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Here C specifies some a path with vectors v; and v, kept at
some cusp angle 6, which we connect together at infinity.

I / ™,
@

Figure: Path of the one cusp contour C.



The Wilson Loop at Weak Coupling

» A perturbative calculation of the Cusp of Anomalous
Dimension for QCD is given to 3 loops in a 2014 paper by
A. Grozin et al.

A. Grozin, J. Henn, G. Korchemsky and P. Marquard (arXiv:1409.0023 [hep-ph])

Figure: Path of one cusp contour C.



The Wilson Loop at Strong Coupling

From the Gauge/Gravity correspondence we say that the

Wilson loop is:
W~ e™® (2)

where S is the action of a string with end points placed on the

same contour C,
S= / Lo \/—det(hug) (3)

and h,g is the worldsheet metric.
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From the Gauge/Gravity correspondence we say that the
Wilson loop is:
W~ e™® (2)

where S is the action of a string with end points placed on the

same contour C,
S= / Lo \/—det(hug) (3)

and h,g is the worldsheet metric. The Wilson loop is
related to the area the string traces out in spacetime.
The Cusp of Anomalous Dimension is a measure of how much
this integral changes when we increase the cut-off A

ds ds
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The Wilson Loop at Strong Coupling

For a general background that is Poincare invariant at the

boundary:
ds? = W) (n,, dztda”) + dy?, (5)

We orient the embedding co-ordinates as z# = (2%, z',0, ).
Choosing the parameterization:

2° =ssinhn (6)
z' =scosh . (7)

We find that

/—detlhag) = 5 \/ s~ (0w - 0w)2) ©

This action does not depend explicitly on the rapidity 7.
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the boundary) the string end points fall on the lightcone.
ie. 29 = .

» 5= +/(29)% — (x')2 so this is satisfied by s = 0 on the
boundary, without any dependence on 7. (This is to be
expected because the lightcone is invariant under 7
rotations).

» Both the Action and the boundar conditions are
independent of 7, so the solution must also be
independent of 7.

Thus

y(S, 77) = y(s)7 (9)

S = /ds seqh(y)\/em(y (Osy)? /dn. (10)

and
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So we have that for any gauge with a gravitational dual, the
Wilson loop at strong coupling with contour placed on the
lightcone will have the form

W ~ e 5@ g=n:) (11)
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The Wilson Loop at Strong Coupling

So we have that for any gauge with a gravitational dual, the
Wilson loop at strong coupling with contour placed on the
lightcone will have the form

W ~ e 5@ g=n:) (11)

with

S(A) = /ds se®® \/62“1’ v) — (Osy)2. (12)

» With some effective theories (as we will see with GPPZ)
we are required to include an effective “string tension”
T'(y) in our Action to give:

(A) = / ds sT()e™ \ [0 — (0. (13)



The AdS one Cusp Solution

For AdS space (dual to N =4 SYM) we have ®(y) =y so

that
ds’ys = €% (Nuda™dz”) + dy*. (14)

We choose y = log% to arrive at the more familiar form
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The AdS one Cusp Solution

For AdS space (dual to N =4 SYM) we have ®(y) =y so
that
ds’ys = €% (Nuda™dz”) + dy*. (14)

We choose y = log% to arrive at the more familiar form
A5 = — (muwdeds” + dp?) (15)
SAdS_? Nuax"ar” + ap”) .
with p € (0, 00), with boundary at p = 0. Then we find
5 I
S =i dssﬁx/pQ— L. (16)

A solution of the Equations of Motion satisfying p(s = 0) =0
is

p=12s. (17)



The GPPZ one Cusp Solution
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2 _ 2y w v 2
dsgppy = (€ 1) (udztdx”) + dy*. (18)
L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni (hepfth/9909047v2, hep—th/9903026v2)

» GPPZ is 5-dimensional effective Supergravity theory which
simulates RG flow from N =4 to N =1 SYM Theory.

» The theory requires an effective Tension term in our Action
g = /dQO'T —det(hag) (19)

8e2Y 3+ezy

where T(y) = W

Iny = log% co-ordinates:

1
dsgppz = 2 ((1 = p* ) datda” + dp?) . (20)



The GPPZ one Cusp Solution

1

dstppy = 2 (1 = p*)nudatdz” + dp?) .

(21)
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The GPPZ one Cusp Solution
dstppy = p12 ((1- PN datdz” + dPQ) : (21)

» The metric is singular at p = 1. Objects outside this
horizon don't fall through, so while p € (0, c0) we are
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The GPPZ one Cusp Solution
dstppy = p12 ((1- PN datdz” + dPQ) : (21)

» The metric is singular at p = 1. Objects outside this
horizon don't fall through, so while p € (0, c0) we are
really only interested p € (0, 1). neptn/000302

» We choose an Ansatz p = sinu to find:

dsppy = cot® u (ndztde” + du®) . (22)

10
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In general we can take

ds sT(y 62‘1’(1/) (0sy)?

v

H,_/ ~—— ——
(85'“)2
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The GPPZ one Cusp Solution

In general we can take

S(A) = /ds sT(y)e®W \/62<I>(y) — (Byy)?

= /dssT(y)ewW) 1-— (8sy)2672‘1’(y)

—— ——
f(w) (Ds1)2
Thus we have
S = /ds sf(u)y/1— (0su)? (23)
where
20(y) g O 2sy)
fu)=T(y)e**™ and — = e %W, (24)
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The GPPZ one Cusp Solution

In general we can take

S(A) = /ds ST (y)e® \/62<I>(y) — (Bey)?

= /dssT(y)e2q>(y) 1— (8sy)2672‘1’(y)

— —_——
f(u) (83'“)2
Thus we have
S = /ds sf(u)y/1— (0su)? (23)
where
20 (y) du —28(y)
fu)=T(y)e**" and 50— ¢ 2 (24)
Yy

This is equivalent to choosing the falling frame and as such
this can be done generically.

ds* = W) (p, datds” + du?). (25)



The GPPZ one Cusp Solution

For an Action of the form:

S:i/dssf(u) u? —1
We will have an Equations of Motion:
sii = (1 — @) (i — 5g(u))

where g(u) = 2 log f(u).

(26)

(27)

12



The GPPZ one Cusp Solution

For an Action of the form:
5= z’/ds e T =T (26)
We will have an Equations of Motion:

sii = (1 —u?) (0 — sg(u)) (27)

where g(u) = 2 log f(u).
» For the case of GPPZ f(u) = 21/2(1 + 3sin® u) csc? u but we
can make progress without knowing the form of this function.

We define

5

1 = cothv =
1 —u?

= 9. (28)

12



The GPPZ one Cusp Solution

Giving us the system of Equations
sO =1 — sg(u), (29)
U = cothw. (30)
If 4(s = s;) = cothv; and u(s = s;) are real and g(u) is a real-valued

function then v must remain real for all s. Therefore @ will be

constrained to the region @ € (1, 00).

1 Tanh|v]
; Vv Coth|v]

Figure: Path constraining & = cothv for all real v.
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Stability and Fixed Points

As s — 0, our geometry becomes asymptotically AdS near the
boundary.
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Stability and Fixed Points

As s — 0, our geometry becomes asymptotically AdS near the
boundary. We know that u = V/2s is a solution to the AdS
problem, so 1 = V/2 should be our second initial condition.

u

4

Initial Condition
2 /

\

0.0 0.5 1.0 15 20 25 3.0 v

Figure: Path constraining % = cothv for all real v.
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Stability and Fixed Points
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Figure: Solution u = v/2 and numerical solutions for g(u) <

2
u
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Figure: Solution u = v/2 and numerical solutions for g(u) <

2
u
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Stability and Fixed Points

When g(u) is bounded above by % then the solution moves to
the @ — 1 fixed point.

u

4

v>0

>

0.0 0.5 1.0 1.5 20 25 3.0 v

Figure: Path constraining @ = coth v for all real v.
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Figure: Solution u = v/2 and numerical solutions for g(u) >

2
u
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Stability and Fixed Points
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Figure: Solution u = v/2 and numerical solutions for g(u) >

2
u
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Stability and Fixed Points

When g(u) is bounded below by 2 then the solution moves to

the @ — oo fixed point.

i
T\
3 .
v<0
2
1
0.0 0.5 1.0 15 20 25 3.0 v

Figure: Path constraining @ = coth v for all real v.
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GPPZ Results

For GPPZ g(u) = 11 cotu — 3 cos 3ucsc 210 — 6 cos (2u) and
is bounded above by %

10

0.5 1.0 L5 - 23 3.0 U

-10

Figure: Comparason of g(u) to 2

a1



GPPZ Results

4 -
Numerics
AdS

3 \

2 L

1 L

Asymptote

0.0 0.5 1.0 15 2.0 2.5 3.0 S

Figure: Numerical plot of u(s), v/2s and s for comparason
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GPPZ Results

0.0 0.5 1.0 15 2.0 S

Figure: GPPZ and AdS Solutions substituted back into their
respective Lagrangian Densities £ = sf(u)vV4? — 1.
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GPPZ Results

0.0 0.5 1.0 15 2.0 S

Figure: GPPZ and AdS Solutions substituted back into their
respective Lagrangian Densities £ = sf(u)vV4? — 1.

We can note that although @ — 1, then f(u) term diverges
causing a non-vanishing expression.

L = 524/2(1 + 3sin® u) csc®> uvu? — 1 (31)

29



GPPZ Results

GPPZ

AdS
: y'd

0.0 0.5 1.0 15 2.0 S

Figure: The cusp I'cysp for both GPPZ and AdS.
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Conclusion

» We've analysed general behaviour regarding string
solutions in multiple gravitational theories.

» Computed the cusp of anomalous dimension associated
with a light-line Wilson loop in a non-conformal theory.

» We could perform a similar analysis for different types of
loops.

Thank You.
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