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Introduction
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The natural domain of string pheno is the realm of BSM & early Universe cosmology

1st decade of the 21st century:        holography and        quark-gluon plasma at RHIC 

String theory making
impact in a brand new way: 

see also lectures by Umut Gursoy and Karl Landsteiner
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Why exciting? Geometrizes certain QFTs. New ab initio tool w/r
weak coupling

lattice

New kind of string pheno



Heavy ion collisions primer (RHIC *2000, LHC *2010)
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see also Umut Gursoy’s lectures

Initial n-eq state is intrinsically anisotropic (expansion axis     vs. transversal plane    ):

Successful pheno for soft observables: use hydro,                           , as early as then:

hTL
Li

hT?
?i

�����
⌧=0

= �1

These lectures: ab initio                                  in strongly-coupled QFTs from gravity 

L ?

hTµ⌫i = F [T, u↵]

hTµ⌫i F [T, u↵]time

10 fm

1-2 fm



Some of the key questions motivating these lectures
Lecture 1: how long does it take           to equilibrate in strongly-coupled QFTs? 

Lecture II: what is                  after a collision of 2 strongly-interacting objects? hTµ⌫i(t, ~x)

hTµ⌫i

Lecture III: what is relativistic hydrodynamics? 
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AdS gravity (< 2009)



Key notions in holography
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Works also for certain non-conformal QFTs, but simplest for (appropriate) CFTs

Geometries4+1 (QCD lives in 4D) are governed by the EOMs (+ bdry conditions) of:  

S =
1

2 l3P

Z
d5x

p
�g

✓
R+

12

L2
+matter +O(R)2

◆

relying on EOMs:
~ neglecting those:
� = g2YMNc � 1

N2
c ⇠ L3

l3P
� 1

Ab initio studies of a large class non-Abelian QFTd’s = understanding geometriesd+1

These lectures:                                             ~ strongly-coupled            SYM (CFT)Rab �
1

2
Rgab �

6

L2
gab = 0

see also Jan Plefka’s lectures
N = 4



Properties of Anti-de Sitter (AdS) spacetime
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extremal horizon

EOMs require boundary conditions at           :  for      ,       plays this role here

UV

IR

u = 0

We want             SYM to live in Minkowski space                           Poincare patch: N = 4

CFT4 vacuum = AdS5:                  are its isometriesSO(2, 4)

gab ⌘µ⌫

ds

2 = gab dx
a
dx

b =
L

2

u

2

�
du

2 + ⌘µ⌫dx
µ
dx

⌫
 

⌘µ⌫



Einstein’s equations in AdS and dual 
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hTµ⌫i
Of course, we are interested in excited states: ds2 =

L

2

u

2

�
du

2 + gµ⌫(u, x)dx
µ
dx

⌫
 

Solving                                            for                around           gives*:                                                               gµ⌫(u, x)Rab �
1

2
Rgab �

6

L2
gab = 0 u = 0

gµ⌫(u, x) = ⌘µ⌫ + tµ⌫ u
4 + . . . with                    &                 ⌘µ⌫tµ⌫ = 0 @µtµ⌫ = 0

Indeed, one can show that                            with, for            SYM, tµ⌫ = C ⇥ hTµ⌫i N = 4 C =
2⇡2

N2
c

Points of departure:

Lecture 3 next 2 slides Lectures 1 & 2
1) static

1) assume
hTµ⌫i

3) get hTµ⌫i2) fix it by avoiding
naked singularities

1) set
gab

���
t=0

2) solve
EOMs

3) gethTµ⌫i

2) perturb
bdry metric



Strongly-coupled QGP = black brane
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Equilibrium strongly-coupled QGP:                                           and                   :

1) static plasma

3) get

2) perturb
bdry metric a bit

�hT
µ⌫

i =
⇢Z

d3k

Z
d! e�i!t+i

~

k·~xG
R

(!, k) · �g
�

µ⌫

blackbrane

ho
rizo

n

abs
orb

tio
n

Holographic thermalization = horizon formation* and subsequent equilibration

hTµ⌫i = diag(E , P, P, P )µ⌫ E = O(N2
c )

Simplest n-eq states: linear response theory at finite temperature:

ds

2 =
L

2

u

2

⇢
du

2 � (1� u

4
/u

4
0)

2

1 + u

4
/u

4
0

dt

2 + (1 + u

4
/u

4
0)d~x

2

�

u = u0

u = 0

S =
A

hor

4G
N

T dS = dE



Quasinormal modes: dofs of strongly-coupled QGP
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These lectures: ~ nonlinear interactions between QNMs studied using AdS gravity
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Figure 6: Real and imaginary parts of three lowest quasinormal frequencies as function of spatial
momentum. The curves for which →0 as →0 correspond to hydrodynamic sound mode in the dual
finite temperature N=4 SYM theory.

behavior of the lowest (hydrodynamic) frequency which is absent for Eα and Z3. For Ez and

Z1, hydrodynamic frequencies are purely imaginary (given by Eqs. (4.16) and (4.32) for small

ω and q), and presumably move off to infinity as q becomes large. For Z2, the hydrodynamic

frequency has both real and imaginary parts (given by Eq. (4.44) for small ω and q), and

eventually (for large q) becomes indistinguishable in the tower of other eigenfrequencies. As an

example, dispersion relations for the three lowest quasinormal frequencies in the sound channel

(including the one of the sound wave) are shown in Fig. 6. The tables below give numerical

values of quasinormal frequencies for = 1. Only non-hydrodynamic frequencies are shown

in the tables. The position of hydrodynamic frequencies at = 1 is = −3.250637i for the

R-charge diffusive mode, = −0.598066i for the shear mode, and = ±0.741420−0.286280i

for the sound mode. The numerical values of the lowest five (non-hydrodynamic) quasinormal

frequencies for electromagnetic perturbations are:

Transverse channel Diffusive channel

n Re Im Re Im

1 ±1.547187 −0.849723 ±1.147831 −0.559204

2 ±2.398903 −1.874343 ±1.910006 −1.758065

3 ±3.323229 −2.894901 ±2.903293 −2.891681

4 ±4.276431 −3.909583 ±3.928555 −3.943386

5 ±5.244062 −4.920336 ±4.946818 −4.965186

and for gravitational perturbations are:

Scalar channel Shear channel Sound channel

n Re Im Re Im Re Im

1 ±1.954331 −1.267327 ±1.759116 −1.291594 ±1.733511 −1.343008

2 ±2.880263 −2.297957 ±2.733081 −2.330405 ±2.705540 −2.357062

3 ±3.836632 −3.314907 ±3.715933 −3.345343 ±3.689392 −3.363863

4 ±4.807392 −4.325871 ±4.703643 −4.353487 ±4.678736 −4.367981

5 ±5.786182 −5.333622 ±5.694472 −5.358205 ±5.671091 −5.370784

– 26 –

k/2⇡T

k/2⇡T

1st

2nd

3rd

1st

2nd

3rd

Thus                                                           with 

exponential decay
in 1/T

slow decay (hydro)

Re!n/2⇡T

Im!n/2⇡T

Z
d!

�hT
µ⌫

i =
⇢Z

d3k

Z
d! e�i!t+i

~

k·~xG
R

(!, k) · �g
�

µ⌫

:

Singularities in the lower-half    -plane are single poles (QNMs) for each value of ! k

�hT
µ⌫

i =
X

n

Z
d3k cµ⌫

n

e�!n(k)t+i

~

k·~x

???

see hep-th/0506184 by Kovtun & Starinets



Going non-equilibrium (2009 ++):
homogeneous isotropization

1202.0981 [PRL 108 191601 (2012)] with Mateos, van der Schee & Tancanelli
1304.5172 [JHEP 1309 026 (2013)] with Mateos, van der Schee & Triana



Homogeneous isotropization
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What is the simplest n-eq setup available? It is:

hTµ⌫i = diag

⇢
E , E

3
� 2

3
�P(t),

E
3
+

1

3
�P(t),

E
3
+

1

3
�P(t)

�

µ⌫

   = const =             ,  no    -dependenceE
~x     no hydro, but sensitive to nonlinearities 

Dual metric ansatz: 

functions of     and   r

⇠ E ⇠ �P(t)

1) set
gab

���
t=0

2) solve
EOMs

3) get �P(t)

ds

2
/L

2 = �2 dt dr

r

2
�Adt

2 + ⌃2
e

�2B
dx

2
L + ⌃2

e

B
dx

2
P

t = const 3 dynamical eqs. to ~get       ,        &    

2 constraints (1 on initial data)

@tA @t⌃ @tB

t

numerical GR
see 1309.1439 

by Chesler & Yaffe

see also 0812.2053 with Chesler & Yaffe

& 1407.1849 
by van der Schee

3

8
N2

c ⇡
2T 4



Initial conditions
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Let us solve all Einstein’s eqs. near the boundary, i.e. for           and we look at     :

Solving                  for           for requires knowing                         for all n � 0hTµ⌫i(t, ~x) t > 0 (@t)
n hTµ⌫i

���
t=0

~ you need to specify occupation numbers       for all QNMscµ⌫

r = 0 B

Not all          will do: some lead to naked singularities. Nontrivial conditions onB
���
t=0

hTµ⌫i

B = �b(t)

2r4
� b0(t)

2r5
� 7b00(t)

24r6
� b(3)(t)

8r7
+ . . . with b(t) =

2⇡2

3N2
c

�P(t)

see also 0806.2141 by Janik & Witaszczyk

see also 0906.4423 with Beuf, Janik & Peschanski



Holographic thermalization
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absorption by
the horizon

z

t

in

out
Theory:

Numerical
experiment:

t

ab
so

rp
tio

n b
y

th
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n

r/r
hor

t T

3B

E r4

absorption bythe horizon

boundary

We watch genuinely n-eq states relax the way they want to relax (bdry:       )!⌘µ⌫

initial profile

hTµ⌫i = diag

⇢
E , E

3
� 2

3
�P(t),

E
3
+

1

3
�P(t),

E
3
+

1

3
�P(t)

�

µ⌫



Sample processes vs. linear response theory
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1202.0981, 1304.5172

�P/E =
1X

n=1

cn e
�i!n(k)t + cc �P/E =

10X

n=1

cn e
�i!n(k)t + cc�P/Eabove:               full

above: the corresponding Re and Im of cn’s

Surprising linearity despite seemingly large deviations from equilibrium



Genericity of 1/T relaxation time at strong coupling
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Homogeneous isotropization: hTµ⌫i = diag

✓
E , 1

3
E � 2

3
�P(t),

1

3
E +

1

3
�P(t),

1

3
E +

1

3
�P(t)

◆

µ⌫

1000 different excited states:

all equilibrate within 1.2 / T

By now confirmed in many other setups (see also Lecture 2)

pheno: 1 fm    400 MeV =         ⇥ O(1)

surprising linearity



Summary of Lecture 1



Notions
certain states of a class of strongly-coupled QFTs = higher dimensional geometries

                                                         with 
slow decay (hydro)

�hT
µ⌫

i =
X

n

Z
d3k cµ⌫

n

e�!n(k)t+i

~

k·~x

dofs of strongly-coupled QGP = QNMs of dual black branes: 

r/r
hor

t T

3B

E r4

t
absorption bythe horizon

ab
so

rp
tio

n b
y

th
e h

or
izo

n

equilibration in strongly coupled QFTs = dual horizon formation and equilibration:

exponential decay
in 1/T
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Lessons
Real-time dynamics of QFTs requires    -many initial conditions:                 

Indications that equilibration in 1/T
 at strong coupling can be generic:

Confirmed in many other setups*. Is                     becoming new “                   “?

1

Holography makes it manageable by adding    r Rab �
1

2
Rgab �

6

L2
gab = 0

B = �b(t)

2r4
� b0(t)

2r5
� 7b00(t)

24r6
� b(3)(t)

8r7
+ . . . with b(t) =

2⇡2

3N2
c

�P(t)
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⌘/s = 1/4⇡teq T = O(1)


