Holography, thermalization and heavy-ion collisions III

Michał P. Heller

Perimeter Institute for Theoretical Physics, Canada

National Centre for Nuclear Research, Poland

Overview of Lectures 1 & 2

1202.0981 [PRL 108 191601 (2012)] with Mateos, van der Schee & Tancanelli
1304.5172 [JHEP 1309 026 (2013)] with Mateos, van der Schee & Triana
1305.4919 [PRL 111 181601 (2013)] and 1312.2956 [PRL 112 221602 (2014)] with Casalderrey-Solana, Mateos & van der Schee

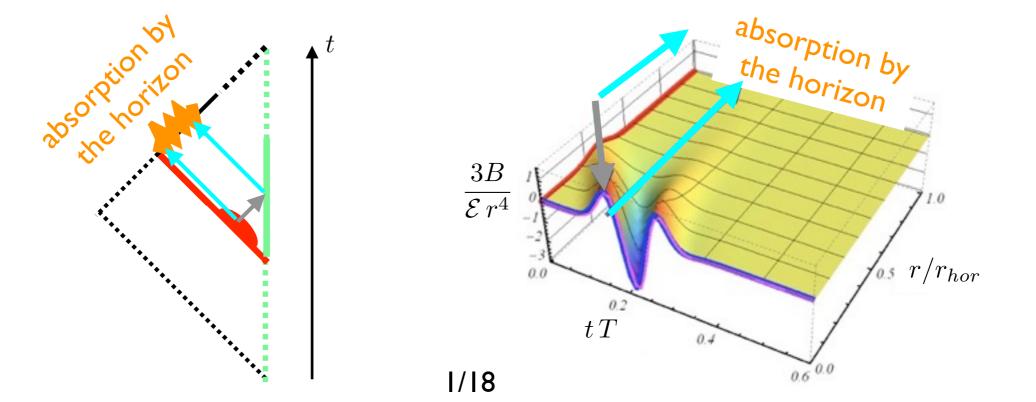
Basic notions

certain states of a class of strongly-coupled QFTs = higher dimensional geometries

dofs of strongly-coupled QGP = QNMs of dual black branes:

$$\delta \langle T_{\mu\nu} \rangle = \sum_n \int d^3k \, c_n^{\mu\nu} e^{-\omega_n(k)t + i\vec{k}\cdot\vec{x}} \text{ with} \qquad \begin{array}{c} \text{exponential decay} \\ \text{in I/T} \\ \text{slow decay (hydro)} \end{array}$$

equilibration in strongly coupled QFTs = dual horizon formation and equilibration:



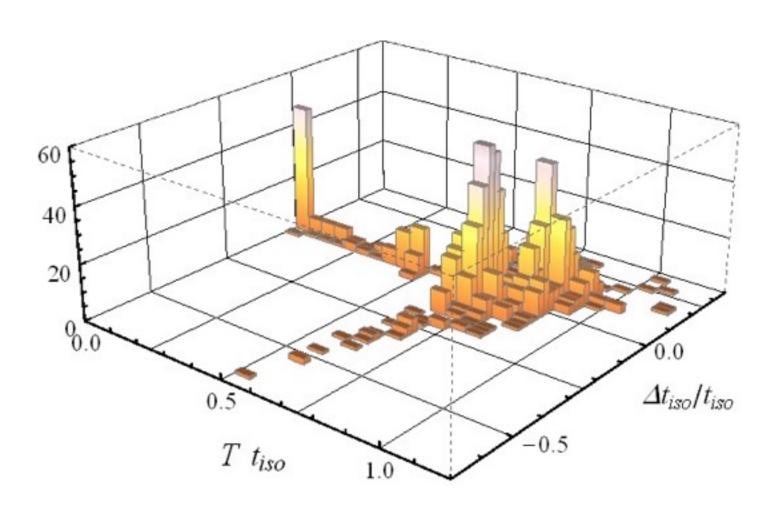
N-eq states and relaxation rates

Real-time dynamics of QFTs requires ∞ -many initial conditions, e.g.

$$B = -\frac{b(t)}{2r^4} - \frac{b'(t)}{2r^5} - \frac{7b''(t)}{24r^6} - \frac{b^{(3)}(t)}{8r^7} + \dots \text{ with } b(t) = \frac{2\pi^2}{3N_c^2} \Delta \mathcal{P}(t)$$

Holography makes it manageable by adding r \longrightarrow $\mathcal{R}_{ab}-\frac{1}{2}\mathcal{R}g_{ab}-\frac{6}{L^2}g_{ab}=0$

Indications that equilibration in I/T at strong coupling can be generic:

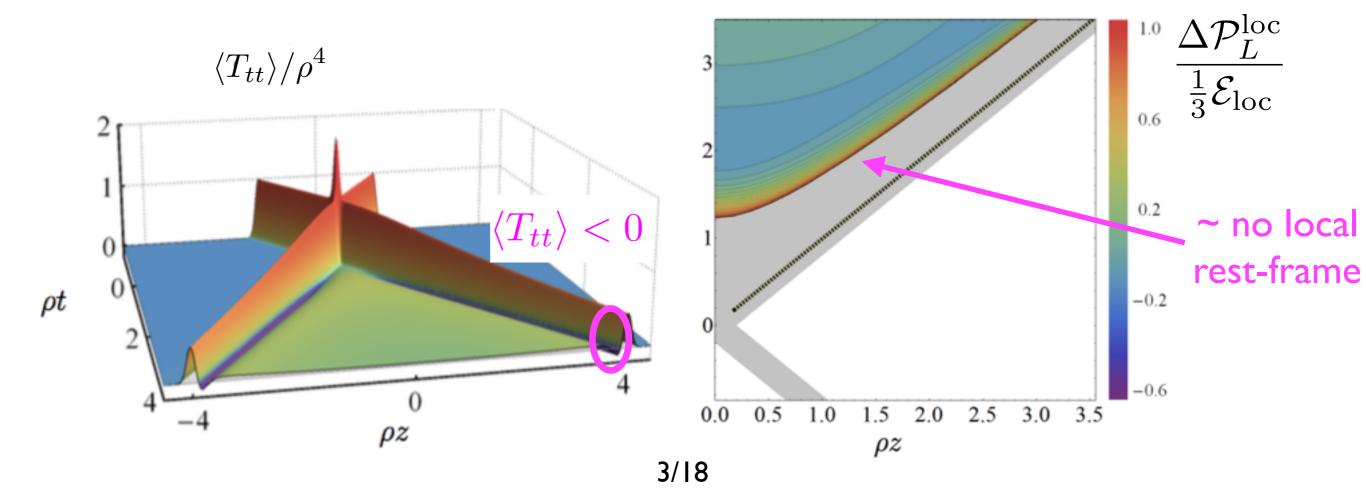


Confirmed in many other setups*. Is $t_{eq}\,T=O(1)$ becoming new " $\eta/s=1/4\pi$ "? 2/18

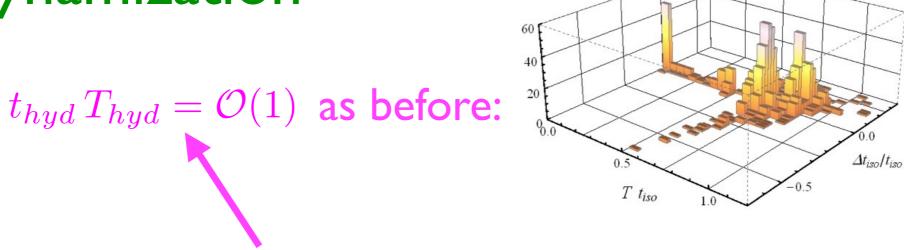
Hydrodynamics & holographic collisions

It is clear that $\langle T^{\mu\nu} \rangle$'s will not always be close to satisfying these relations

Rich transient physics before hydro:



Hydrodynamization



Fast hydrodynamization:

thermalization or isotropization

Huge anisotropies at the hydrodynamic threshold: $\mathcal{P}_T - \mathcal{P}_L = 1.35 imes \mathcal{P}_{eq}$

Viscous hydrodynamics constitutive relations work despite:

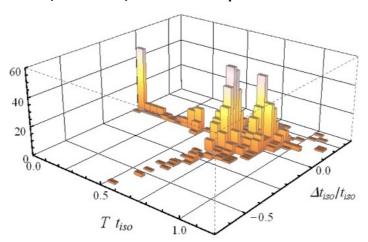
$T_{hydro}^{\mu\nu} = \mathcal{E} u^{\mu}u^{\nu} + P_{eq}(\mathcal{E}) \left\{ g^{\mu\nu} + u^{\mu}u^{\nu} \right\} - \eta(\mathcal{E}) \, \sigma^{\mu\nu} + \dots$

Great for pheno: $\int_{-10}^{10} \int_{-10}^{600} \int_{-5}^{600} \int_{-10}^{600} \int_{-5}^{600} \int_{-10}^{600} \int_{-5}^{600} \int_{-10}^{400} \int_{-5}^{400} \int_{-10}^{400} \int_{-10}^{400} \int_{-5}^{400} \int_{-10}^{400} \int_{-10}^{400} \int_{-5}^{400} \int_{-5}^{400$

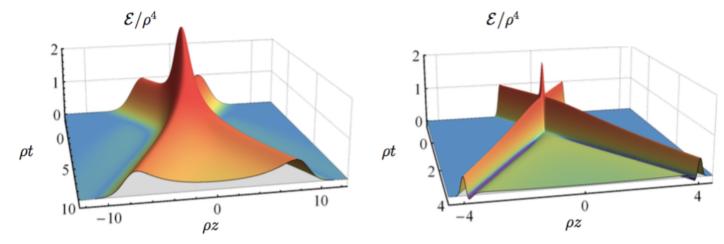
 τ =0.4 fm/c

The plan for today

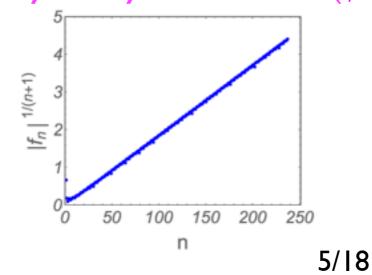
Lecture I: how long does it take $\langle T^{\mu\nu} \rangle$ to equilibrate in strongly-coupled QFTs?



Lecture II: what is $\langle T^{\mu\nu}\rangle(t,\vec{x})$ after a collision of 2 strongly-interacting objects?



Lecture III: why was hydrodynamization (\neq thermalization) at all possible?





Boost-invariant hydrodynamics

The boost-invariance Bjorken 1982

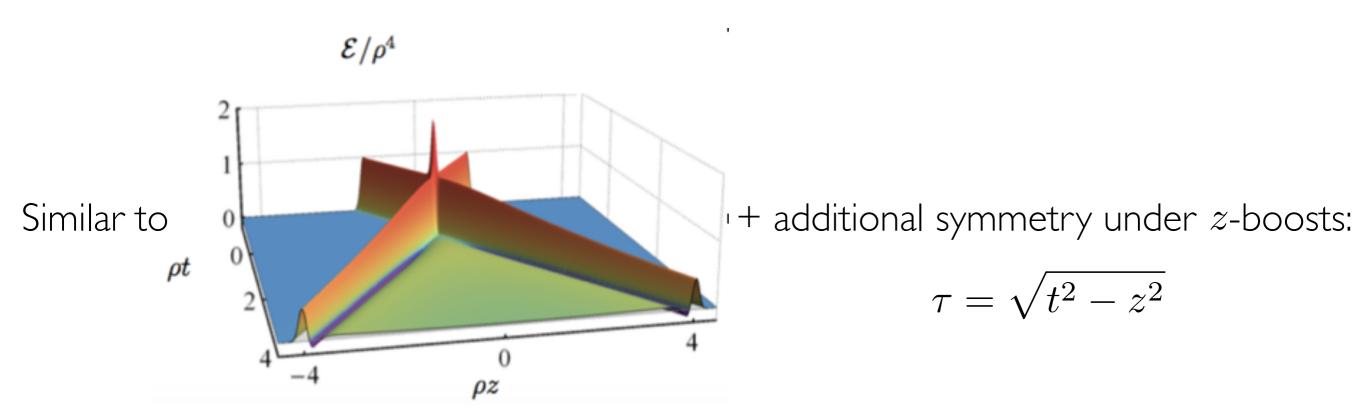
In order to understand hydrodynamics right at its threshold:

leading order ≈ correction

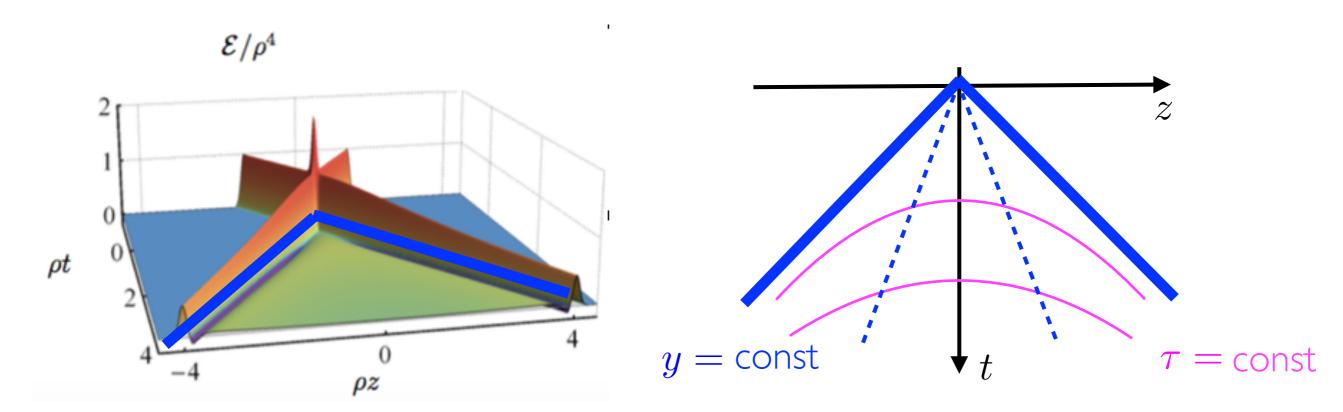
$$T_{hydro}^{\mu\nu} = \mathcal{E}u^{\mu}u^{\nu} + P_{eq}(\mathcal{E})\left\{g^{\mu\nu} + u^{\mu}u^{\nu}\right\} - \eta(\mathcal{E})\sigma^{\mu\nu} + \dots$$

we have to understand better what is hidden there

Idea: focus on a simple flow in which $\langle T^{\mu\nu} \rangle$ can be expressed as $\langle T^{\tilde{\mu}\tilde{\nu}} \rangle (\tau)$:



The boost-invariant flow Bjorken 1982



Boost-invariance: in
$$(\tau \equiv \sqrt{t^2 - z^2}, y = \tanh^{-1} \frac{z}{t}, \mathbf{x}_{\perp})$$
 coords no y-dependence:

Background Minkowski space: $ds^2 = -d\tau^2 + \tau^2 dy^2 + d\mathbf{x}_{\perp}^2$

CFT:
$$\langle T_{\mu\nu} \rangle \, dx^{\mu} dx^{\nu} = \mathcal{E}(\tau) \, d\tau^2 + \tau^2 (-\mathcal{E} - \tau \, \dot{\mathcal{E}}) \, dy^2 + (\mathcal{E} + \frac{1}{2} \tau \, \dot{\mathcal{E}}) \, d\mathbf{x}_{\perp}^2$$

$$\xrightarrow{\mathcal{P}_L} \qquad \xrightarrow{\mathcal{P}_T}$$
7/18

The boost-invariant hydrodynamics

I 103.3452 with Janik & Witaszczyk

$$\langle T_{\mu\nu} \rangle \, dx^{\mu} dx^{\nu} = \mathcal{E}(\tau) \, d\tau^{2} + \tau^{2} (-\mathcal{E} - \tau \, \dot{\mathcal{E}}) \, dy^{2} + (\mathcal{E} + \frac{1}{2} \tau \, \dot{\mathcal{E}}) \, d\mathbf{x}_{\perp}^{2}$$

$$\downarrow u^{\mu} \partial_{\mu} = \partial_{\tau}$$

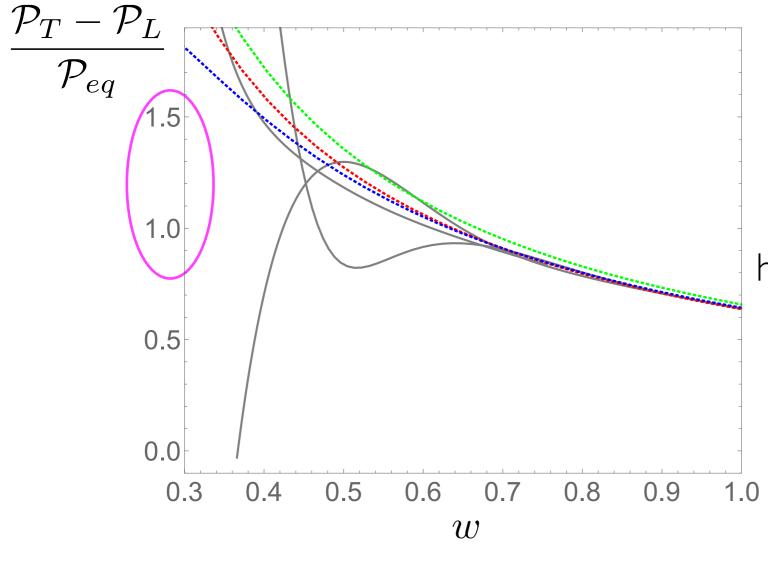
$$T_{hydro}^{\mu\nu} = \mathcal{E}u^{\mu}u^{\nu} + P_{eq}(\mathcal{E})\left\{g^{\mu\nu} + u^{\mu}u^{\nu}\right\} - \eta(\mathcal{E})\sigma^{\mu\nu} + \dots$$

Conclusion: gradient expansion in the boost-invariant flow is an expansion in

Hydrodynamization in the boost-invariant flow

1103.3452 with Janik & Witaszczyk

Ab initio calculation in N=4 SYM at strong coupling:



Hydrodynamics works despite huge anisotropy captured by $-\eta\,\sigma^{\mu\nu}$

$$\frac{\mathcal{P}_T - \mathcal{P}_L}{\mathcal{P}_{eq}} = \frac{0.64}{w} + \frac{0.02}{w^2} + \frac{0.01}{w^3} + \dots$$
9/18

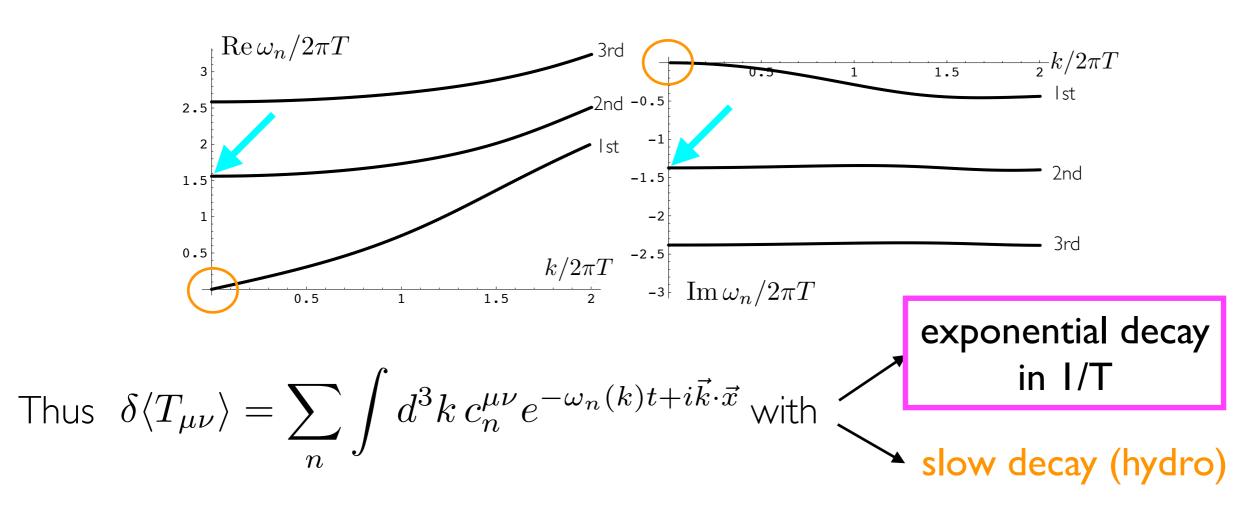
Why can hydrodynamization occur?

M. P. Heller, R. A. Janik and P. Witaszczyk,

Phys. Rev. Lett. 110, 211602 (2013), 1302.0697

Quasinormal modes: dofs of strongly-coupled QGP

Singularities in the lower-half ω -plane are single poles (QNMs) for each value of k see hep-th/0506184 by Kovtun & Starinets



Hydrodynamic gradient expansion is divergent

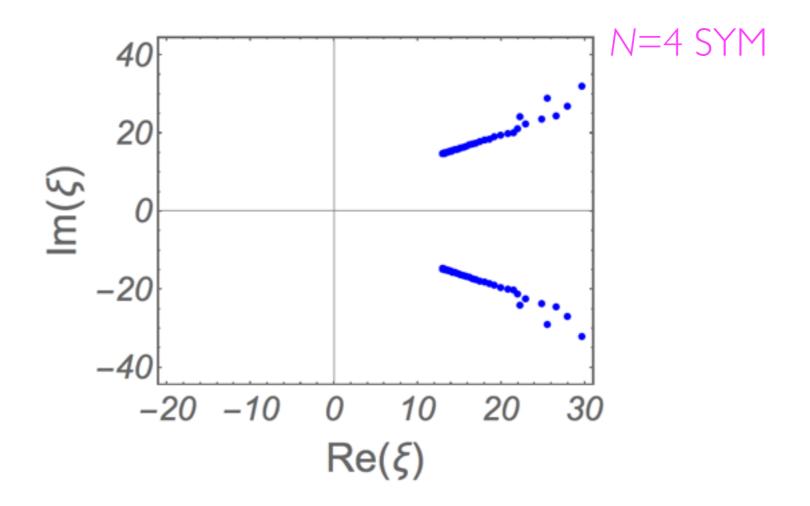
In I302.0697 we computed
$$f(w) = \frac{2}{3} + \frac{1}{18} \frac{\mathcal{P}_T - \mathcal{P}_L}{\mathcal{P}_{eq}}$$
 up to $O(w^{-240})$:

$$f(w) = \sum_{n=0}^{\infty} f_n w^{-n} = \sum_{n=0}^{\infty} \frac{1}{9\pi} w^{-1} + \dots$$

$$= \frac{2}{3} + \frac{1}{9\pi} w^{-1} + \dots$$

Hydrodynamics and QNMs

Analytic continuation of $f_B(\xi) \approx \sum_{n=0}^{240} \frac{1}{n!} f_n \xi^n$ revealed the following singularities:



Branch cut singularities start at $\frac{3}{2} i \omega_{QNM_1}!$

Resumming gradient expansion in MIS theory

1503.07514 [PRL 115 072501 (2015)] with Spaliński

see also 1509.05046 by Basar & Dunne, as well as 1511.06358 by Aniceto & Spaliński

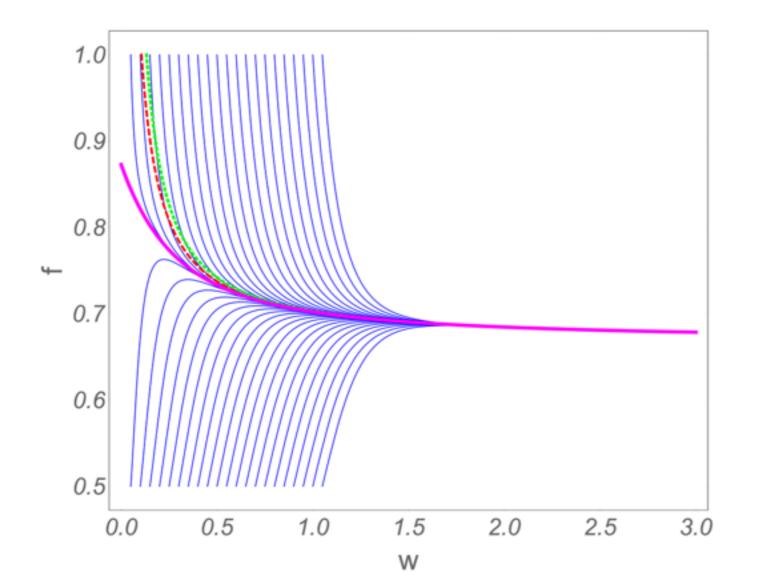
The boost-invariant MIS theory

$$(\tau_{\Pi} \mathcal{D} + 1) \Pi_{\mu\nu} = -\eta \sigma_{\mu\nu} + \dots$$

$$C_{\eta} = rac{\eta}{s}$$
 and $C_{ au_{\Pi}} = au_{\Pi} \, T$

$$f' = -\frac{1}{C_{\tau\Pi}} + \frac{2}{3C_{\tau\Pi}f} + \frac{16}{3w} - \frac{16}{9wf} + \frac{4C_{\eta}}{9C_{\tau\Pi}wf} - \frac{4f}{w} + \dots$$

13/18



attractor

different solutions

$$f(w) = f_0 + f_1 w^{-1}$$

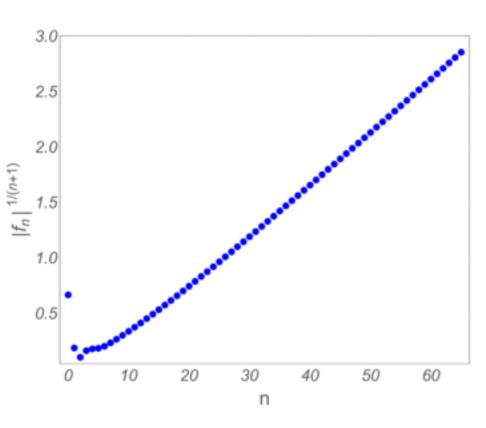
$$f(w) = f_0 + f_1 w^{-1} + f_2 w^{-2}$$

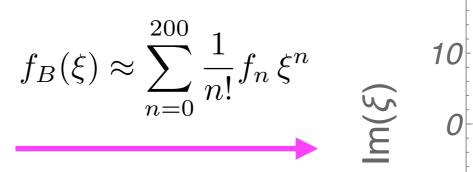
Gradient expansion

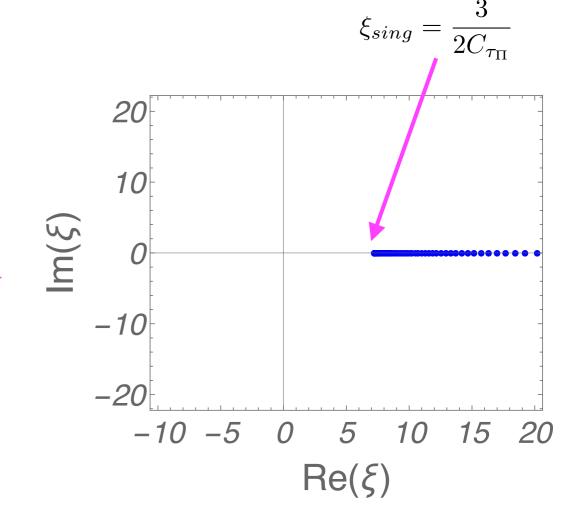
$$f' = -\frac{1}{C_{\tau_{\Pi}}} + \frac{2}{3C_{\tau_{\Pi}}f} + \frac{16}{3w} - \frac{16}{9wf} + \frac{4C_{\eta}}{9C_{\tau_{\Pi}}wf} - \frac{4f}{w} + \dots$$

$$f = \sum_{n=0}^{\infty} \frac{f_n}{w^n} + \delta f + \mathcal{O}(\delta f^2)$$

$$\exp(-\frac{3}{2C_{\tau_{\Pi}}} w) \times \dots$$

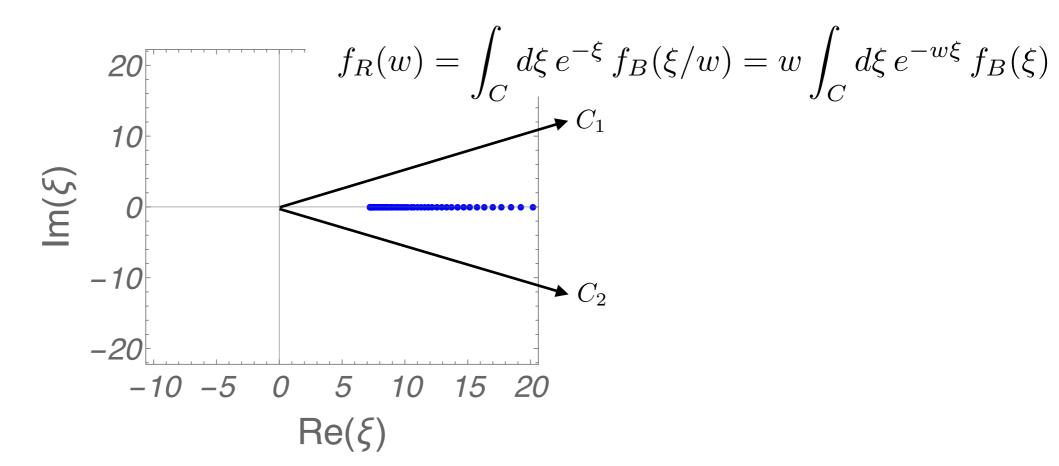






Transseries

Hydrodynamic gradient expansion is intrinsically ambiguous:



The ambiguity goes away upon including the quasinormal mode $\left(f_n=a_{0,n}\right)$

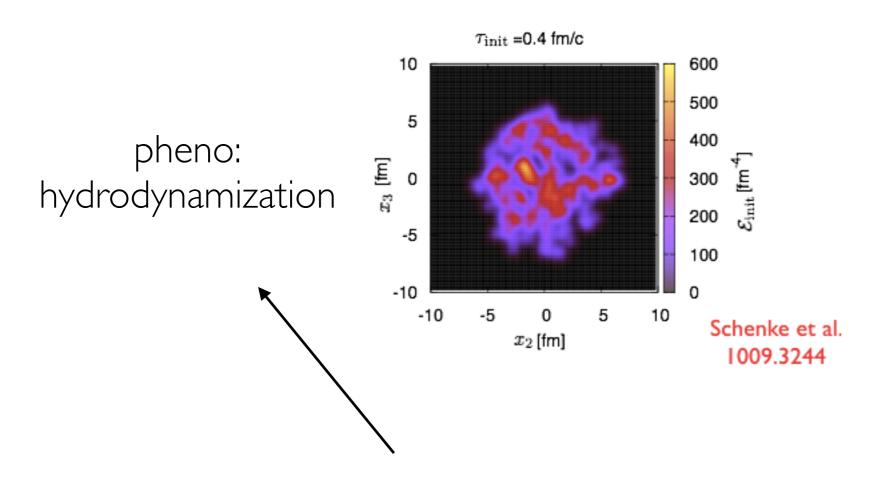
$$f = \sum_{m=0}^{\infty} (c_{amb} + r)^m \left\{ w^{\frac{C_{\eta}}{C_{\tau_{\Pi}}}} \exp\left(-\frac{3}{2C_{\tau_{\Pi}}}w\right) \right\}^m \sum_{n=0}^{\infty} a_{m,n} w^{-n}$$

initial condition

Homework: write an ansatz for a transseries for f in N=4 SYM

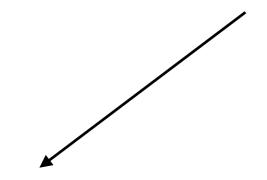
Summary of Lecture III

1302.0697 [PRL 110 211602 (2013)] with Janik & Witaszczyk 1503.07514 [PRL 115 072501 (2015)] with Spaliński

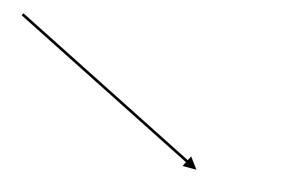


hydrodynamic gradient expansion diverges

precision calculations in NumHol



towards genericity



new connections: transseries & resurgence (very active area in QM & QFT)

Take-home messages

```
1202.0981 [PRL 108 191601 (2012)] with Mateos, van der Schee & Tancanelli
1304.5172 [JHEP 1309 026 (2013)] with Mateos, van der Schee & Triana
1305.4919 [PRL 111 181601 (2013)] and 1312.2956 [PRL 112 221602 (2014)] with Casalderrey-Solana, Mateos & van der Schee
1103.3452 [PRL 108 211602 (2012)] with Janik & Witaszczyk
1302.0697 [PRL 110 211602 (2013)] with Janik & Witaszczyk
1503.07514 [PRL 115 072501 (2015)] with Spaliński
```

Take-home messages:

Key idea: novel ab initio methods allow to test our understanding of collective phenomena in QFTs

Lesson I: hydrodynamization at strong coupling takes $t_{hyd} = O(1/T_{hyd})$

Lesson II: a priori, hydrodynamization ≠ thermalization / isotropization

Lesson III: hydrodynamic gradient expansion diverges; as a result gradients need not to be parametrically small in order for the viscous hydrodynamics to work

All three lessons directly lead to valuable insights for the HIC pheno

Open problems

Open problems

Problem I: how does the breaking of the conformal symmetry affect lessons I-III?

→ 1503.07114 with Buchel & Myers, 1503.07149 by Janik et al. & 1604.06439 by Attems et al.

Problem II: how about higher curvature corrections to $\mathcal{R}_{ab} - \frac{1}{2}\mathcal{R}g_{ab} - \frac{6}{L^2}g_{ab} = 0$?

→ 1605.02173 by Grozdanov, Kaplis & Starinets

Problem III: are ~AdS-instability-like processes relevant for any realistic equilibration?

→ 1311.7560 by Craps et al.

Problem IV: understanding large-order hydro gradient expansion for a general flow?

→ **I507.02461** by Grozdanov & Kaplis

Problem V: observational signatures of "QNMs" in experiments (HIC / cold atoms)?

→ I508.01199 by Brewer & Romatschke

Problem VI: new insights in weakly-coupled QFTs from holographic lessons?

→ 1506.06647 by Kurkela & Zhu, as well as 1512.05347 by Keegan et al.

Problem VII: nonlocal correlation functions beyond the AdS-Vaidya paradigm?

→ I2II.0343 by Chesler & Teaney

Problem VIII: relax symm. assumptions / better projectiles for holographic collisions?

→ 1501.04644 by Chesler & Yaffe