AdS/CFT calculations of meson decay rates

Maciej Matuszewski

Durham University

Supervisors:
Dr Kasper Peeters
Dr Marija Zamaklar

Introduction to Meson Decay: QCD Picture

- Meson decay may be seem as $q \bar{q}$ pair production from a colour field flux tube

- May use Schwinger formula ${ }^{1}$ to calculate decay rate Γ for volume V and energy density ϵ :

$$
\begin{aligned}
\Gamma & =2 \operatorname{Im} \epsilon \\
& =-\frac{2}{V} \operatorname{Im} \ln \int \mathrm{~d} X \mathrm{e}^{S}
\end{aligned}
$$

${ }^{1}$ Julian Schwinger. On gauge and vacuum polarizaion. Physical Review, 82(5):664, June 1951.

Introduction to Meson Decay: Instanton Method

- After the new $q \bar{q}$ pair is produced it must gain sufficient energy from the field to come on shell. This may be seen as a tunneling process:

- By Wick rotating the time coordinate we flip the potential:

- The calculation may now be done semi-classically.

Point Particle Pair Production

- Consider Minkowski point particle action:

$$
S_{M}=\int \mathrm{d} \tau\left(\frac{1}{2} \frac{\dot{X}^{2}}{e}-\frac{1}{2} e m^{2}+A_{\mu} \dot{X}^{\mu}\right)
$$

- Wick rotate to Euclidean spacetime:

$$
\begin{aligned}
\tau & \rightarrow-i \tau \\
X^{0} & \rightarrow-i X^{0} \\
A^{0} & \rightarrow-i A^{0}
\end{aligned}
$$

- Set periodic boundary condition:

$$
X^{\mu}(\tau+1)=X^{\mu}(\tau)
$$

- Find Euclidean action:

$$
S_{E}=-\int_{0}^{1} \mathrm{~d} \tau\left(\frac{\dot{X}^{2}}{4 T}+m^{2} T-i A_{\mu} \dot{X}^{\mu}\right)
$$

Point Particle Pair Production

- Recall $A_{\mu}=-\frac{1}{2} F_{\mu \nu} X^{\nu}$
- Find Euler-Lagrange equation for T and eliminate it from action:

$$
T=\frac{\sqrt{\dot{X}^{2}}}{2 m} \quad \Rightarrow \quad S_{E}=-\int_{0}^{1} \mathrm{~d} \tau\left(m \sqrt{\dot{X}^{2}}+\frac{i}{2} F_{\mu \nu} X^{\nu} \dot{X}^{\mu}\right)
$$

- Find Euler-Lagrange equation for X_{μ} :

$$
i F_{\nu \mu} \dot{X}^{\nu}=\frac{2 \ddot{X}_{\mu}}{\sqrt{\dot{X}^{2}}}-\frac{2 \dot{X}_{\mu}}{\left(\dot{X}^{2}\right)^{\frac{3}{2}}} \dot{X}^{\nu} \ddot{X}_{\nu}+i F_{\mu \nu} \dot{X}^{\nu}
$$

Point Particle Pair Production

- Choose constant field:

$$
F_{01}=-F_{10}=-i E
$$

- Problem admits the solution:

$$
X_{\mu}=R\left(\begin{array}{c}
\cos (2 \pi n \tau) \\
\sin (2 \pi n \tau) \\
0 \\
0
\end{array}\right)
$$

- Subsitute X_{μ} into action and extremise value of R
- Action evaluates to expected result ${ }^{2}$:

$$
S_{E}=-\frac{\pi m^{2}}{E} n
$$

[^0]
Point Particle in Static Gauge

- The problem may also be done in the static gauge:

$$
X_{0}=t \quad X_{1}=x \quad A_{0}=i E x \quad A_{1}=0
$$

- The Lagrangian reduces to

$$
L=-\left(m \sqrt{1+\dot{x}^{2}} \pm E x\right)
$$

- We obtain the same circular path

$$
x= \pm \frac{1}{E} \sqrt{m^{2}-E^{2} t^{2}}
$$

Point Particle in Static Gauge

Point Particle Static Gauge Action

- We find that

$$
\begin{aligned}
S_{L, \text { Particle }}=S_{R, \text { Antiparticle }}= & -m \int_{-\frac{m}{E}}^{\frac{m}{E}}\left(\sqrt{\frac{1}{1-\left(\frac{E}{m}\right)^{2} t^{2}}}\right. \\
& \left.-\sqrt{1-\left(\frac{E}{m}\right)^{2} t^{2}}\right) \mathrm{d} t \\
& =-\frac{\pi}{2} \frac{m^{2}}{E}
\end{aligned}
$$

- Therefore the total action is $-\frac{\pi m^{2}}{E}$, as before.

AdS/CFT Correspondence

- 't Hooft suggested that that for large N_{C} QCD is equivalent to theory of free strings ${ }^{3}$
- Seems to violate Weinberg-Witten theorem-which forbids the existance of gravitons in QCD ${ }^{4}$
- Maldacena suggested that a QFT in D dimensions corresponds to string theory in $D+1$ dimensions. ${ }^{5}$
- Good correspondence between $\mathcal{N}=4$ super Yang-Mills theory and a string theory in the $A d S_{5} \times S^{5}$

[^1]
Meson Decay in the Holographic Picture

- We will eventually want to work in AdS spacetime with a string of the following profile

$I_{1} \propto$ constituent quark mass $\quad I_{2} \propto$ colour flux tube energy
- Will build up to this using simpler examples
- Will work semi-classically using istanton method with a Wick rotated time coordinate

Setting up the Problems

- Consider string with massive endpoints in Eulidean spacetime:

- The action for the string with massive endpoints is:

$$
\begin{aligned}
S_{E}= & \int_{\tau_{1}}^{\tau_{2}} \mathrm{~d} \tau \int_{0}^{\pi} \mathrm{d} \sigma \mathcal{L}_{\text {bulk }}+\int_{\tau_{1}}^{\tau_{2}} \mathrm{~d} \tau \mathcal{L}_{\text {end }} \\
= & -\gamma \int_{\tau_{1}}^{\tau_{2}} \mathrm{~d} \tau \int_{0}^{\pi} \mathrm{d} \sigma \sqrt{-\left(\dot{X} \cdot X^{\prime}\right)^{2}+\dot{X}^{2} X^{\prime 2}} \\
& -m \int_{\tau_{1}}^{\tau_{2}} \mathrm{~d} \tau\left(\sqrt{\dot{X}^{2}(\tau, \sigma=0)}+\sqrt{\dot{X}^{2}(\tau, \sigma=\pi)}\right)
\end{aligned}
$$

String Equations of Motion

- Find variation of action:

$$
\begin{aligned}
0=\delta S= & -\int_{\tau_{1}}^{\tau_{2}} \mathrm{~d} \tau \int_{0}^{\pi} \mathrm{d} \sigma\left(\frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}_{\text {bulk }}}{\partial \dot{X}_{\mu}}\right)+\frac{\partial}{\partial \sigma}\left(\frac{\partial \mathcal{L}_{\text {bulk }}}{\partial X_{\mu}^{\prime}}\right)\right) \delta X(\tau, \sigma) \\
& -\left.\int_{\tau_{1}}^{\tau_{2}} \mathrm{~d} \tau\left(\frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}_{\text {end, } \sigma=0}}{\partial \dot{X}_{\mu}}\right)+\frac{\partial \mathcal{L}_{\text {bulk }}}{\partial{X^{\prime}}_{\mu}}\right)\right|_{\sigma=0} \delta X_{\mu}(\tau, \sigma=0) \\
& -\left.\int_{\tau_{1}}^{\tau_{2}} \mathrm{~d} \tau\left(\frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}_{\text {end }, \sigma=\pi}}{\partial \dot{X}_{\mu}}\right)-\frac{\partial \mathcal{L}_{\text {bulk }}}{\partial X^{\prime}{ }_{\mu}}\right)\right|_{\sigma=\pi} \delta X_{\mu}(\tau, \sigma=\pi)
\end{aligned}
$$

String Equations of Motion

- Find bulk equation of motion $(0<\sigma<\pi)$:

$$
\frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}_{\text {bulk }}}{\partial \dot{X}_{\mu}}\right)+\frac{\partial}{\partial \sigma}\left(\frac{\partial \mathcal{L}_{\text {bulk }}}{\partial X_{\mu}^{\prime}}\right)=0
$$

- Find boundary equations of motions:

$$
\begin{aligned}
& \left.\left(\frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}_{\text {end }, \sigma=0}}{\partial \dot{X}_{\mu}}\right)+\frac{\partial \mathcal{L}_{\text {bulk }}}{\partial X^{\prime}{ }_{\mu}}\right)\right|_{\sigma=0} \delta X_{\mu}(\tau, \sigma=0)=0 \\
& \left.\left(\frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}_{\text {end }, \sigma=\pi}}{\partial \dot{X}_{\mu}}\right)-\frac{\partial \mathcal{L}_{\text {bulk }}}{\partial X^{\prime}{ }_{\mu}}\right)\right|_{\sigma=\pi} \delta X_{\mu}(\tau, \sigma=\pi)=0
\end{aligned}
$$

Straight Endpoint String Solution

- Bardeen et al suggest a more general analytic Lorentzian solution for a string with two massive free moving endpoints: ${ }^{6}$

$$
\begin{aligned}
& X_{0}=\tau \\
& X_{1}= \pm\left(\frac{2 \sigma}{\pi}-1\right)\left(\sqrt{\left(\tau-\tau_{0}\right)^{2}+k^{2}}+x_{0}\right)
\end{aligned}
$$

- Wick rotating, we therefore find:

$$
\begin{aligned}
X_{L 0}=X_{R 0} & =\tau \\
X_{L 1}=x_{L} & =-\frac{\sigma}{\pi}\left(\sqrt{-\tau^{2}+k^{2}}-x_{0}\right) \\
X_{R 1}=x_{R} & =\left(1-\frac{\sigma}{\pi}\right)\left(\sqrt{-\tau^{2}+k^{2}}+x_{0}\right)+2 x_{0} \frac{\sigma}{\pi}
\end{aligned}
$$

${ }^{6}$ W.A. Bardeen, Itzhak Bars, Andrew J. Hanson, and R.D. Peccei. Study of the longitudinal kink modes of the string. Physical Review D: Particles and Fields, 13(8):2364-2382, 1976.

Applying Boundary Conditions

- We consider the Neumann boundary condition at $\sigma=\pi$ for the left hand string. We find

$$
\begin{aligned}
& \frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}_{\text {end }, \sigma=\pi}}{\partial \dot{X}_{\mu}}\right)-\left.\frac{\partial \mathcal{L}_{\text {bulk }}}{\partial X^{\prime}{ }_{\mu}}\right|_{\sigma=\pi}=0 \\
&-m \frac{\partial}{\partial \tau}\left(\frac{\dot{X}^{\mu}}{\sqrt{\dot{X}^{2}}}\right)+\left.\gamma \frac{-\left(\dot{X} \cdot X^{\prime}\right) \dot{X}^{\mu}+X^{\prime \mu} \dot{X}^{2}}{\sqrt{-\left(\dot{X} \cdot X^{\prime}\right)^{2}+\dot{X}^{2} X^{\prime 2}}}\right|_{\sigma=\pi}=0 \\
&-m \frac{\partial}{\partial \tau}\left(\frac{\dot{X}^{\mu}}{\sqrt{1+\dot{x}^{2}}}\right)+\gamma \frac{-\dot{x} x^{\prime} \dot{X}^{\mu}+\left.\left(1+\dot{x}^{2}\right){X^{\prime \mu}}^{\sqrt{-\dot{x}^{2}{X^{\prime}}^{2}+\left(1+\dot{x}^{2}\right) x^{2}}}\right|_{\sigma=\pi}}{}=0 \\
&-m \frac{\partial}{\partial \tau}\left(\frac{\dot{X}^{\mu}}{\sqrt{1+\dot{x}^{2}}}\right)+\left.\gamma\left(-\dot{x} \dot{X}^{\mu}+\left(\frac{1+\dot{x}^{2}}{x^{\prime}}\right) X^{\prime \mu}\right)\right|_{\sigma=\pi}=0 .
\end{aligned}
$$

Applying Boundary Conditions

- For $\mu=1$ this gives

$$
\begin{array}{r}
-m \frac{\partial}{\partial \tau}\left(\frac{\dot{x}^{\mu}}{\sqrt{1+\dot{x}^{2}}}\right)+\gamma=0 \\
-m \frac{\partial}{\partial \tau}\left(\frac{\tau}{\sqrt{-\tau^{2}+k^{2}}} \frac{\sqrt{-\tau^{2}+k^{2}}}{k}\right)+\gamma=0 \\
-\frac{m}{k}+\gamma=0
\end{array}
$$

- This fixes $k=\frac{m}{\gamma}$. We get the same value of k from setting $\mu=0$.

String Solution

Evaluating Action

- Subtracting the background action:

$$
\begin{aligned}
S= & S_{\text {sol }}-S_{\text {back }} \\
= & -\int_{-\frac{m}{\gamma}}^{\frac{m}{\gamma}} \mathrm{~d} \tau\left(m \sqrt{1+\dot{x}_{L}^{2}(\tau, \sigma=\pi)}+\gamma x_{L}(\tau, \sigma=\pi)\right) \\
& -\int_{-\frac{m}{\gamma}}^{\frac{m}{\gamma}} \mathrm{~d} \tau\left(m \sqrt{1+\dot{x}_{R}^{2}(\tau, \sigma=0)}-\gamma x_{R}(\tau, \sigma=0)\right)=-\frac{\pi m^{2}}{\gamma}
\end{aligned}
$$

- This makes sense looking at the problem geometrically, as the action for system is effectively

$$
\begin{aligned}
S & =-m(\text { Circumeference of circle })+\gamma(\text { Area of circle }) \\
& =-m(2 \pi k)+\gamma\left(\pi k^{2}\right) \\
& =-2 \frac{\pi m^{2}}{\gamma}+\frac{\pi m^{2}}{\gamma}=-\frac{\pi m^{2}}{\gamma}
\end{aligned}
$$

Concentric Circle Solution

Concentric Circle Solution

- We find the solution

$$
\begin{aligned}
& X_{L O}=X_{R O}=\tau \\
& X_{L 1}=x_{L}=-\frac{\sigma}{\pi}\left(\sqrt{-\tau^{2}+k^{2}}-x_{0}\right)+\left(1-\frac{\sigma}{\pi}\right)\left(\sqrt{-\tau^{2}+x_{0}^{2}}\right) \\
& X_{R 1}=x_{R}=\left(1-\frac{\sigma}{\pi}\right)\left(\sqrt{-\tau^{2}+k^{2}}+x_{0}\right)+\frac{\sigma}{\pi}\left(\sqrt{-\tau^{2}+x_{0}^{2}}+x_{0}\right)
\end{aligned}
$$

- As before, we find

$$
S=S_{s o l}-S_{b a c k}=-\frac{\pi m^{2}}{\gamma}
$$

Motivating Further Work

- Appropriate metric ${ }^{7}$ is:

$$
\begin{aligned}
\mathrm{d} s^{2} & =Y_{\mu} Y^{\mu}=\frac{U^{\frac{3}{2}}}{R_{0}^{\frac{3}{2}}}\left(\mathrm{~d} X^{\mu} \mathrm{d} X^{\nu} \eta_{\mu \nu}+f(U) \mathrm{d} \psi^{2}\right)+K(U)\left(\mathrm{d} \rho^{2}+\rho^{2} \mathrm{~d} \Omega_{4}^{2}\right) \\
& =\frac{U^{\frac{3}{2}}}{R_{0}^{\frac{3}{2}}}\left(\mathrm{~d} X^{\mu} \mathrm{d} X^{\nu} \eta_{\mu \nu}+f(U) \mathrm{d} \psi^{2}\right)+K(U)\left(\mathrm{d} \lambda^{2}+\lambda^{2} \mathrm{~d} \Omega_{2}^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \phi^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& f(U)=1-\frac{U_{\Lambda}^{3}}{U^{3}} \\
& U(\rho)=\left(\rho^{\frac{3}{2}}+\frac{U_{\Lambda}^{3}}{4 \rho^{\frac{3}{2}}}\right)^{\frac{2}{3}} \\
& K(U)=R_{0}^{\frac{3}{2}} U^{\frac{1}{2}} \rho^{-2}
\end{aligned}
$$

and, after Wick rotating the time coordinate,

$$
\mathrm{d} X^{\mu} \mathrm{d} X^{\nu} \eta_{\mu \nu}=\left(\mathrm{d} X^{0}\right)^{2}+\mathrm{d} R^{2}+R^{2} \mathrm{~d} \theta^{2}+\left(\mathrm{d} X^{3}\right)^{2}
$$

[^2]
Motivating Further Work

- Use string profile ${ }^{8}$:

${ }^{8}$ Kasper Peeters, Jacob Sonnenschein, and Marija Zamaklar. Holographic decays of large spin mesons. JHEP, 0602:009, 2005. arXiv:hep-th/0511044.

Summary

- We have shown that we can use holographic and instanton methods for the case of point particle production from an electric field.
- We hope to move forward with using these methods to evaluate the action for meson decay rate.

[^0]: ${ }^{2}$ Gordon W Semenoff and Konstantin Zarembo. Holographic schwinger effect, September 2011. arXiv:1109. 2920 [hep-th].

[^1]: ${ }^{3}$ Gerard 't Hooft. A planar diagram theory for strong interactions. Nuclear Physics B, 73:461, 1974.
 ${ }^{4}$ Steven Weinberg \& Edward Witten. Limits on massless particles. Nuclear Physics B, 96(1-2):59, 1980.
 ${ }^{5}$ Juan Maldacena. The large-N limit of superconformal field theories and supergravity.International Journal of Theoretical Physics, 38(4):1113, 1999.

[^2]: ${ }^{7}$ Martin Kruczenski, Leopoldo A. Pando Zayas, Jacob Sonnenschein, and Varman Diana. Regge trajectories for mesons in the holographic dual of large- N_{c} QCD. Journal of High Energy Physics, 2005(06):046, June 2005. arXiv:hep-th/0410035.

