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The Wilson Loop at Weak Coupling

Wilson loops a measure of the potential between particles in a
given theory.

W =
1

N
〈0|tr{P exp

i ∮
C

dx · A(x)

}|0〉 (1)

Here C specifies some a path with vectors v1 and v2 kept at
some cusp angle θ, which we connect together at infinity.

Figure: Path of the one cusp contour C.
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The Wilson Loop at Weak Coupling
I A perturbative calculation of the Cusp of Anomalous

Dimension for QCD is given to 3 loops in a 2014 paper by
A. Grozin et al.

A. Grozin, J. Henn, G. Korchemsky and P. Marquard (arXiv:1409.0023 [hep-ph])

Figure: Path of one cusp contour C.
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The Wilson Loop at Strong Coupling

From the Gauge/Gravity correspondence we say that the
Wilson loop is:

W ∼ e−S (2)

where S is the action of a string with end points placed on the
same contour C,

S =

∫
d2σ

√
−det(hαβ) (3)

and hαβ is the worldsheet metric.

The Wilson loop is
related to the area the string traces out in spacetime.
The Cusp of Anomalous Dimension is a measure of how much
this integral changes when we increase the cut-off Λ

Γcusp =
dS

d log Λ
= Λ

dS

dΛ
. (4)
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The Wilson Loop at Strong Coupling

For a general background that is Poincare invariant at the
boundary:

ds2 = e2Φ(y) (ηµνdx
µdxν) + dy2, (5)

We orient the embedding co-ordinates as xµ = (x0, x1,0, y).
Choosing the parameterization:

x0 =s sinh η (6)

x1 =s cosh η. (7)

We find that√
−det(hαβ) = seΦ(y)

√
e2Φ(y) −

(
(∂sy)2 − 1

s2
(∂ηy)2

)
(8)

This action does not depend explicitly on the rapidity η.
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The Wilson Loop at Strong Coupling
I Our Boundary Condition is that when y(s, η) =∞ (on

the boundary) the string end points fall on the lightcone.
ie. x0 = ±x1.

I s =
√

(x0)2 − (x1)2 so this is satisfied by s = 0 on the
boundary, without any dependence on η. (This is to be
expected because the lightcone is invariant under η
rotations).

I Both the Action and the boundar conditions are
independent of η, so the solution must also be
independent of η.

Thus
y(s, η) = y(s), (9)

and

S =

∫
ds seΦ(y)

√
e2Φ(y) − (∂sy)2

∫
dη. (10)
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The Wilson Loop at Strong Coupling

So we have that for any gauge with a gravitational dual, the
Wilson loop at strong coupling with contour placed on the
lightcone will have the form

W ∼ e−S̃(Λ)(ηf−ηi) (11)

with

S̃(Λ) =

∫
ds seΦ(y)

√
e2Φ(y) − (∂sy)2. (12)

I With some effective theories (as we will see with GPPZ)
we are required to include an effective “string tension”
T (y) in our Action to give:

S̃(Λ) =

∫
ds sT (y)eΦ(y)

√
e2Φ(y) − (∂sy)2. (13)
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The AdS one Cusp Solution

For AdS space (dual to N = 4 SYM) we have Φ(y) = y so
that

ds2
AdS = e2y (ηµνdx

µdxν) + dy2. (14)

We choose y = log 1
ρ

to arrive at the more familiar form

ds2
AdS =

1

ρ2

(
ηµνdx

µdxν + dρ2
)
. (15)

with ρ ∈ (0,∞), with boundary at ρ = 0.

Then we find

S̃ = i

∫
ds s

1

ρ2

√
ρ̇2 − 1. (16)

A solution of the Equations of Motion satisfying ρ(s = 0) = 0
is

ρ =
√

2s. (17)
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The GPPZ one Cusp Solution

ds2
GPPZ = (e2y − 1) (ηµνdx

µdxν) + dy2. (18)

L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni (hep-th/9909047v2, hep-th/9903026v2)

I GPPZ is 5-dimensional effective Supergravity theory which
simulates RG flow from N = 4 to N = 1 SYM Theory.

I The theory requires an effective Tension term in our Action

S =

∫
d2σ T (y)

√
−det(hαβ) (19)

where T (y)2 = 8e2y(3+e2y)
(e2y−1)2

.

In y = log 1
ρ

co-ordinates:

ds2
GPPZ =

1

ρ2

(
(1− ρ2)ηµνdx

µdxν + dρ2
)
. (20)
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The GPPZ one Cusp Solution

ds2
GPPZ =

1

ρ2

(
(1− ρ2)ηµνdx

µdxν + dρ2
)
. (21)

I The metric is singular at ρ = 1. Objects outside this
horizon don’t fall through, so while ρ ∈ (0,∞) we are
really only interested ρ ∈ (0, 1). hep-th/9903026

I We choose an Ansatz ρ = sinu to find:

ds2
GPPZ = cot2 u

(
ηµνdx

µdxν + du2
)
. (22)
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The GPPZ one Cusp Solution

In general we can take

S̃(Λ) =

∫
ds sT (y)eΦ(y)

√
e2Φ(y) − (∂sy)2

=

∫
ds s T (y)e2Φ(y)︸ ︷︷ ︸

f(u)

√
1− (∂sy)2e−2Φ(y)︸ ︷︷ ︸

(∂su)2

Thus we have

S̃ =

∫
ds sf(u)

√
1− (∂su)2 (23)

where

f(u) = T (y)e2Φ(y) and
∂u

∂y
= e−2Φ(y). (24)

This is equivalent to choosing the falling frame and as such
this can be done generically.

ds2 = e2u(y(u))(ηµνdx
µdxν + du2). (25)
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The GPPZ one Cusp Solution

For an Action of the form:

S̃ = i

∫
ds sf(u)

√
u̇2 − 1 (26)

We will have an Equations of Motion:

sü = (1− u̇2)(u̇− sg(u)) (27)

where g(u) = ∂
∂u

log f(u).

I For the case of GPPZ f(u) = 2
√

2(1 + 3 sin2 u) csc2 u but we
can make progress without knowing the form of this function.

We define

u̇ = coth v =⇒ ü

1− u̇2
= v̇. (28)
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The GPPZ one Cusp Solution

Giving us the system of Equations

sv̇ = u̇− sg(u), (29)

u̇ = coth v. (30)

If u̇(s = si) = coth vi and u(s = si) are real and g(u) is a real-valued

function then v must remain real for all s. Therefore u̇ will be

constrained to the region u̇ ∈ (1,∞).

Figure: Path constraining u̇ = coth v for all real v. 13



Stability and Fixed Points

As s→ 0, our geometry becomes asymptotically AdS near the
boundary.

We know that u =
√

2s is a solution to the AdS
problem, so u̇ =

√
2 should be our second initial condition.

Figure: Path constraining u̇ = coth v for all real v.
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Stability and Fixed Points

Figure: Solution u =
√

2 and numerical solutions for g(u) < 2
u
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Stability and Fixed Points

When g(u) is bounded above by 2
u

then the solution moves to
the u̇→ 1 fixed point.

Figure: Path constraining u̇ = coth v for all real v.
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Stability and Fixed Points

Figure: Solution u =
√

2 and numerical solutions for g(u) > 2
u
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Stability and Fixed Points

When g(u) is bounded below by 2
u

then the solution moves to
the u̇→∞ fixed point.

Figure: Path constraining u̇ = coth v for all real v.
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GPPZ Results

For GPPZ g(u) = 11 cotu− 3 cos 3u csc z10− 6 cos (2u) and
is bounded above by 2

u
.

Figure: Comparason of g(u) to 2
u
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GPPZ Results

Figure: Numerical plot of u(s),
√

2s and s for comparason
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GPPZ Results

Figure: GPPZ and AdS Solutions substituted back into their
respective Lagrangian Densities L = sf(u)

√
u̇2 − 1.

We can note that although u̇→ 1, then f(u) term diverges
causing a non-vanishing expression.

L = s2
√

2(1 + 3 sin2 u) csc2 u
√
u̇2 − 1 (31)
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GPPZ Results

Figure: The cusp Γcusp for both GPPZ and AdS.
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Conclusion

I We’ve analysed general behaviour regarding string
solutions in multiple gravitational theories.

I Computed the cusp of anomalous dimension associated
with a light-line Wilson loop in a non-conformal theory.

I We could perform a similar analysis for different types of
loops.

Thank You.
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