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Motivation

Why study far from equilibrium dynamics using holography?

e Study the holographic duality in extreme environments:
o Well understood in and close to equilibrium

o Going away from equilibrium is like testing the duality for finite N or A
o Test if the duality gives sensible results

o Explore dictionary between bulk and boundary quantities
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Motivation
Why study far from equilibrium dynamics using holography?

e Study the holographic duality in extreme environments:

o Well understood in and close to equilibrium

o Going away from equilibrium is like testing the duality for finite N or A
o Test if the duality gives sensible results

o Explore dictionary between bulk and boundary quantities

e Obtain a tool to study strongly coupled dynamics in QFTs:

o Possible applications to: heavy ions, cold atoms
o Example we consider: quantum quench
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Motivation

Why do we use the Wightman function to study thermalization?

Questions:
® One-point function: t.,1" ~ 1 <+ non-local probes: t., x|
¢ Two-point functions only computed in geodesic approximation.

e Wightman functions quantify particle production rates, e.g. photon
production in the QGP « current-current Wightman function

e Definition of an effective occupation number out of equilibrium

Philipp Kleinert Thermalization of Wightman two-point functions 4/17



Motivation

Why do we use the Wightman function to study thermalization?

Questions:
® One-point function: t.,1" ~ 1 <+ non-local probes: t., x|
¢ Two-point functions only computed in geodesic approximation.

e Wightman functions quantify particle production rates, e.g. photon
production in the QGP « current-current Wightman function

e Definition of an effective occupation number out of equilibrium

What we will see: Wightman functions in Fourier space thermalize on
the same time scale as one-point functions set by the lowest
quasinormal mode — unified picture of thermalization times?
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Holographic model of a quantum quench
Global quench — field theory

Quantum quench: Prepare quantum system in vacuum, excite by
injecting energy at ¢t = 0.

Simple example: homogeneous, isotropic (global)
quench

t

H(t) = Ho + A(?) / &z O(x)
Corresponds to an injection of energy equally dis- — |
tributed over space. f

_
|-

Interesting because

¢ Quenches can be studied experimentally in condensed matter and
cold atom systems

¢ |n these experiments, correlation functions can be measured

e Simplest far-from-equilibrium model
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Holographic model of a quantum quench
Global quench — holographic model

A holographic model of a global quench is given by Vaidya spacetime:

e Describes a collapsing shell of null matter A
forming a black hole

e Metric

1
ds® = = [—(1—9(1})22)dv2—2dvdz+dx2}
For v < 0 this is pure AdS3 and for v > 0 the BH
BTZ Black hole
e Does not solve the vacuum Einstein equations,
but needs a source. It is however a good
approximation of real scalar collapse
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

e We want to see how scalar correlators evolve in the quenched
background,

§=—3 [ doy=g(0,00"0 +m?6?),

and take m? = —3/4 for simplicity — Weyl symmetry, conformal
coupling
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

¢ Consider the Wightman two-point function

G (72, 71) = (H(22)9(71))

® We choose the vacuum state in AdS as initial state, so for vy, v < 0,
G+ is the AdS scalar vacuum correlator

Ads .
GA®(va, 2, 2951, 21, 21)

— Vv Z122 1
4m \/-‘A’U2‘2AUA2,’+AZE2+7;0(’U27’U1)6

1
\/7A'u2 —2AvAz+421 20+ Az2+i0(v2—vl)e )

where Av = vy — 01, Ax = 29 — 21, Az = 29 — 21.
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

e Consider the Wightman two-point function

G (72, 71) = (H(z2)9(71))

e We choose the vacuum state in AdS as initial state, so for v{, vy < 0,
G is the AdS scalar vacuum correlator

L G+ obeys equations of motion:
(Dl - m2)G+(az2,x1) = (0 = (DQ i m2)G+(x2,x1)

which are a set of six-dimensional PDEs
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

Consider the Wightman two-point function

G (72, 71) = (H(z2)9(71))

We choose the vacuum state in AdS as initial state, so for v{, vy < 0,
G is the AdS scalar vacuum correlator

G+ obeys equations of motion:
(Dl - m2)G+(az2,x1) =0= (‘:’2 i m2)G+(a:2,x1)

which are a set of six-dimensional PDEs

Translation invariance in spatial direction — Fourier transform —
four-dimensional PDE
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

We use a trick to solve this initial value problem:

e Method of Green’s functions for linear differential equation

=
¢(027227k) = 7// le ¢(U1,Zl,k) DUIGR(/Z)27 22;0V1, 21, k)

v1=const

where DV = \/—gg"" 0,
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Holographic model of a quantum quench

Thermalization of scalar in quenched system
We use a trick to solve this initial value problem:

e Method of Green’s functions for linear differential equation

=
¢(027227k) = 7// le ¢(U1,Zl,k) DUIGR(/Z)27 22;0V1, 21, k)

v1=const

where DV = /—gg"" 0,
e Choose v1 =0, then G = GgTZ
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

We use a trick to solve this initial value problem:

e Method of Green’s functions for linear differential equation
(bb('l,'z, ]\) =) / dz1 (;5(1)1, 21, k) D" GZ])%(UQ; V1, 21, k)
0

where DV = \/—gg"9, and ¢°(v, k) = v/2r lim,_,0 2~ 2 $(v, 2, k)
e Choose v1 =0, then G = GETZ
e Take the boundary limit zo — 0:
G®(v;0, 215 k) = \/ﬁ lim,, 0 23 2GETZ (v, 22; 0, 215 k)

=iV27 (H4k ) 0 (zk—z1) gFl(%—%,%—F%,Z,l—(coshv—zl sinhv)2>

1+coshu6 (Z zl):l

where z; = tanh 5
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

We use a trick to solve this initial value problem:
e Method of Green’s functions for linear differential equation

*

Zq <_>
¢b(v2ak) :Z/O dZ] ¢(Ul7zl7k)DUleRg)(/UQ;/Ulazl;k)

where DV = \/—gg"" 0,
e Use this to propagate the initial AdS correlator across the shock wave:

5

le
GSET (vg, 03, k)= —/U dzodz [G+(v1721; V9, 22; k‘)ﬁ’“G%’(% viy21; k)

<=
X szGbRb(’Ug;UQ,ZQ; k)]
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

We use a trick to solve this initial value problem:
e Method of Green’s functions for linear differential equation

*

Zq <_>
¢b(v2ak) :Z/O dZ] ¢(Ul7zl7k)DUleRg)(/UQ;/Ulazl;k)

where DV = \/—gg"" 0,
e Use this to propagate the initial AdS correlator across the shock wave:

AdS L~ Black Hole

I8
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

Problem: G (z1,x2) diverges for lightlike separations, i.e.

Gfds(xl, x2) = 00

v1,v2=0
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

Problem: G (z1,x2) diverges for lightlike separations, i.e.

Gi‘ds(ajl, x2) = 00

v1,v2=0

Solution: Consider 0G4 (z1,x2) = G4 (x1,x2) — Gi‘erma'(xl, x2)

® 0G4 (x1,72) obeys the same equations of motion
o 0G4 (z1,22)|,, yp—o is finite
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

Problem: G (z1,x2) diverges for lightlike separations, i.e.

Gﬁds(ajl, x2) = 00

v1,v2=0

Solution: Consider 0G4 (z1,22) = G4 (x1,x2) — Gi‘erma'(acl, x2)

® 0G4 (x1,x2) obeys the same equations of motion
o 0G4 (z1,22)|,, yp—o is finite
Simple integral to be evaluated:

Z{J,
5G$FT(’U4, v3, k‘): 7‘/ dZQle [5G+(’Ul, 215V2, 22, k)ﬁvl G%)(’U;;; V1, %1; k)
0

<=
X szG%(Ug;UQ, 29; k):| .
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Holographic model of a quantum quench

Thermalization of scalar in quenched system

Problem: G (z1,x2) diverges for lightlike separations, i.e.

Gﬁds(ajl, x2) = 00

v1,v2=0

Solution: Consider 0G4 (z1,22) = G4 (x1,x2) — Gi‘erma'(acl, x2)

® 0G4 (x1,x2) obeys the same equations of motion
o 0G4 (z1,22)|,, yp—o is finite

Simple integral to be evaluated:

*

2y N
5G$FT(U4, V3, k): 7/ dZQle |:5G+ (217 22, k)GbRb(wl; 07 215 k)
0

G’}é’(vs;O,zQ;k)]-
where
5é+(z/7 % k) = (ﬁ B zz%az B %82, + 4 8262') 5G+(Z/70; z; 0, k)

22!
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Holographic model of a quantum quench

Appearance of quasinormal modes

The boundary correlator GEFT(t, t; k) thermalizes exponentially with a
rate set by the lowest quasinormal mode, wg = &k — 27T A

10
107
10797

10—14 L

10—19 L

| (27( j})_Q A+15G§FT|

— 1@r T2 GEFT (¢, ¢, )|

]_0_24 r --- |A1 COS (2kt+(¥1)+31|€_4ﬂtT/A

P P . I A Tl A Vi TN 4 =’ A N S R B )

0 2 4 6 8 10 12 14

2n Tyt
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Holographic model of a quantum quench

Analytical argument for appearance of quasinormal modes

QNMs are poles of the retarded correlator in Fourier space:

G (v;', 21 k) = X, cn(2 e‘iw£n)(“_”/), w™ = 4k — 27T (A + 20
R n f
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Holographic model of a quantum quench

Analytical argument for appearance of quasinormal modes

QNMs are poles of the retarded correlator in Fourier space:

G® (v, 2 k) = %, cn(z’)e_iw£")(v—v’)’ W™ = 4k — i27TF(A + 2n)

SGYET (v, v, k)

z; 5
= f/ dzadz; {5G+(zl, 22, k)G%(v;0, 21; k) G2 (v; 0, 29; k)
0
_ (@™ ol™) “ ~
= — Z / dzodz1 0G4 (21, 22, k)cn(22)em(21)

~ —6*2“*’( )U/O dzodz1 5@+(21,22,k)co(z2)co(z1)
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Holographic model of a quantum quench

Analytical argument for appearance of quasinormal modes

QNMs are poles of the retarded correlator in Fourier space:

GR(w', 2 k) = Y, cn(z’)e_i“£n)(“_”/), W™ =tk — i2nTr(A + 2n)

w

Only valid for e=(*=*") < ¢ where ¢ = distance from lightcone

SGYET (v, v, k)

z; 5
= —/ dzadz; [5G+(zl, 22, k)G%(v;0, 21; k) G2 (v; 0, 29; k)
0

2 B
= — Z e‘i(“£n)+wim>)“ / dzodzy 0G 1 (21, 20, k)cn(29)cm(21)
m,n 0

2 5
R —e_in£0)”A dzodz1 6G 1 (21, 22, k)co(z2)co(21)

Wrong result!
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Holographic model of a quantum quench

Analytical argument for appearance of quasinormal modes

Strategy:
e Split up the integrals into subintervals (0, z} — () and (2} — (, 2})
e Use the QNM approximation in the interval (0, 2z} — ()

e Taylor expand the smooth initial data §G/(z1, 2z, k) around z;* and
perform the integrals over (2} — (, ;) analytically — leads to the
right fall-off
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Holographic model of a quantum quench

Analytical argument for appearance of quasinormal modes

5GSFT (v;0: k) /dzdz GB(; 0, 2'; k)G (v; 0, 2 kK)8G 4 (7', 2, k)

22—
= 7/0 dzdz' G (v;0,2'; k)G (v; 0, 2, k)0G 1 (2, 2, k)
Za 25—C =
—2( / d—fcﬁéw;o,z;m) |7 @ G0 k) (223664 (2,20, 0) + 0(0)
23— 22 0

* 2
Za d ~
- < / —fcﬁé’(v;o,z;m) (236G 4 (28, 22, 1) + O(Q))

25— 22
where

GR(v;0, 21; k)

3
B (1+4k2) 27, (3 ik 3 ik _ 2) JE
=iV2r [ 5 0(zt—21) o F1 i 4+ 3 ,2,1—(cosh v—z; sinh v) 1+COSh’U6(2a 21)

The near-lightcone integral is

3 1 - : -
% dz icosh(mh) . . [22¢T 27T (—ik)e Y 15 PN
G (0;0,2k) = ———L F(14Csinhv) = —i [ 22—~ 0" L cee 21’-&-(9( v )
/z;—c % il )= V27 sinhv Flig ) ( r (% _ ik) (C ¢ )
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Holographic model of a quantum quench

Analytical argument for appearance of quasinormal modes

Philipp Kleinert

(27TTf)_2A+163 @nTy t)6G€FT
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Conclusions & Outlook

We have seen:

® We applied the non-equilibrium dictionary for two-point functions to
a quenched system and obtained reasonable results

e Far-from-equilibrium perturbations thermalize on the same time
scale as infinitesimal perturbations: quasinormal modes

e Wightman functions in Fourier space thermalize on the same time
scale as one-point functions — unified picture of thermalization
times?

e Claim: Smooth initial data in Vaidya always leads to quasinormal
decay, also in higher dimensions
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Conclusions & Outlook

We have seen:

® We applied the non-equilibrium dictionary for two-point functions to
a quenched system and obtained reasonable results

e Far-from-equilibrium perturbations thermalize on the same time
scale as infinitesimal perturbations: quasinormal modes

e Wightman functions in Fourier space thermalize on the same time
scale as one-point functions — unified picture of thermalization
times?

e Claim: Smooth initial data in Vaidya always leads to quasinormal
decay, also in higher dimensions

Open questions:

e Generalize the quench calculation to higher dimensions: retarded
correlators in black hole backgrounds not known

® More realistic models of gravitational collapse
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