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Motivation
Why study far from equilibrium dynamics using holography?

• Study the holographic duality in extreme environments:
◦ Well understood in and close to equilibrium
◦ Going away from equilibrium is like testing the duality for finite N or λ
◦ Test if the duality gives sensible results
◦ Explore dictionary between bulk and boundary quantities

• Obtain a tool to study strongly coupled dynamics in QFTs:
◦ Possible applications to: heavy ions, cold atoms
◦ Example we consider: quantum quench
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Motivation
Why do we use the Wightman function to study thermalization?

Questions:
• One-point function: teqT ≈ 1↔ non-local probes: teq ∝ l

• Two-point functions only computed in geodesic approximation.
• Wightman functions quantify particle production rates, e.g. photon
production in the QGP ∝ current-current Wightman function

• Definition of an effective occupation number out of equilibrium

What we will see: Wightman functions in Fourier space thermalize on
the same time scale as one-point functions set by the lowest
quasinormal mode→ unified picture of thermalization times?
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Holographic model of a quantum quench
Global quench – field theory

Quantum quench: Prepare quantum system in vacuum, excite by
injecting energy at t = 0.

Simple example: homogeneous, isotropic (global)
quench

H(t) = H0 + λ(t)
∫

d3xO(x)

Corresponds to an injection of energy equally dis-
tributed over space.

Interesting because
• Quenches can be studied experimentally in condensed matter and
cold atom systems

• In these experiments, correlation functions can be measured
• Simplest far-from-equilibrium model
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Holographic model of a quantum quench
Global quench – holographic model

A holographic model of a global quench is given by Vaidya spacetime:

• Describes a collapsing shell of null matter
forming a black hole

• Metric

ds2 = 1
z2

[
−(1−θ(v)z2)dv2−2dvdz+dx2

]
For v < 0 this is pure AdS3 and for v > 0 the
BTZ Black hole

• Does not solve the vacuum Einstein equations,
but needs a source. It is however a good
approximation of real scalar collapse
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Holographic model of a quantum quench
Thermalization of scalar in quenched system

• We want to see how scalar correlators evolve in the quenched
background,

S = −1
2

∫
ddx
√
−g
(
∂µϕ∂µϕ + m2ϕ2

)
,

and take m2 = −3/4 for simplicity→Weyl symmetry, conformal
coupling
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Holographic model of a quantum quench
Thermalization of scalar in quenched system

• Consider the Wightman two-point function

G+(x2, x1) = ⟨ϕ(x2)ϕ(x1)⟩

• We choose the vacuum state in AdS as initial state, so for v1, v2 < 0,
G+ is the AdS scalar vacuum correlator

GAdS
+ (v2, x2, z2; v1, x1, z1)

=
√

z1z2
4π

(
1√

−∆v2−2∆v∆z+∆x2+iθ(v2−v1)ϵ

− 1√
−∆v2−2∆v∆z+4z1z2+∆x2+iθ(v2−v1)ϵ

)
where ∆v = v2 − v1, ∆x = x2 − x1, ∆z = z2 − z1.
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• We choose the vacuum state in AdS as initial state, so for v1, v2 < 0,
G+ is the AdS scalar vacuum correlator

• G+ obeys equations of motion:

(□1 −m2)G+(x2, x1) = 0 = (□2 −m2)G+(x2, x1)

which are a set of six-dimensional PDEs

• Translation invariance in spatial direction→ Fourier transform→
four-dimensional PDE
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Holographic model of a quantum quench
Thermalization of scalar in quenched system

We use a trick to solve this initial value problem:
• Method of Green’s functions for linear differential equation

ϕ(v2, z2, k) = i

∫
v1=const

dz1 ϕ(v1, z1, k)
←→
D v1GR(v2, z2; v1, z1; k)

where Dv =
√
−ggvν∂ν

and ϕb(v, k) =
√

2π limz→0 z−∆ϕ(v, z, k)
• Choose v1 = 0, then GR = GBT Z

R

• Take the boundary limit z2 → 0:
Gbb

R (v; 0, z1; k) =
√

2π limz2→0 z−∆
2 GBT Z

R (v, z2; 0, z1; k)

= i
√

2π

[
(1+4k2)z

3
2
1

8 θ (z∗
a−z1) 2F1

(
3
4−

ik
2 , 3

4 + ik
2 , 2, 1−(cosh v−z1 sinh v)2

)
−

√
z∗

a
1+cosh v δ (z∗

a−z1)
]

where z∗
a = tanh v

2

Philipp Kleinert Thermalization of Wightman two-point functions 9/17



Holographic model of a quantum quench
Thermalization of scalar in quenched system

We use a trick to solve this initial value problem:
• Method of Green’s functions for linear differential equation

ϕ(v2, z2, k) = i

∫
v1=const

dz1 ϕ(v1, z1, k)
←→
D v1GR(v2, z2; v1, z1; k)

where Dv =
√
−ggvν∂ν

and ϕb(v, k) =
√

2π limz→0 z−∆ϕ(v, z, k)

• Choose v1 = 0, then GR = GBT Z
R

• Take the boundary limit z2 → 0:
Gbb

R (v; 0, z1; k) =
√

2π limz2→0 z−∆
2 GBT Z

R (v, z2; 0, z1; k)

= i
√

2π

[
(1+4k2)z

3
2
1

8 θ (z∗
a−z1) 2F1

(
3
4−

ik
2 , 3

4 + ik
2 , 2, 1−(cosh v−z1 sinh v)2

)
−

√
z∗

a
1+cosh v δ (z∗

a−z1)
]

where z∗
a = tanh v

2

Philipp Kleinert Thermalization of Wightman two-point functions 9/17



Holographic model of a quantum quench
Thermalization of scalar in quenched system

We use a trick to solve this initial value problem:
• Method of Green’s functions for linear differential equation

ϕb(v2, k) = i

∫ z∗
a

0
dz1 ϕ(v1, z1, k)

←→
D v1Gbb

R (v2; v1, z1; k)

where Dv =
√
−ggvν∂ν and ϕb(v, k) =

√
2π limz→0 z−∆ϕ(v, z, k)

• Choose v1 = 0, then GR = GBT Z
R

• Take the boundary limit z2 → 0:
Gbb

R (v; 0, z1; k) =
√

2π limz2→0 z−∆
2 GBT Z

R (v, z2; 0, z1; k)

= i
√

2π

[
(1+4k2)z

3
2
1

8 θ (z∗
a−z1) 2F1

(
3
4−

ik
2 , 3

4 + ik
2 , 2, 1−(cosh v−z1 sinh v)2

)
−

√
z∗

a
1+cosh v δ (z∗

a−z1)
]

where z∗
a = tanh v

2

Philipp Kleinert Thermalization of Wightman two-point functions 9/17



Holographic model of a quantum quench
Thermalization of scalar in quenched system

We use a trick to solve this initial value problem:
• Method of Green’s functions for linear differential equation

ϕb(v2, k) = i

∫ z∗
a

0
dz1 ϕ(v1, z1, k)

←→
D v1Gbb

R (v2; v1, z1; k)

where Dv =
√
−ggvν∂ν

• Use this to propagate the initial AdS correlator across the shock wave:

GCF T
+ (v4, v3, k)= −

∫ z∗
a

0
dz2dz1

[
G+(v1, z1; v2, z2; k)←→D v1Gbb

R (v4; v1, z1; k)

×←→D v2Gbb
R (v3; v2, z2; k)

]
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Holographic model of a quantum quench
Thermalization of scalar in quenched system

Problem: G+(x1, x2) diverges for lightlike separations, i.e.

GAdS
+ (x1, x2)

∣∣∣
v1,v2=0

=∞

Solution: Consider δG+(x1, x2) = G+(x1, x2)−Gthermal
+ (x1, x2)

• δG+(x1, x2) obeys the same equations of motion
• δG+(x1, x2)|v1,v2=0 is finite

Simple integral to be evaluated:

δGCF T
+ (v4, v3, k)= −

∫ z∗
a

0
dz2dz1

[
]
.

where

δG̃+(z′, z, k) =
(

1
z2z′2 − 2

zz′2 ∂z − 2
z2z′ ∂z′ + 4

zz′ ∂z∂z′

)
δG+(z′, 0; z; 0, k).
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Holographic model of a quantum quench
Appearance of quasinormal modes

The boundary correlator GCF T
+ (t, t; k) thermalizes exponentially with a

rate set by the lowest quasinormal mode, ω0 = ±k − i2πTf ∆
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Holographic model of a quantum quench
Analytical argument for appearance of quasinormal modes

QNMs are poles of the retarded correlator in Fourier space:

Gbb
R (v; v′, z′; k) ≈

∑
n cn(z′)e−iω

(n)
∗ (v−v′), ω

(n)
∗ = ±k − i2πTf (∆ + 2n)

Only valid for e−(v−v′) ≪ ζ where ζ = distance from lightcone

δGCF T
+ (v, v, k)

= −
∫ z∗

a

0
dz2dz1

[
δG̃+(z1, z2, k)Gbb

R (v; 0, z1; k)Gbb
R (v; 0, z2; k)

]
= −

∑
m,n

e−i(ω(n)
∗ +ω

(m)
∗ )v

∫ z∗
a

0
dz2dz1 δG̃+(z1, z2, k)cn(z2)cm(z1)

≈ −e−2iω
(0)
∗ v

∫ z∗
a

0
dz2dz1 δG̃+(z1, z2, k)c0(z2)c0(z1)

Wrong result!
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Holographic model of a quantum quench
Analytical argument for appearance of quasinormal modes

Strategy:
• Split up the integrals into subintervals (0, z∗

a − ζ) and (z∗
a − ζ, z∗

a)
• Use the QNM approximation in the interval (0, z∗

a − ζ)
• Taylor expand the smooth initial data δG̃(z1, z2, k) around z∗

a and
perform the integrals over (z∗

a − ζ, z∗
a) analytically→ leads to the

right fall-off
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Holographic model of a quantum quench
Analytical argument for appearance of quasinormal modes

δGCF T
+ (v; v; k) = −

∫
dzdz′ Gbb

R (v; 0, z′; k)Gbb
R (v; 0, z; k)δG̃+(z′, z, k)

= −
∫ z∗

a−ζ

0
dzdz′ Gbb

R (v; 0, z′; k)Gbb
R (v; 0, z; k)δG̃+(z′, z, k)

− 2
(∫ z∗

a

z∗
a−ζ

dz

z
3
2

Gbb
R (v; 0, z; k)

)∫ z∗
a−ζ

0
dz′ Gbb

R (v; 0, z′; k)
(
z∗

a

3
2 δG̃+(z′, z∗

a, k) +O(ζ)
)

−
(∫ z∗

a

z∗
a−ζ

dz

z
3
2

Gbb
R (v; 0, z; k)

)2 (
z∗

a
3δG̃+(z∗

a, z∗
a, k) +O(ζ)

)
where

Gbb
R (v; 0, z1; k)

=i
√

2π

(1+4k2) z
3
2
1

8
θ (z∗

a−z1) 2F1

(3
4
− ik

2
,
3
4

+ ik

2
, 2, 1−(cosh v−z1 sinh v)2

)
−

√
z∗

a

1+cosh v
δ (z∗

a−z1)


The near-lightcone integral is

∫ z∗
a

z∗
a−ζ

dz

z
3
2

Gbb
R (v; 0, z; k) = i cosh(πk)√

2π sinh v
F (1+ζ sinh v) = −i

2
3
2 ζ− 1

2 −ikΓ(−ik)e−ikv

Γ
(

1
2 − ik

) + c.c.

 e− 3
2 v+O

((
ζ−1e−v

) 5
2
)
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Holographic model of a quantum quench
Analytical argument for appearance of quasinormal modes
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Conclusions & Outlook

We have seen:
• We applied the non-equilibrium dictionary for two-point functions to
a quenched system and obtained reasonable results

• Far-from-equilibrium perturbations thermalize on the same time
scale as infinitesimal perturbations: quasinormal modes

• Wightman functions in Fourier space thermalize on the same time
scale as one-point functions→ unified picture of thermalization
times?

• Claim: Smooth initial data in Vaidya always leads to quasinormal
decay, also in higher dimensions

Open questions:
• Generalize the quench calculation to higher dimensions: retarded
correlators in black hole backgrounds not known

• More realistic models of gravitational collapse
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