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D=4 bound

Upper bound on dim(¢?)
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D=2 bound
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Bootstrapping (ppdg), Ay = d, A, = Ay Black crosses represent minimal model
correlation functions characterized by ~ £_, + aL% | = 0.
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D=3 bound
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Dimension bounds in various dimensionality

FIG. 1. Upper bounds on 7, as a function of 75, plotted for D = 2,2.25,...,4. For each D < 4,
the bound shows a kink, where a CFT belonging to the Ising model universality class is conjectured
to live (black dots, fitted by the blue dashed curve). An example of theories in the bulk of the
allowed region are Gaussian models, where 7. = 27, (black dotted line).
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Comparison with e-expansion
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Figure: Anomalous dimensions of o and e field as a function of 4 — D. Black dots are bootstrap
results (the kinks), orange bands represent 5-loop Borel resummed e-expansion.
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O(N) models in D = 3

O(N) Singlet Bounds
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Figure: Bound on the singlet in the ¢; X ¢; OPE. Error bars represent best MC and analytic
determinations. Black crosses are large N expansion.
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Multiple correlators - 3D Ising

allowed region with Ay > 3 (nmax = 6)
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Figure: Analysis with multiple correlators (o, € fields). Includes a gap in spin-odd sector up to

dimension 3 (Ising should only have one relevant even scalar).
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Multiple correlators - 3D Ising

comparison to Monte Carlo
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Figure: Zoom on the previous plot, more derivatives.
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Multiple correlators - 3D O(N)

The O(N) archipelago
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Kinks and spectra
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Variation with N
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Evolution with N
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Figure: Comparison between extrapolated vs exact spectra. The exact solution is the
generalized free fermion with dimensions A(j) = 1 4+ 2A4 + 2j, here evaluated at A, = 0.3.
The exact values lie on the solid red line whereas the extrapolated results are represented by the
blue dots.
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Figure: Gap maximization with 100 components. The curve provides a valid upper bound on
the dimension of ¢ in D = 1 CFTs. The slope of the bound smoothly interpolates between 2

and 2v/2. As the number of components increases, the transition region is pushed to higher
values of Ay.
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Figure: Flow of the spectrum of operator dimensions as A is increased. Dimensions of
operators are shown in terms of § = (A — 2v/2A)/ \/E . Each horizontal slice is a spectrum
at a given Ay. For large values of A, the dimensions of operators stabilize in a region with
finite width in units of \/Aid) centered at § = 0.
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Figure: OPE maximization with N = 100 components. On the left, flows from gap
maximization to OPE maximization. Given the OPE ¢ X ¢ = ¢ + ¢* + ..., with Ay = Ay,
we are placing an upper bound on A = Ag44. On the left, each curve corresponds to a different
value for A4, and we vary the gap on the x-axis. On the right, we fix the gap instead to

(Agp — 1)/Ag =2 and flow in A4. Hence the red curve on the left plot should match the one
on the right. In particular, the blue dots correspond exactly to the intersection of the three
curves on the left with the vertical line at A,,, = 1 + 2A,.
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Non-unitary bootstrap
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Figure: Flowing into a non-unitary region with N = 100 components. Below A, = 0 the
extremal solution develops a negative OPE coefficient. However, there is still an associated
positive linear functional. The functional does set a bound on possible unitary solutions in this
region, but this bound may not be optimal.
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Non-unitary bootstrap
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Figure: Upgrading at a non-unitary point, with A4 = —0.3. On the left, evolution of A,,, as we
increase the number of crosing constraints. The values seem to converge to the correct value

1 +2A4 = 0.4. Unlike the usual unitary bootstrap, the curve here does not have a meaning of
a bound. Accordingly the value A,,, does not need to decrease as we add more constraints, and
in fact here it does the opposite. On the right, the leading, negative, OPE coefficient squared,
compared with the exact value A}zo =2A4 = —0.6.
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Non-unitary bootstrap
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Figure: Upgrading at a non-unitary point: Comparison between the extrapolated spectrum (blue
dots) and the exact generalized free fermion (red line). Operators are labeled by an integer j,
with A; = 1 +2A, + 2j. The first 20 operators are correct to better than a part in 10°. Note
that on the right A> < 0 for j = 1 (we are showing it’s absolute value).
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Singularities

Non-unitary

Allowed

Figure: Singularities and flows (schematic). At an ordinary kink, such as k; it is possible to
flow into a non-unitary region, say along A, where some OPE coefficient becomes negative.
However, not all decouplings of operators signal a visible kink. At when we approach k, from
the left, an operator decouples. By allowing its OPE to become negative we can flow along C.
Conversely, coming from the right, the functional develops a new zero at k». If we do not input
this new vector into the solution, the latter won’t be extremal anymore, and the flow will take us
along B.
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2d Ising spectrum

18

I:
1 (=16
[

2d spectrum and OPE coeffs @ A, =1/8, A_=1 (120 comp.)
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3d Ising: bound on central charge

Iower bound (153 190 231 comp. )
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3d Ising: spectrum

1=0 spectrum @ min ¢ (105 comp.) 1=0 OPE coeffs @ min ¢ (105 comp.)
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3d Ising: spectrum

1=2 spectrum @ min ¢ (105 comp.)

1=2 OPE coeffs @ min ¢ (105 comp.)

0.5180
Afo)

0.5160 0.5170

1
101,
L 10°F 2
B
38
< 107 |
3
107 E....4
5 SIS
" -3 L n n
05190  0.520C 195160 05170 05180 05190  0.5200
Afa)

Lectures on Conformal Bootstrap

Zakopane, 27/05/2016

24/26



2d Ising: spectrum

d =2, I=0spectrum @ min ¢ (153 comp.) d=2, [=0 OPE coeffs @ min ¢ (153 comp.)
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2d Ising: spectrum

d=2, =2 spectrum @ min ¢ {153 comp.) d =2, =2 OPE coeffs @ min ¢ (153 comp.)
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