Holography, thermalization and heavy-ion collisions I

Michał P. Heller

Perimeter Institute forTheoretical Physics, Canada
National Centre for Nuclear Research, Poland

Introduction

New kind of string pheno

see also lectures by Umut Gursoy and Karl Landsteiner
The natural domain of string pheno is the realm of BSM \& early Universe cosmology

String theory making impact in a brand new way:

Why exciting? Geometrizes certain QFTs. New ab initio tool w/r lattice $_{\text {weak coupling }}^{\text {and }}$

Heavy ion collisions primer (RHIC *2000, LHC *20I0)

4
Successful pheno for soft observables: use hydro, $\left\langle T^{\mu \nu}\right\rangle=F\left[T, u^{\alpha}\right]$, as early as then:

Initial n-eq state is intrinsically anisotropic (expansion axis L vs. transversal plane \perp):

$$
\left.\frac{\left\langle T_{L}^{L}\right\rangle}{\left\langle T^{\perp}\right\rangle}\right|_{\tau=0}=-1
$$

These lectures: ab initio $\left\langle T^{\mu \nu}\right\rangle \xrightarrow{\text { time }} F\left[T, u^{\alpha}\right]$ in strongly-coupled QFTs from gravity 2/15

Some of the key questions motivating these lectures

Lecture I: how long does it take $\left\langle T^{\mu \nu}\right\rangle$ to equilibrate in strongly-coupled QFTs?

Lecture II: what is $\left\langle T^{\mu \nu}\right\rangle(t, \vec{x})$ after a collision of 2 strongly-interacting objects?

\mathcal{E} / ρ^{4}

Lecture III: what is relativistic hydrodynamics?

$3 / 15$

AdS gravity (<2009)

Key notions in holography

Ab initio studies of a large class non-Abelian QFTd's = understanding geometries ${ }_{d+1}$

Works also for certain non-conformal QFTs, but simplest for (appropriate) CFTs

Geometries4+1 (QCD lives in 4D) are governed by the EOMs (+ bdry conditions) of:

$$
S=\frac{1}{2 l_{P}^{3}} \int d^{5} x \sqrt{-g}\left(\mathcal{R}+\frac{12}{L^{2}}+\text { matter }+O(\mathcal{R})^{2}\right)
$$

relying on EOMs: $N_{c}^{2} \sim \frac{L^{3}}{l_{P}^{3}} \gg 1$
\sim neglecting those:

$$
\lambda=g_{Y M}^{2} N_{c} \gg 1
$$

These lectures: $\mathcal{R}_{a b}-\frac{1}{2} \mathcal{R} g_{a b}-\frac{6}{L^{2}} g_{a b}=0 \sim$ strongly-coupled $\mathcal{N}=4$ SYM (CFT) see also Jan Plefka's lectures

Properties of Anti-de Sitter (AdS) spacetime

CFT_{4} vacuum $=\mathrm{AdS}_{5}: \quad S O(2,4)$ are its isometries
We want $\mathcal{N}=4$ SYM to live in Minkowski space $\eta_{\mu \nu} \longrightarrow$ Poincaré patch:

$$
d s^{2}=g_{a b} d x^{a} d x^{b}=\frac{L^{2}}{u^{2}}\left\{d u^{2}+\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right\}
$$

EOMs require boundary conditions at $u=0$: for $g_{a b}, \eta_{\mu \nu}$ plays this role here

Einstein's equations in AdS and dual $\left\langle T^{\mu \nu}\right\rangle$

Of course, we are interested in excited states: $d s^{2}=\frac{L^{2}}{u^{2}}\left\{d u^{2}+g_{\mu \nu}(u, x) d x^{\mu} d x^{\nu}\right\}$
Solving $\mathcal{R}_{a b}-\frac{1}{2} \mathcal{R} g_{a b}-\frac{6}{L^{2}} g_{a b}=0$ for $g_{\mu \nu}(u, x)$ around $u=0$ gives*:

$$
g_{\mu \nu}(u, x)=\eta_{\mu \nu}+t_{\mu \nu} u^{4}+\ldots \text { with } \eta^{\mu \nu} t_{\mu \nu}=0 \& \partial^{\mu} t_{\mu \nu}=0
$$

Indeed, one can show that $t_{\mu \nu}=\mathcal{C} \times\left\langle T_{\mu \nu}\right\rangle$ with, for $\mathcal{N}=4 \mathrm{SYM}, \mathcal{C}=\frac{2 \pi^{2}}{N_{c}^{2}}$

Points of departure:

Strongly-coupled QGP = black brane

Equilibrium strongly-coupled QGP: $\left\langle T_{\mu \nu}\right\rangle=\operatorname{diag}(\mathcal{E}, P, P, P)_{\mu \nu}$ and $\mathcal{E}=O\left(N_{c}^{2}\right)$:

$$
\begin{gathered}
d s^{2}=\frac{L^{2}}{u^{2}}\left\{d u^{2}-\frac{\left(1-u^{4} / u_{0}^{4}\right)^{2}}{1+u^{4} / u_{0}^{4}} d t^{2}+\left(1+u^{4} / u_{0}^{4}\right) d \vec{x}^{2}\right\} \\
S=\frac{A_{h o r}}{4 G_{N}} \longrightarrow T d S=d \mathcal{E}
\end{gathered}
$$

Simplest n-eq states: linear response theory at finite temperature:

Holographic thermalization = horizon formation* and subsequent equilibration 7/I5

Quasinormal modes: dofs of strongly-coupled QGP $\delta\left\langle T_{\mu \nu}\right\rangle=\left\{\int d^{3} k \int d \omega e^{-i \omega t+i \vec{k} \cdot \vec{x}} G_{R}(\omega, k) \cdot \delta g\right\}_{\mu \nu} ;$

Singularities in the lower-half ω-plane are single poles (QNMs) for each value of k see hep-th/0506184 by Kovtun \& Starinets

These lectures: ~ nonlinear interactions between QNMs studied using AdS gravity 8/15

Going non-equilibrium (2009 ++): homogeneous isotropization

I202.098I [PRL 108 | 9160 | (20|2)] with Mateos, van der Schee \& Tancanelli I 304.5 I 72 [JHEP I 309026 (20|3)] with Mateos, van der Schee \& Triana

Homogeneous isotropization

see also 08I2.2053 with Chesler \& Yaffe
What is the simplest n-eq setup available? It is:

$$
\left\langle T_{\mu \nu}\right\rangle=\operatorname{diag}\left\{\mathcal{E}, \frac{\mathcal{E}}{3}-\frac{2}{3} \Delta \mathcal{P}(t), \frac{\mathcal{E}}{3}+\frac{1}{3} \Delta \mathcal{P}(t), \frac{\mathcal{E}}{3}+\frac{1}{3} \Delta \mathcal{P}(t)\right\}_{\mu \nu}
$$

$\mathcal{E}=$ const $=\frac{3}{8} N_{c}^{2} \pi^{2} T^{4}$, no \vec{x}-dependence \rightarrow no hydro, but sensitive to nonlinearities

Dual metric ansatz: $\quad d s^{2} / L^{2}=-\frac{2 d t d r}{r^{2}}-A d t^{2}+\Sigma^{2} e^{-2 B} d x_{L}^{2}+\Sigma^{2} e^{(B} d \mathbf{x}_{P}^{2}$

3) get $\Delta \mathcal{P}(t)$

$$
3 \text { dynamical eqs. to } \sim \operatorname{get} \partial_{t} A, \partial_{t} \Sigma \& \partial_{t} B
$$

2) solve $\xrightarrow[\text { see } 1309.1439]{\text { numerical } G R}$
I) set by Chesler \& Yaffe 2 constraints (I on initial data) \& 1407.1849
$\left.g_{a b}\right|_{t=0}$ by van der Schee

Initial conditions

Let us solve all Einstein's eqs. near the boundary, i.e. for $r=0$ and we look at B :

$$
B=-\frac{b(t)}{2 r^{4}}-\frac{b^{\prime}(t)}{2 r^{5}}-\frac{7 b^{\prime \prime}(t)}{24 r^{6}}-\frac{b^{(3)}(t)}{8 r^{7}}+\ldots \text { with } b(t)=\frac{2 \pi^{2}}{3 N_{c}^{2}} \Delta \mathcal{P}(t)
$$

Solving $\left\langle T_{\mu \nu}\right\rangle(t, \vec{x})$ for $t>0$ for requires knowing $\left.\left(\partial_{t}\right)^{n}\left\langle T_{\mu \nu}\right\rangle\right|_{t=0}$ for all $n \geq 0$
~ you need to specify occupation numbers $c_{\mu \nu}$ for all QNMs
see also 0906.4423 with Beuf, Janik \& Peschanski

Not all $\left.B\right|_{t=0}$ will do: some lead to naked singularities. Nontrivial conditions on $\left\langle T_{\mu \nu}\right\rangle$ see also 0806.2I4I by Janik \& Witaszczyk

Holographic thermalization

We watch genuinely n-eq states relax the way they want to relax (bdry: $\left.\eta_{\mu \nu}\right)$!

Sample processes vs. linear response theory

above: the corresponding $R e$ and $I m$ of C_{n} 's
Surprising linearity despite seemingly large deviations from equilibrium

Genericity of I/T relaxation time at strong coupling

Homogeneous isotropization: $\left\langle T_{\mu \nu}\right\rangle=\operatorname{diag}\left(\mathcal{E}, \frac{1}{3} \mathcal{E}-\frac{2}{3} \Delta \mathcal{P}(t), \frac{1}{3} \mathcal{E}+\frac{1}{3} \Delta \mathcal{P}(t), \frac{1}{3} \mathcal{E}+\frac{1}{3} \Delta \mathcal{P}(t)\right)_{\mu \nu}$

1000 different excited states:
all equilibrate within 1.2 / T
pheno: $\mid \mathrm{fm} \times 400 \mathrm{MeV}=O(1)$

surprising linearity

By now confirmed in many other setups (see also Lecture 2)

Summary of Lecture I

Notions

certain states of a class of strongly-coupled QFTs = higher dimensional geometries
dofs of strongly-coupled QGP = QNMs of dual black branes:

$$
\delta\left\langle T_{\mu \nu}\right\rangle=\sum_{n} \int d^{3} k c_{n}^{\mu \nu} e^{-\omega_{n}(k) t+i \vec{k} \cdot \vec{x}} \text { with } \begin{gathered}
\text { exponential decay } \\
\text { in I/T }
\end{gathered}
$$

equilibration in strongly coupled QFTs = dual horizon formation and equilibration:

$14 / 15$

Lessons

Real-time dynamics of QFTs requires ∞-many initial conditions:

$$
B=-\frac{b(t)}{2 r^{4}}-\frac{b^{\prime}(t)}{2 r^{5}}-\frac{7 b^{\prime \prime}(t)}{24 r^{6}}-\frac{b^{(3)}(t)}{8 r^{7}}+\ldots \text { with } b(t)=\frac{2 \pi^{2}}{3 N_{c}^{2}} \Delta \mathcal{P}(t)
$$

Holography makes it manageable by adding $r \longrightarrow \mathcal{R}_{a b}-\frac{1}{2} \mathcal{R} g_{a b}-\frac{6}{L^{2}} g_{a b}=0$

Indications that equilibration in I/T at strong coupling can be generic:

Confirmed in many other setups*. Is $t_{e q} T=O(1)$ becoming new " $\eta / s=1 / 4 \pi$ "? $15 / 15$

