a}\right]$ with $q_{i j}^{a}:=J_{i}^{a}-J_{j}^{a}$.

$$
\Rightarrow \quad\left[\delta D_{i j}, \hat{J}_{i j}^{a}\right]=\frac{1}{4}\left[\delta D_{i j},\left[\hat{J}_{i j}^{2}, q_{i j}\right]\right]
$$

Important relation (w/o proof) $\quad q_{i j}^{a}: V_{j} \rightarrow V_{j-1} \oplus V_{j+1}$

$$
q_{i j}^{a}|\lambda(j)\rangle=\left|\chi^{a}(j-1)\right\rangle+\left|\rho^{a}(j+1)\right\rangle
$$

Let's us conclude

$$
\begin{aligned}
& \Rightarrow\left[\delta D_{i j}, \hat{J}_{i j}^{a}\right]|\lambda(j)\rangle=\ldots=\frac{j}{2}(h(j)-h(j-1))\left|\chi^{a}(j-1)\right\rangle \\
& +\frac{j+1}{2}(h(j+1)-h(j))\left|\rho^{a}(j+1)\right\rangle \\
& \stackrel{!}{=} q_{i j}^{a}|\lambda(j)\rangle=\left|\chi^{a}(j-1)\right\rangle+\left|\rho^{a}(j+1)\right\rangle \\
& \Rightarrow \quad h(j)-h(j-1)=\frac{2}{j} \text {. }
\end{aligned}
$$

- Thus Yangian symmetry, which here means that

$$
\left[\hat{J}^{a}, \delta D\right]=J_{1}^{a}-J_{L}^{a}
$$

completely determines the one loop anomalous dimensions in the theory!

- Result is consistent with explicit field theory compuations
- Note: Yangian only a symmetry of the "bulk" Hamiltonian.
- At higher loop orders the deformations of $J^{a}(\lambda)$ and $\hat{J}^{a}(\lambda)$ can be constructed based on a preserved algebra. Result now unique due to possible similarity transformations $J^{a} \rightarrow X J^{a} X^{-1}$.

