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Basic notions
certain states of a class of strongly-coupled QFTs = higher dimensional geometries

                                                         with 
slow decay (hydro)
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equilibration in strongly coupled QFTs = dual horizon formation and equilibration:

exponential decay
in 1/T
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Lessons: n-eq states and relaxation rates
Real-time dynamics of QFTs requires     -many initial conditions, e.g.                

Indications that equilibration in 1/T
 at strong coupling can be generic:

Confirmed in many other setups*. Is                     becoming new “                   “?

Holography makes it manageable by adding    r Rab �
1

2
Rgab �

6
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⌘/s = 1/4⇡teq T = O(1)

1



The plan for today
Lecture 1: how long does it take           to equilibrate in strongly-coupled QFTs? 

Lecture II: what is                  after a collision of 2 strongly-interacting objects? 

hTµ⌫i

hTµ⌫i

Lecture III: what is relativistic hydrodynamics? 
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Relativistic hydrodynamics



Relativistic hydrodynamics 

an EFT of the slow evolution of conserved 
currents in collective media close to equilibriumhydrodynamics is

DOFs: always local energy density   and local flow velocity      (              )
formal EOMs: conservation eqns                   for         expanded in gradients

uµ u⌫u
⌫ = �1

shear viscosity bulk viscosity
(vanishes for CFTs)

microscopic
input:

EoS
(               for CFTs)

rµhTµ⌫i = 0 hTµ⌫i
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It is clear that           ‘s will not always be close to satisfying these relationshTµ⌫i

Tµ⌫

hydro

= Euµu⌫ + P (E) {gµ⌫ + uµu⌫}� ⌘(E)�µ⌫ � ⇣(E) {gµ⌫ + uµu⌫} (r · u) + . . .

P (E) = 1

3
E

isotropic
breaks

isotropy

E



Quasinormal modes and hydrodynamics
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Figure 6: Real and imaginary parts of three lowest quasinormal frequencies as function of spatial
momentum. The curves for which →0 as →0 correspond to hydrodynamic sound mode in the dual
finite temperature N=4 SYM theory.

behavior of the lowest (hydrodynamic) frequency which is absent for Eα and Z3. For Ez and

Z1, hydrodynamic frequencies are purely imaginary (given by Eqs. (4.16) and (4.32) for small

ω and q), and presumably move off to infinity as q becomes large. For Z2, the hydrodynamic

frequency has both real and imaginary parts (given by Eq. (4.44) for small ω and q), and

eventually (for large q) becomes indistinguishable in the tower of other eigenfrequencies. As an

example, dispersion relations for the three lowest quasinormal frequencies in the sound channel

(including the one of the sound wave) are shown in Fig. 6. The tables below give numerical

values of quasinormal frequencies for = 1. Only non-hydrodynamic frequencies are shown

in the tables. The position of hydrodynamic frequencies at = 1 is = −3.250637i for the

R-charge diffusive mode, = −0.598066i for the shear mode, and = ±0.741420−0.286280i

for the sound mode. The numerical values of the lowest five (non-hydrodynamic) quasinormal

frequencies for electromagnetic perturbations are:

Transverse channel Diffusive channel

n Re Im Re Im

1 ±1.547187 −0.849723 ±1.147831 −0.559204

2 ±2.398903 −1.874343 ±1.910006 −1.758065

3 ±3.323229 −2.894901 ±2.903293 −2.891681

4 ±4.276431 −3.909583 ±3.928555 −3.943386

5 ±5.244062 −4.920336 ±4.946818 −4.965186

and for gravitational perturbations are:

Scalar channel Shear channel Sound channel

n Re Im Re Im Re Im

1 ±1.954331 −1.267327 ±1.759116 −1.291594 ±1.733511 −1.343008

2 ±2.880263 −2.297957 ±2.733081 −2.330405 ±2.705540 −2.357062

3 ±3.836632 −3.314907 ±3.715933 −3.345343 ±3.689392 −3.363863

4 ±4.807392 −4.325871 ±4.703643 −4.353487 ±4.678736 −4.367981

5 ±5.786182 −5.333622 ±5.694472 −5.358205 ±5.671091 −5.370784

– 26 –
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Testing the applicability of hydrodynamics
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How to see if         has reached its hydrodynamic form?hTµ⌫i

Previously, we secretly defined:                               with         

step 1: for a generic         , use       to find would-be hydrodynamic     and hTµ⌫i

algorithm:

E uµ

step 1I: evaluate truncated                 Tµ⌫

hydro

= Euµu⌫ + P (E) {gµ⌫ + uµu⌫}� ⌘(E)�µ⌫ + . . .

step III: compare          with           . Hydro works* ever since they differ by a few %

Let us see how it works with the homogeneous isotropization:

hTµ⌫i = diag

⇢
E , E

3
� 2

3
�P(t),

E
3
+

1

3
�P(t),

E
3
+

1

3
�P(t)

�µ⌫

We get                   and     = constuµ@µ = @t E Tµ⌫

hydro

= diag

⇢
E , 1

3
E , 1

3
E , 1

3
E
�

µ⌫

Tµ⌫

hydro

hTµ⌫i

Tµ⌫

hydro

u
⌫

= �E uµ u⌫u
⌫ = �1



Holographic models of
heavy-ion collisions

1305.4919 [PRL 111 181601 (2013)] and 1312.2956 [PRL 112 221602 (2014)]
with Casalderrey-Solana, Mateos & van der Schee



How to model HIC at strong coupling?
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The crudest projectile in strongly-coupled CFTs:

with any h � 0hT tti = hT zzi = ⌥hT tzi = N2
c

2⇡2
h(t± z)

1011.3562 by Chesler & Yaffe

0

It ignores transversal structure. Holographic collision:

h(t± z) = ⇢4 exp
⇥
�(t± z)2/2�2

⇤
We take                                                 where                      in HIC ⇢ � ⇠ ��1/2

Large Small
collisions at “low energies” collisions at “high energies”

⇢ � ⇢ �

Rich transient physics as a function of �

z
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u
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valid solution before the collision (         )t = 0

later : Rab �
1

2
Rgab �

6

L2
gab = 0

hep-th/0512162 by Janik & Peschanski



Collision of symmetric projectiles
hTtti/⇢4hTtti/⇢4

�P loc

L
1

3

E
loc
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~ no local
rest-frame

hTtti < 0

see also 1408.2518
by Arnold et al.

small-   : large-   :� �



Hydrodynamization

1305.4919 [PRL 111 181601 (2013)] and 1312.2956 [PRL 112 221602 (2014)]
with Casalderrey-Solana, Mateos & van der Schee

see 0906.4426 and 1011.3562 by Chesler & Yaffe for the first observation of hydrodynamization, 
as well as 1103.3452 with Janik & Witaszczyk



Hydrodynamization
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⇢ t

dotted = 
viscous hydro

⇢ z

⇢ t

hTtti = E

hT??i = P?

6= thermalization

hTzzi = PL

thyd Thyd = 0.26

hTtti/⇢4

Huge anisotropies at the hydrodynamic threshold:

1

3
E

=

Tµ⌫

hydro

= Euµu⌫ + P
eq

(E) {gµ⌫ + uµu⌫}� ⌘(E)�µ⌫ + . . .

Viscous hydrodynamics constitutive relations work despite:

leading order correction⇡

!!!

PT � PL = 1.35⇥ Peq
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Nuclear physicists necessarily initiate hydro evolution in HICs very early on:
2

τ=0.4 fm/c
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time
(left), and after τ = 6 fm/c for the ideal case (middle) and with η/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious effects.
While in standard hydrodynamic simulations with av-

eraged initial conditions all odd flow coefficients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.
We follow [15] and define an event plane through the

angle

ψn =
1

n
arctan

⟨pT sin(nφ)⟩
⟨pT cos(nφ)⟩

, (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coefficients can be computed using

vn = ⟨cos(n(φ− ψn))⟩ . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2max−b2min), where bmin and bmax depend
on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

√

σNN/π, where σNN is the in-
elastic nucleon-nucleon cross-section, which at top RHIC
energy of

√
s = 200AGeV is σNN = 42mb. The energy

density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width σ0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|ηs| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.
In Fig. 1 we show the energy density distribution in

the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time τ0 = 0.4 fm/c and at time
τ = 6 fm/c for η/s = 0 and η/s = 0.16. This clearly
shows the effect of dissipation.
We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypTdpTdφp
= gi

∫

Σ

f(uµpµ)p
µd3Σµ , (11)

where gi is the degeneracy of particle species i, and Σ
the freeze-out hyper-surface. In the ideal case the distri-
bution function is given by

f(uµpµ) = f0(u
µpµ) =

1

(2π)3
1

exp((uµpµ − µi)/TFO)± 1
,

(12)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + δf , with

δf = f0(1 ± f0)p
αpβWαβ

1

2(ϵ+ P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice δf ∼ p2 is not unique [32].
The algorithm used to determine the freeze-out surface

Σ has been presented in [16]. It is very efficient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-τ -plane in the vicinity of
y = 0 fm and ηs = 0 for two different initial distribu-
tions compared to that for an averaged initial condition
in Fig. 2. The arrows are projections of the normal vector
on the hyper-surface element onto the x-τ plane.
We include resonances up to the φ-meson. We found

that the pseudorapidity dependence of both v2 and v3 is
affected notably by the inclusion of resonance decays, im-
proving the agreement of v2(ηp) with data significantly.

1009.3244 by Schenke, Jeon & Gale

Hydrodynamization: why interesting?

Initial conditions for hydro
can be then very extreme:
(   in the transversal plane)

We just showed that despite large gradients viscous hydro can nevertheless be OK

Lecture III (Tue 10:00-10:55): why hydrodynamization does make sense.

This is a valuable and unanticipated pheno insight especially relevant for pA and pp

E



Summary of Lecture 1I



Notions

It is clear that           ‘s will not always be close to satisfying these relationshTµ⌫i

Tµ⌫

hydro

= Euµu⌫ + P (E) {gµ⌫ + uµu⌫}� ⌘(E)�µ⌫ � ⇣(E) {gµ⌫ + uµu⌫} (r · u) + . . .

isotropic
breaks

isotropy

Hydrodynamics:

Rich transient physics before hydro:

hTtti/⇢4

hTtti < 0

�P loc

L
1

3

E
loc

~ no local
rest-frame

hTtti/⇢4
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hTtti < 0



Lessons
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Fast hydrodynamization:

thyd Thyd = O(1)  as before: 

Huge anisotropies at the hydrodynamic threshold:

Tµ⌫

hydro

= Euµu⌫ + P
eq

(E) {gµ⌫ + uµu⌫}� ⌘(E)�µ⌫ + . . .

Viscous hydrodynamics constitutive relations work despite:

leading order correction⇡

6=
thermalization or isotropization

Great for pheno:

2

τ=0.4 fm/c
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time
(left), and after τ = 6 fm/c for the ideal case (middle) and with η/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious effects.
While in standard hydrodynamic simulations with av-

eraged initial conditions all odd flow coefficients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.
We follow [15] and define an event plane through the

angle

ψn =
1

n
arctan

⟨pT sin(nφ)⟩
⟨pT cos(nφ)⟩

, (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coefficients can be computed using

vn = ⟨cos(n(φ− ψn))⟩ . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2max−b2min), where bmin and bmax depend
on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

√

σNN/π, where σNN is the in-
elastic nucleon-nucleon cross-section, which at top RHIC
energy of

√
s = 200AGeV is σNN = 42mb. The energy

density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width σ0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|ηs| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.
In Fig. 1 we show the energy density distribution in

the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time τ0 = 0.4 fm/c and at time
τ = 6 fm/c for η/s = 0 and η/s = 0.16. This clearly
shows the effect of dissipation.
We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypTdpTdφp
= gi

∫

Σ

f(uµpµ)p
µd3Σµ , (11)

where gi is the degeneracy of particle species i, and Σ
the freeze-out hyper-surface. In the ideal case the distri-
bution function is given by

f(uµpµ) = f0(u
µpµ) =

1

(2π)3
1

exp((uµpµ − µi)/TFO)± 1
,

(12)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + δf , with

δf = f0(1 ± f0)p
αpβWαβ

1

2(ϵ+ P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice δf ∼ p2 is not unique [32].
The algorithm used to determine the freeze-out surface

Σ has been presented in [16]. It is very efficient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-τ -plane in the vicinity of
y = 0 fm and ηs = 0 for two different initial distribu-
tions compared to that for an averaged initial condition
in Fig. 2. The arrows are projections of the normal vector
on the hyper-surface element onto the x-τ plane.
We include resonances up to the φ-meson. We found

that the pseudorapidity dependence of both v2 and v3 is
affected notably by the inclusion of resonance decays, im-
proving the agreement of v2(ηp) with data significantly.

PT � PL = 1.35⇥ Peq

1

3
E

=
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Advertisement
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hTtt(t, z1)Ttt(t, z2)i =???

Preliminary steps towards this goal:

⇢ t
⇢z

Philipp Kleinert “Thermalization of Wightman 2-Point Functions in AdS/CFT”

TODAY 17:00 - 17:20



Extra

1312.2956 [PRL 112 221602 (2014)]
with Casalderrey-Solana, Mateos & van der Schee



Collision of asymmetric projectiles

extra

Idea: modelling granular structure of colliding nuclei in the longitudinal direction

centre of mass frame: 

behaves coherently (“high energy collisions”) 2 independent collisions
�L < 0.26/Thyd �L > 0.26/Thyd


