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Basic notions

certain states of a class of strongly-coupled QFTs = higher dimensional geometries

dofs of strongly-coupled QGP = QNMs of dual black branes:

exponential decay

e in /T

0(Tyw) = zn:/d% cHV e wn (R)IHIR-T \

slow decay (hydro)

equilibration in strongly coupled QFTs = dual horizon formation and equilibration:
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Lessons: n-eq states and relaxation rates

Real-time dynamics of QFTs requires co-many initial conditions, e.g.

b(t) U (t) TV'(t)  bB(t) . 27?
B = L LLowith b(t) = AP(t
2r4 7o 2476 87’ Q 3N? (t)
1 6
Holography makes it manageable by adding r —— Rgp — §R9ab ~ 77Y9ab = 0

Indications that equilibration in [/T
at strong coupling can be generic:

Confirmed in many other setups*.Is t., "= O(1) becoming new “n/s = 1/4m 1
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The plan for today

Lecture |:how long does it take (T"") to equilibrate in strongly-coupled QFTSs?

T pf " -4 o2
Lecture Ill: what Is relativistic hydrodynamics!?
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Relativistic hydrodynamics



Relativistic hydrodynamics

an EFT of the slow evolution of conserved

hydrodynamics is . . . 0
/ Y currents In collective media close to equilibrium

DOFs: always local energy density € and local flow velocity v* (u,u” = —1)

formal EOMs: conservation egns V,(T*") = 0 for (T'"") expanded in gradients

breaks
isotro
< PY}

T, = Eutu + P(E) {g™ +utu”} — (€)™ — C(E) {g" + uPu} (V-u) + ...

T

shear viscosity bulk viscosrity
(P(&) = %5 for CFTs) (vanishes for CFTs)

microscopic £6S
input:

[t is clear that (1) ‘s will not always be close to satisfying these relations
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Quasinormal modes and hydrodynamics
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Testing the applicability of hydrodynamics

How to see if (T™) has reached its hydrodynamic form?

Previously, we secretly defined: Tfyydm u, = —Eu with u,u” = —1 — algorithm:

step |: for a generic (T""), use m’would—be hydrodynamic £ and u
step |l: evaluate truncated T}, 4., = Euru” + P(E) {g"" +u"u”} —n(€) o™ + ...

step lll: compare (T"") with T} ;... Hydro works* ever since they differ by a few %

Let us see how 1t works with the homogeneous Isotropization:

£ 2 & 1 £ 1 H
") = di — — -AP@), = + AP(t), - + AP(¢
» , 1.1, 1"
We get u"0,, = 0y and £ = const > 15 aro = diag § €, §5, §5, §5
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Holographic models of
heavy-ion collisions

1305.4919 [PRL [ [ [ 181601 (2013)] and 1312.2956 [PRL |12 221602 (2014)]
with Casalderrey-Solana, Mateos & van der Schee



How to model HIC at strong coupling!?
hep-th/0512162 by Janik & Peschanski

The crudest projectile in strongly-coupled CFTs: 1011.3562 by Chesler & Yaffe
N2
(T = (T??) = (T = > Sh(t £ z) withany h >0
s

[t ignores transversal structure. Holographic collision:

L2
/ ds® = — {du2 + Ny dxtdz”
t

+uh(zy) dzs +uh(z_) dz2 ¢

p

valid solution before the collision (¢ = 0)

1 6
later: Rap — =RGap — —=Gap = 0
b 5 9ab LQQb

Uy
We take h(t + z) = p*exp[—(t £ 2)2/20%] where po ~ 12 in HIC

/ \

Large po Small po

collisions at “low energies” collisions at “high energies”

Rich transient physics as a function of ~
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Collision of symmetric projectiles

Ty / p* small--y: | Ty / p* large--y:

~ no local

rest-frame

“see also 1408.2518
by Arnold et al.
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Hydrodynamization

1305.4919 [PRL | || 181601 (2013)] and 1312.2956 [PRL |12 221602 (2014)]
with Casalderrey-Solana, Mateos & van der Schee

see 09064426 and 101 1.3562 by Chesler & Yaffe for the first observation of hydrodynamization,
as well as 1 103.3452 with Janik & Witaszczyk



Hydrodynamization 7 thermalization -

thyd Thyd — 0.20 V

(Ty) = & 0.2
<Tzz> — 73L 01
(T'L1)="PL '
dotted = 00
viscous hydro
01
e S T B S L
pt 7 3

Huge anisotropies at the hydrodynamic threshold: Pr — Pr = 1.35 X Py,

Viscous hydrodynamics constitutive relations work despite:

leading order ~ correction

Ti o = Euu” + Py (€) g + uu”}|-[n(€) o
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Hydrodynamization: why interesting?

Nuclear physicists necessarily initiate hydro evolution in HICs very early on:

t=0.4 fm/c
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1009.3244 by Schenke, Jeon & Gale

We just showed that despite large gradients viscous hydro can nevertheless be OK

This is a valuable and unanticipated pheno insight especially relevant for pA and pp

— Lecture lll (Tue 10:00-10:55): why hydrodynamization does make sense.
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Summary of Lecture ||



Notions

Hydrodynamics: breaks
) isotropic » <|sotropy>
T, = Euru? + P(E) {g" + ulu¥} — () o™ — C(E) {g" +ulu”} (V- u) + ...

[t is clear that (I""")‘s will not always be close to satisfying these relations

Rich transient physics before hydro:

(Ty)/p*

~ no local
rest-frame
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Lessons

thyd Thyda = O(1) as before:

\

Fast

+

thermalization or isotropization

~ correction

Tflfyydro = ul'u” + Py(€) {g"" + u'u”} —In(E) o™ H ...

1=0.4 fm/c

600
500
400
300 £
200

100

12/13



Advertisement



Advertisement

Preliminary steps towards this goal:

Philipp Kleinert “Thermalization of Wightman 2-Point Functions in AdS/CFT”

TODAY 17:00 - 17:20
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Extra

1312.2956 [PRL | 12221602 (2014)]

with Casalderrey-Solana, Mateos & van der Schee



Collision of asymmetric projectiles

|dea: modelling granular structure of colliding nucler in the longrtudinal direction

centre of mass frame:

E/ut E/u

—— —>
p2 AL < 0.26/Thyq pe AL > 0.26/Thyq

behaves coherently (“high energy collisions™) 2 independent collisions

extra



