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Introduction



New kind of string pheno

see also lectures by Umut Gursoy and Karl Landsteiner

The natural domain of string pheno Is the realm of BSM & early Universe cosmology
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Heavy ion collisions primer (RHIC #2000, LHC *2010)

see also Umut Gursoy's lectures

Successful pheno for soft observables: use hydro, (1) = F'|T, u®], as early as

Initial n-eq state is intrinsically anisotropic (expansion axis L vs. transversal plane _L):

(T")

T, T

7=0

These lectures: ab initio (T*") =—= time, F|T,u®| in strongly-coupled QFTs from gravity
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Some of the key questions motivating these lectures

Lecture |: how long does it take (T#") to equilibrate in strongly-coupled QFTs?

Lecture Il: what is (T*”)(t, Z) after a collision of 2 strongly-interacting objects!
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Lecture Ill: what Is relativistic hydrodynamics!?
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AdS gravity (< 2009)



Key notions in holography

Ab initio studies of a large class non-Abelian QFT4’s = understanding geometriesqds+|

Works also for certain non-conformal QFTs, but simplest for (appropriate) CFTs

Geometriess+ (QCD lives in 4D) are governed by the EOMs (+ bdry conditions) of:

1 12
S = —S/d%\/—g R 4 - matter + O(R)?
3
relying on EOMs: N2 ~ e > 1
P

6

5 9ab = 0 ~ strongly-coupled N' = 4 SYM (CFT)

see also Jan Plefka’s lectures

1
These lectures: R, p — 5729@5 —
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Properties of Anti-de Sitter (AdS) spacetime
CFT4 vacuum = AdSs: SO(2,4) are its isometries

We want N/ = 4 SYM to live in Minkowski space 1,,, » Poincaré patch:

extremal horizon

EOMs require boundary conditions at uw = 0: for gup,Nuw plays this role here

5/15



Einstein’s equations in AdS and dual (T"")

L2
Of course, we are interested in excited states: ds* = 3 {du + g (u, z)dz'dz" }

6

729ab = 0 for g, (u, x) around u = 0 gives*;

. 1
Solving Rap — §Rgab —
g,ul/(ua QE) — Nuv + t,uy U,4 + ... with nHVt'uV =0 & 8”?5“,/ =

272

N&

Indeed, one can show that t,, = C X (T ,,} with, for NV = 4 SYM, C =

Points of departure:

7/
2) Tix 1t by avoiding ' 1) assume / 3) get (Tuw) / 3) get(Tpw)
naked singularities 8

2) perturb 2) solve
bdry metric =~ ™., EOMs
| 1) set
|) static )
Lecture 3 next 2 slides Lectures | &2 ™.: Jab|
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Strongly-coupled QGP = black brane

Equilibrium strongly-coupled QGP: (T),,) = diag(&, P, P, P),u and £ = O(N?):

L? (1 —u*/ug)?
2 _ 0) 1,2 4 4y 72
ds* = ) {du T+t fud dt” + (1 + u™ /ug)dx }

Ahor
S 1Gn > 1'dS = d€

Simplest n-eq states: linear response theory at finite temperature:

/3) get 0(T {/d3 /dwe_“"tﬂka (w, k) - (59}

2) perturb
bdry metric a bit

|) static plasma

Holographic thermalization = horizon formation™ and subsequent equilibration
7/15



Quasinormal modes: dofs of strongly-coupled QGP

/dw

{/di% /dwe_mt+zka (w, k) - 5g} T

""'._'f .............

i

Singularities in the lower-half w-plane are single poles (QNMs) for each value of &
see hep-th/0506 184 by Kovtun & Starinets
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exponential decay
in |1/T

These lectures: ~ nonlinear interactions between QNMs studied using AdS gravity
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Going non-equilibrium (2009 ++):
homogeneous isotropization

1202.0981 [PRL 108 [91601 (2012)] with Mateos, van der Schee & Tancanelli
1304.5172 [JHEP 1309 026 (2013)] with Mateos, van der Schee & Triana



Homogeneous isotropization
see also 0812.2053 with Chesler & Yaffe

What is the simplest n-eq setup available? It is:

E 2 £ 1 £ 1
T.) = di S ZAP®E), S+ SAP®R), S+ A
(Tu) dlag{f 5~ 3AP(), 5 + ZAP(), 5+ 2 P(t)}w

3 S " . w
& = const :§N627T2T4, no & -dependence = no hydro, but sensitive to nonlinearities

functions of ¢t and r

/ ~

dt* + Y2e *Cdxs + ¥%ePdxp
~ &

2 dt dr

72

Dual metric ansatz: alsQ/L2 —

= const 3) get AP(¢)
3 dynamical egs.to ~get 0, A, 0> & OB

2) solve  numerical GR

>

EOMs see 1309.1439

) set by Chesler &Yaffe 2 constraints (| on inrtial data)
& 1407.1849

Jab o by van der Schee
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Initial conditions

Let us solve all Einstein’s egs. near the boundary, i.e. for r = 0 and we look at B :

B — b(t) b(t) TH'(t) b3 () 92

L with b(t) = —_AP(t
2rd  2rd 2476 8r7 with b{) SN2 Q

Solving (T} (¢, E) for t > 0 for requires knowing (0¢)" (T,.v) . forall n > 0

~ you need to specify occupation numbers ¢, for all QNMs
see also 0906.4423 with Beuf, Janik & Peschanski

Not all B will do: some lead to naked singularities. Nontrivial conditions on (L)
t=0
see also 0806.2141 by Janik & Witaszczyk

10/15



Holographic thermalization

Theory:
absorption by
the horizon
Zv
. vinitial profiles
Numerical AN S
experiment:
v) = di 3~ RAP), 5 + 5 AP{R), 5 + AP
<T'LL > dlag {g 3 3 P(t) 3 _|_ 3 P(t) 3 —|_ 3:_A_7f(- ZE},UV ()(,('0

We watch genuinely n-eq states relax the way they want to relax (bdry: n,.)!
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Sample processes vs. linear response theory
1202.0981, 1304.5172
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Surprising linearity despite seemingly large deviations from equilibrium
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Genericity of |/T relaxation time at strong coupling

Homogeneous Isotropization: (T,,) = diag (8, %8 - %AP(t), %8 + %AP(t), le + 1A??(zt))
12 %

3 3

| 000 different excited states:

all equilibrate within 1.2/T

pheno: | fm x 400 MeV = O(1)

surprising linearity

By now confirmed in many other setups (see also Lecture 2)
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Summary of Lecture |



Notions

certain states of a class of strongly-coupled QFTs = higher dimensional geometries

dofs of strongly-coupled QGP = QNMs of dual black branes:

exponential decay

e in /T

0(Tyw) = zn:/d% cHV e wn (R)IHIR-T \

slow decay (hydro)

equilibration in strongly coupled QFTs = dual horizon formation and equilibration:

14/15



Lessons

Real-time dynamics of QFI's requires co-many initial conditions:

b(t) U (t) TV'(t)  bB(t) . 27?
B = L Lowith b(t) = —=AP(t
2r4 7o 2476 87’ Q 3N? (t)
1 6
Holography makes it manageable by adding r —— Rgp — §Rgab ~ 77Y9ab = 0

60 [

40%

Indications that equilibration in [/T
at strong coupling can be generic:

Confirmed in many other setups*.Is t., "= O(1) becoming new “n/s = 1/4m 1
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