The Cusp of Anomalous Dimension in GPPZ

Ben Meiring (UCT)
\& Jorge Casalderrey-Solana (Oxford)
mrnben002@myuct.ac.za
jorge.casalderreysolana@physics.ox.ac.uk

May, 2016

The Wilson Loop at Weak Coupling

Wilson loops a measure of the potential between particles in a given theory.

$$
\begin{equation*}
W=\frac{1}{N}\langle 0| \operatorname{tr}\left\{P \exp \left(i \oint_{C} d x \cdot A(x)\right)\right\}|0\rangle \tag{1}
\end{equation*}
$$

The Wilson Loop at Weak Coupling

Wilson loops a measure of the potential between particles in a given theory.

$$
\begin{equation*}
W=\frac{1}{N}\langle 0| \operatorname{tr}\left\{P \exp \left(i \oint_{C} d x \cdot A(x)\right)\right\}|0\rangle \tag{1}
\end{equation*}
$$

Here C specifies some a path with vectors v_{1} and v_{2} kept at some cusp angle θ, which we connect together at infinity.

Figure: Path of the one cusp contour C.

The Wilson Loop at Weak Coupling

- A perturbative calculation of the Cusp of Anomalous Dimension for QCD is given to 3 loops in a 2014 paper by A. Grozin et al.
A. Grozin, J. Henn, G. Korchemsky and P. Marquard (arXiv:1409.0023 [hep-ph])

Figure: Path of one cusp contour C.

The Wilson Loop at Strong Coupling

From the Gauge/Gravity correspondence we say that the Wilson loop is:

$$
\begin{equation*}
W \sim e^{-S} \tag{2}
\end{equation*}
$$

where S is the action of a string with end points placed on the same contour C,

$$
\begin{equation*}
S=\int d^{2} \sigma \sqrt{-\operatorname{det}\left(h_{\alpha \beta}\right)} \tag{3}
\end{equation*}
$$

and $h_{\alpha \beta}$ is the worldsheet metric.

The Wilson Loop at Strong Coupling

From the Gauge/Gravity correspondence we say that the Wilson loop is:

$$
\begin{equation*}
W \sim e^{-S} \tag{2}
\end{equation*}
$$

where S is the action of a string with end points placed on the same contour C,

$$
\begin{equation*}
S=\int d^{2} \sigma \sqrt{-\operatorname{det}\left(h_{\alpha \beta}\right)} \tag{3}
\end{equation*}
$$

and $h_{\alpha \beta}$ is the worldsheet metric. The Wilson loop is related to the area the string traces out in spacetime.

The Wilson Loop at Strong Coupling

From the Gauge/Gravity correspondence we say that the Wilson loop is:

$$
\begin{equation*}
W \sim e^{-S} \tag{2}
\end{equation*}
$$

where S is the action of a string with end points placed on the same contour C,

$$
\begin{equation*}
S=\int d^{2} \sigma \sqrt{-\operatorname{det}\left(h_{\alpha \beta}\right)} \tag{3}
\end{equation*}
$$

and $h_{\alpha \beta}$ is the worldsheet metric. The Wilson loop is related to the area the string traces out in spacetime. The Cusp of Anomalous Dimension is a measure of how much this integral changes when we increase the cut-off Λ

$$
\begin{equation*}
\Gamma_{\text {cusp }}=\frac{d S}{d \log \Lambda}=\Lambda \frac{d S}{d \Lambda} \tag{4}
\end{equation*}
$$

The Wilson Loop at Strong Coupling

For a general background that is Poincare invariant at the boundary:

$$
\begin{equation*}
d s^{2}=e^{2 \Phi(y)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)+d y^{2} \tag{5}
\end{equation*}
$$

We orient the embedding co-ordinates as $x^{\mu}=\left(x^{0}, x^{1}, \mathbf{0}, y\right)$.
Choosing the parameterization:

$$
\begin{align*}
& x^{0}=s \sinh \eta \tag{6}\\
& x^{1}=s \cosh \eta \tag{7}
\end{align*}
$$

The Wilson Loop at Strong Coupling

For a general background that is Poincare invariant at the boundary:

$$
\begin{equation*}
d s^{2}=e^{2 \Phi(y)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)+d y^{2} \tag{5}
\end{equation*}
$$

We orient the embedding co-ordinates as $x^{\mu}=\left(x^{0}, x^{1}, \mathbf{0}, y\right)$.
Choosing the parameterization:

$$
\begin{align*}
& x^{0}=s \sinh \eta \tag{6}\\
& x^{1}=s \cosh \eta \tag{7}
\end{align*}
$$

We find that

$$
\begin{equation*}
\sqrt{-\operatorname{det}\left(h_{\alpha \beta}\right)}=s e^{\Phi(y)} \sqrt{e^{2 \Phi(y)}-\left(\left(\partial_{s} y\right)^{2}-\frac{1}{s^{2}}\left(\partial_{\eta} y\right)^{2}\right)} \tag{8}
\end{equation*}
$$

The Wilson Loop at Strong Coupling

For a general background that is Poincare invariant at the boundary:

$$
\begin{equation*}
d s^{2}=e^{2 \Phi(y)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)+d y^{2} \tag{5}
\end{equation*}
$$

We orient the embedding co-ordinates as $x^{\mu}=\left(x^{0}, x^{1}, \mathbf{0}, y\right)$.
Choosing the parameterization:

$$
\begin{align*}
& x^{0}=s \sinh \eta \tag{6}\\
& x^{1}=s \cosh \eta \tag{7}
\end{align*}
$$

We find that

$$
\begin{equation*}
\sqrt{-\operatorname{det}\left(h_{\alpha \beta}\right)}=s e^{\Phi(y)} \sqrt{e^{2 \Phi(y)}-\left(\left(\partial_{s} y\right)^{2}-\frac{1}{s^{2}}\left(\partial_{\eta} y\right)^{2}\right)} \tag{8}
\end{equation*}
$$

This action does not depend explicitly on the rapidity η.

The Wilson Loop at Strong Coupling

- Our Boundary Condition is that when $y(s, \eta)=\infty$ (on the boundary) the string end points fall on the lightcone. ie. $x^{0}= \pm x^{1}$.

The Wilson Loop at Strong Coupling

- Our Boundary Condition is that when $y(s, \eta)=\infty$ (on the boundary) the string end points fall on the lightcone. ie. $x^{0}= \pm x^{1}$.
- $s=\sqrt{\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}}$ so this is satisfied by $s=0$ on the boundary, without any dependence on η. (This is to be expected because the lightcone is invariant under η rotations).

The Wilson Loop at Strong Coupling

- Our Boundary Condition is that when $y(s, \eta)=\infty$ (on the boundary) the string end points fall on the lightcone. ie. $x^{0}= \pm x^{1}$.
- $s=\sqrt{\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}}$ so this is satisfied by $s=0$ on the boundary, without any dependence on η. (This is to be expected because the lightcone is invariant under η rotations).
- Both the Action and the boundar conditions are independent of η, so the solution must also be independent of η.

The Wilson Loop at Strong Coupling

- Our Boundary Condition is that when $y(s, \eta)=\infty$ (on the boundary) the string end points fall on the lightcone. ie. $x^{0}= \pm x^{1}$.
- $s=\sqrt{\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}}$ so this is satisfied by $s=0$ on the boundary, without any dependence on η. (This is to be expected because the lightcone is invariant under η rotations).
- Both the Action and the boundar conditions are independent of η, so the solution must also be independent of η.
Thus

$$
\begin{equation*}
y(s, \eta)=y(s) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\int d s s e^{\Phi(y)} \sqrt{e^{2 \Phi(y)}-\left(\partial_{s} y\right)^{2}} \int d \eta \tag{10}
\end{equation*}
$$

The Wilson Loop at Strong Coupling

So we have that for any gauge with a gravitational dual, the Wilson loop at strong coupling with contour placed on the lightcone will have the form

$$
\begin{equation*}
W \sim e^{-\tilde{S}(\Lambda)\left(\eta_{f}-\eta_{i}\right)} \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{S}(\Lambda)=\int d s s e^{\Phi(y)} \sqrt{e^{2 \Phi(y)}-\left(\partial_{s} y\right)^{2}} \tag{12}
\end{equation*}
$$

The Wilson Loop at Strong Coupling

So we have that for any gauge with a gravitational dual, the Wilson loop at strong coupling with contour placed on the lightcone will have the form

$$
\begin{equation*}
W \sim e^{-\tilde{S}(\Lambda)\left(\eta_{f}-\eta_{i}\right)} \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{S}(\Lambda)=\int d s s e^{\Phi(y)} \sqrt{e^{2 \Phi(y)}-\left(\partial_{s} y\right)^{2}} \tag{12}
\end{equation*}
$$

- With some effective theories (as we will see with GPPZ) we are required to include an effective "string tension" $T(y)$ in our Action to give:

$$
\begin{equation*}
\tilde{S}(\Lambda)=\int d s s T(y) e^{\Phi(y)} \sqrt{e^{2 \Phi(y)}-\left(\partial_{s} y\right)^{2}} \tag{13}
\end{equation*}
$$

The AdS one Cusp Solution

For AdS space (dual to $N=4$ SYM) we have $\Phi(y)=y$ so that

$$
\begin{equation*}
d s_{A d S}^{2}=e^{2 y}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)+d y^{2} \tag{14}
\end{equation*}
$$

We choose $y=\log \frac{1}{\rho}$ to arrive at the more familiar form

$$
\begin{equation*}
d s_{A d S}^{2}=\frac{1}{\rho^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d \rho^{2}\right) \tag{15}
\end{equation*}
$$

with $\rho \in(0, \infty)$, with boundary at $\rho=0$.

The AdS one Cusp Solution

For AdS space (dual to $N=4$ SYM) we have $\Phi(y)=y$ so that

$$
\begin{equation*}
d s_{A d S}^{2}=e^{2 y}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)+d y^{2} \tag{14}
\end{equation*}
$$

We choose $y=\log \frac{1}{\rho}$ to arrive at the more familiar form

$$
\begin{equation*}
d s_{A d S}^{2}=\frac{1}{\rho^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d \rho^{2}\right) \tag{15}
\end{equation*}
$$

with $\rho \in(0, \infty)$, with boundary at $\rho=0$. Then we find

$$
\begin{equation*}
\tilde{S}=i \int d s s \frac{1}{\rho^{2}} \sqrt{\dot{\rho}^{2}-1} \tag{16}
\end{equation*}
$$

A solution of the Equations of Motion satisfying $\rho(s=0)=0$ is

$$
\begin{equation*}
\rho=\sqrt{2} s \tag{17}
\end{equation*}
$$

The GPPZ one Cusp Solution

$$
\begin{equation*}
d s_{G P P Z}^{2}=\left(e^{2 y}-1\right)\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)+d y^{2} \tag{18}
\end{equation*}
$$

L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni (hep-th/9909047v2, hep-th/9903026v2)

The GPPZ one Cusp Solution

$$
\begin{equation*}
d s_{G P P Z}^{2}=\left(e^{2 y}-1\right)\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)+d y^{2} . \tag{18}
\end{equation*}
$$

L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni (hep-th/9909047v2, hep-th/9903026v2)

- GPPZ is 5-dimensional effective Supergravity theory which simulates RG flow from $N=4$ to $N=1$ SYM Theory.

The GPPZ one Cusp Solution

$$
\begin{equation*}
d s_{G P P Z}^{2}=\left(e^{2 y}-1\right)\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)+d y^{2} . \tag{18}
\end{equation*}
$$

L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni (hep-th/9909047v2, hep-th/9903026v2)

- GPPZ is 5-dimensional effective Supergravity theory which simulates RG flow from $N=4$ to $N=1$ SYM Theory.
- The theory requires an effective Tension term in our Action

$$
\begin{equation*}
S=\int d^{2} \sigma T(y) \sqrt{-\operatorname{det}\left(h_{\alpha \beta}\right)} \tag{19}
\end{equation*}
$$

where $T(y)^{2}=\frac{8 e^{2 y}\left(3+e^{2 y}\right)}{\left(e^{2 y}-1\right)^{2}}$.

The GPPZ one Cusp Solution

$$
\begin{equation*}
d s_{G P P Z}^{2}=\left(e^{2 y}-1\right)\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)+d y^{2} . \tag{18}
\end{equation*}
$$

L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni (hep-th/9909047v2, hep-th/9903026v2)

- GPPZ is 5-dimensional effective Supergravity theory which simulates RG flow from $N=4$ to $N=1$ SYM Theory.
- The theory requires an effective Tension term in our Action

$$
\begin{equation*}
S=\int d^{2} \sigma T(y) \sqrt{-\operatorname{det}\left(h_{\alpha \beta}\right)} \tag{19}
\end{equation*}
$$

where $T(y)^{2}=\frac{8 e^{2 y}\left(3+e^{2 y}\right)}{\left(e^{2 y}-1\right)^{2}}$.
In $y=\log \frac{1}{\rho}$ co-ordinates:

$$
\begin{equation*}
d s_{G P P Z}^{2}=\frac{1}{\rho^{2}}\left(\left(1-\rho^{2}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+d \rho^{2}\right) \tag{20}
\end{equation*}
$$

The GPPZ one Cusp Solution

$$
\begin{equation*}
d s_{G P P Z}^{2}=\frac{1}{\rho^{2}}\left(\left(1-\rho^{2}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+d \rho^{2}\right) . \tag{21}
\end{equation*}
$$

The GPPZ one Cusp Solution

$$
\begin{equation*}
d s_{G P P Z}^{2}=\frac{1}{\rho^{2}}\left(\left(1-\rho^{2}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+d \rho^{2}\right) . \tag{21}
\end{equation*}
$$

- The metric is singular at $\rho=1$. Objects outside this horizon don't fall through, so while $\rho \in(0, \infty)$ we are really only interested $\rho \in(0,1)$. hep-th/9903026

The GPPZ one Cusp Solution

$$
\begin{equation*}
d s_{G P P Z}^{2}=\frac{1}{\rho^{2}}\left(\left(1-\rho^{2}\right) \eta_{\mu \nu} d x^{\mu} d x^{\nu}+d \rho^{2}\right) . \tag{21}
\end{equation*}
$$

- The metric is singular at $\rho=1$. Objects outside this horizon don't fall through, so while $\rho \in(0, \infty)$ we are really only interested $\rho \in(0,1)$. hep-th/9903026
- We choose an Ansatz $\rho=\sin u$ to find:

$$
\begin{equation*}
d s_{G P P Z}^{2}=\cot ^{2} u\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d u^{2}\right) \tag{22}
\end{equation*}
$$

The GPPZ one Cusp Solution

In general we can take

$$
\begin{aligned}
\tilde{S}(\Lambda) & =\int d s s T(y) e^{\Phi(y)} \sqrt{e^{2 \Phi(y)}-\left(\partial_{s} y\right)^{2}} \\
& =\int d s s \underbrace{T(y) e^{2 \Phi(y)}}_{f(u)} \sqrt{1-\underbrace{\left(\partial_{s} y\right)^{2} e^{-2 \Phi(y)}}_{\left(\partial_{s} u\right)^{2}}}
\end{aligned}
$$

The GPPZ one Cusp Solution

In general we can take

$$
\begin{aligned}
\tilde{S}(\Lambda) & =\int d s s T(y) e^{\Phi(y)} \sqrt{e^{2 \Phi(y)}-\left(\partial_{s} y\right)^{2}} \\
& =\int d s s \underbrace{T(y) e^{2 \Phi(y)}}_{f(u)} \sqrt{1-\underbrace{\left(\partial_{s} y\right)^{2} e^{-2 \Phi(y)}}_{\left(\partial_{s} u\right)^{2}}}
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\tilde{S}=\int d s s f(u) \sqrt{1-\left(\partial_{s} u\right)^{2}} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
f(u)=T(y) e^{2 \Phi(y)} \text { and } \frac{\partial u}{\partial y}=e^{-2 \Phi(y)} \tag{24}
\end{equation*}
$$

The GPPZ one Cusp Solution

In general we can take

$$
\begin{aligned}
\tilde{S}(\Lambda) & =\int d s s T(y) e^{\Phi(y)} \sqrt{e^{2 \Phi(y)}-\left(\partial_{s} y\right)^{2}} \\
& =\int d s s \underbrace{T(y) e^{2 \Phi(y)}}_{f(u)} \sqrt{1-\underbrace{\left(\partial_{s} y\right)^{2} e^{-2 \Phi(y)}}_{\left(\partial_{s} u\right)^{2}}}
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\tilde{S}=\int d s s f(u) \sqrt{1-\left(\partial_{s} u\right)^{2}} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
f(u)=T(y) e^{2 \Phi(y)} \text { and } \frac{\partial u}{\partial y}=e^{-2 \Phi(y)} \tag{24}
\end{equation*}
$$

This is equivalent to choosing the falling frame and as such this can be done generically.

$$
\begin{equation*}
d s^{2}=e^{2 u(y(u))}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d u^{2}\right) \tag{25}
\end{equation*}
$$

The GPPZ one Cusp Solution

For an Action of the form:

$$
\begin{equation*}
\tilde{S}=i \int d s \operatorname{sf}(u) \sqrt{\dot{u}^{2}-1} \tag{26}
\end{equation*}
$$

We will have an Equations of Motion:

$$
\begin{equation*}
s \ddot{u}=\left(1-\dot{u}^{2}\right)(\dot{u}-s g(u)) \tag{27}
\end{equation*}
$$

where $g(u)=\frac{\partial}{\partial u} \log f(u)$.

The GPPZ one Cusp Solution

For an Action of the form:

$$
\begin{equation*}
\tilde{S}=i \int d s s f(u) \sqrt{\dot{u}^{2}-1} \tag{26}
\end{equation*}
$$

We will have an Equations of Motion:

$$
\begin{equation*}
s \ddot{u}=\left(1-\dot{u}^{2}\right)(\dot{u}-s g(u)) \tag{27}
\end{equation*}
$$

where $g(u)=\frac{\partial}{\partial u} \log f(u)$.

- For the case of GPPZ $f(u)=2 \sqrt{2\left(1+3 \sin ^{2} u\right)} \csc ^{2} u$ but we can make progress without knowing the form of this function.

We define

$$
\begin{equation*}
\dot{u}=\operatorname{coth} v \Longrightarrow \frac{\ddot{u}}{1-\dot{u}^{2}}=\dot{v} \tag{28}
\end{equation*}
$$

The GPPZ one Cusp Solution

Giving us the system of Equations

$$
\begin{align*}
s \dot{v} & =\dot{u}-s g(u) \tag{29}\\
\dot{u} & =\operatorname{coth} v \tag{30}
\end{align*}
$$

If $\dot{u}\left(s=s_{i}\right)=\operatorname{coth} v_{i}$ and $u\left(s=s_{i}\right)$ are real and $g(u)$ is a real-valued function then v must remain real for all s. Therefore \dot{u} will be constrained to the region $\dot{u} \in(1, \infty)$.

Figure: Path constraining $\dot{u}=\operatorname{coth} v$ for all real v.

Stability and Fixed Points

As $s \rightarrow 0$, our geometry becomes asymptotically AdS near the boundary.

Stability and Fixed Points

As $s \rightarrow 0$, our geometry becomes asymptotically AdS near the boundary. We know that $u=\sqrt{2} s$ is a solution to the AdS problem, so $\dot{u}=\sqrt{2}$ should be our second initial condition.

Figure: Path constraining $\dot{u}=\operatorname{coth} v$ for all real v.

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)<\frac{2}{u}$

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)<\frac{2}{u}$

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)<\frac{2}{u}$

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)<\frac{2}{u}$

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)<\frac{2}{u}$

Stability and Fixed Points

When $g(u)$ is bounded above by $\frac{2}{u}$ then the solution moves to the $\dot{u} \rightarrow 1$ fixed point.

Figure: Path constraining $\dot{u}=\operatorname{coth} v$ for all real v.

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)>\frac{2}{u}$

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)>\frac{2}{u}$

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)>\frac{2}{u}$

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)>\frac{2}{u}$

Stability and Fixed Points

Figure: Solution $u=\sqrt{2}$ and numerical solutions for $g(u)>\frac{2}{u}$

Stability and Fixed Points

When $g(u)$ is bounded below by $\frac{2}{u}$ then the solution moves to the $\dot{u} \rightarrow \infty$ fixed point.

Figure: Path constraining $\dot{u}=\operatorname{coth} v$ for all real v.

GPPZ Results

For GPPZ $g(u)=11 \cot u-3 \cos 3 u \csc z 10-6 \cos (2 u)$ and is bounded above by $\frac{2}{u}$.

Figure: Comparason of $g(u)$ to $\frac{2}{u}$

GPPZ Results

Figure: Numerical plot of $u(s), \sqrt{2} s$ and s for comparason

GPPZ Results

Figure: GPPZ and AdS Solutions substituted back into their respective Lagrangian Densities $\mathcal{L}=s f(u) \sqrt{\dot{u}^{2}-1}$.

GPPZ Results

Figure: GPPZ and AdS Solutions substituted back into their respective Lagrangian Densities $\mathcal{L}=s f(u) \sqrt{\dot{u}^{2}-1}$.

We can note that although $\dot{u} \rightarrow 1$, then $f(u)$ term diverges causing a non-vanishing expression.

$$
\begin{equation*}
\mathcal{L}=s 2 \sqrt{2\left(1+3 \sin ^{2} u\right)} \csc ^{2} u \sqrt{\dot{u}^{2}-1} \tag{31}
\end{equation*}
$$

GPPZ Results

Figure: The cusp $\Gamma_{\text {cusp }}$ for both GPPZ and AdS.

Conclusion

Conclusion

- We've analysed general behaviour regarding string solutions in multiple gravitational theories.

Conclusion

- We've analysed general behaviour regarding string solutions in multiple gravitational theories.
- Computed the cusp of anomalous dimension associated with a light-line Wilson loop in a non-conformal theory.

Conclusion

- We've analysed general behaviour regarding string solutions in multiple gravitational theories.
- Computed the cusp of anomalous dimension associated with a light-line Wilson loop in a non-conformal theory.
- We could perform a similar analysis for different types of loops.

Conclusion

- We've analysed general behaviour regarding string solutions in multiple gravitational theories.
- Computed the cusp of anomalous dimension associated with a light-line Wilson loop in a non-conformal theory.
- We could perform a similar analysis for different types of loops.

Thank You.

