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D=4 bound

Bootstrapping 〈φφφφ〉, ∆φ ≡ d, ∆0 ≡ ∆φ2 .
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D=2 bound

Bootstrapping 〈φφφφ〉, ∆φ ≡ d, ∆min ≡ ∆φ2 . Black crosses represent minimal model
correlation functions characterized by ' L−2 + aL2

−1 = 0.
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D=3 bound

Bootstrapping 〈φφφφ〉, ∆φ ≡ ∆σ , ∆ε ≡ ∆φ2 .
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Dimension bounds in various dimensionality
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Comparison with ε-expansion

Figure: Anomalous dimensions of σ and ε field as a function of 4−D. Black dots are bootstrap
results (the kinks), orange bands represent 5-loop Borel resummed ε-expansion.
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O(N) models in D = 3

Figure: Bound on the singlet in the φi × φj OPE. Error bars represent best MC and analytic
determinations. Black crosses are large N expansion.
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Multiple correlators - 3D Ising

Figure: Analysis with multiple correlators (σ, ε fields). Includes a gap in spin-odd sector up to
dimension 3 (Ising should only have one relevant even scalar).
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Multiple correlators - 3D Ising

Figure: Zoom on the previous plot, more derivatives.
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Multiple correlators - 3D O(N)
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Kinks and spectra
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Variation with N
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Evolution with N
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Figure: Comparison between extrapolated vs exact spectra. The exact solution is the
generalized free fermion with dimensions ∆(j) = 1 + 2∆φ + 2j, here evaluated at ∆φ = 0.3.
The exact values lie on the solid red line whereas the extrapolated results are represented by the
blue dots.
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Figure: Gap maximization with 100 components. The curve provides a valid upper bound on
the dimension of φ2 in D = 1 CFTs. The slope of the bound smoothly interpolates between 2
and 2

√
2. As the number of components increases, the transition region is pushed to higher

values of ∆φ.
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Figure: Flow of the spectrum of operator dimensions as ∆φ is increased. Dimensions of
operators are shown in terms of δ ≡ (∆− 2

√
2∆φ)/

√
∆φ. Each horizontal slice is a spectrum

at a given ∆φ. For large values of ∆φ the dimensions of operators stabilize in a region with
finite width in units of

√
∆φ centered at δ = 0.
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OPE max
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Figure: OPE maximization with N = 100 components. On the left, flows from gap
maximization to OPE maximization. Given the OPE φ× φ = φ+ φ2 + . . ., with ∆φ2 ≡ ∆gap,
we are placing an upper bound on λ ≡ λφφφ. On the left, each curve corresponds to a different
value for ∆φ, and we vary the gap on the x-axis. On the right, we fix the gap instead to
(∆gap − 1)/∆φ = 2 and flow in ∆φ. Hence the red curve on the left plot should match the one
on the right. In particular, the blue dots correspond exactly to the intersection of the three
curves on the left with the vertical line at ∆gap = 1 + 2∆φ.
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Non-unitary bootstrap

-0.4 -0.2 0.0 0.2 0.4
0.0

0.5

1.0

1.5

2.0

Δϕ

Δgap

Figure: Flowing into a non-unitary region with N = 100 components. Below ∆φ = 0 the
extremal solution develops a negative OPE coefficient. However, there is still an associated
positive linear functional. The functional does set a bound on possible unitary solutions in this
region, but this bound may not be optimal.
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Non-unitary bootstrap
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Figure: Upgrading at a non-unitary point, with ∆φ = −0.3. On the left, evolution of ∆gap as we
increase the number of crosing constraints. The values seem to converge to the correct value
1 + 2∆φ = 0.4. Unlike the usual unitary bootstrap, the curve here does not have a meaning of
a bound. Accordingly the value ∆gap does not need to decrease as we add more constraints, and
in fact here it does the opposite. On the right, the leading, negative, OPE coefficient squared,
compared with the exact value λ2

j=0 = 2∆φ = −0.6.
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Non-unitary bootstrap
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Figure: Upgrading at a non-unitary point: Comparison between the extrapolated spectrum (blue
dots) and the exact generalized free fermion (red line). Operators are labeled by an integer j,
with ∆j = 1 + 2∆φ + 2j. The first 20 operators are correct to better than a part in 106. Note
that on the right λ2 < 0 for j = 1 (we are showing it’s absolute value).
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Singularities
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Figure: Singularities and flows (schematic). At an ordinary kink, such as k1 it is possible to
flow into a non-unitary region, say along A, where some OPE coefficient becomes negative.
However, not all decouplings of operators signal a visible kink. At when we approach k2 from
the left, an operator decouples. By allowing its OPE to become negative we can flow along C.
Conversely, coming from the right, the functional develops a new zero at k2. If we do not input
this new vector into the solution, the latter won’t be extremal anymore, and the flow will take us
along B.
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2d Ising spectrum
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3d Ising: bound on central charge
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3d Ising: spectrum
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3d Ising: spectrum
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2d Ising: spectrum
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2d Ising: spectrum
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