Yangian Symmetry of $N=4 S Y M$

Aleksander Garus

ETHzürich

Joint work with
N. Beisert and M. Rosso

Zakopane, 29.05.2016

Table of contents

1. Introduction and Motivation*
2. Yangian Symmetry
3. Correlation Functions in Dictures
4. Conclusions \& Outlook

$N=4 S Y M$

Maximally supersymmetric gauge theory in 40

I gauge field $A_{\mu}, 4$ spinors $\psi, 4$ conjugate spinors $\bar{\psi}$,
6 scalars ϕ_{m}
$\operatorname{psu}(2,214)$ - symmetry algebra of the action

Integrability in $N=4$ SYM

Spectra of local operators

Wilson loops

Increased

symmetry algebra:
Yangian
Scattering amplitudes

Yangian Algebra

Infinitely many levels of generators.
Level 0 - original psu(2,2| 4):

$$
\left[J_{a}, J_{b}\right\}=f_{a b}^{c} J_{c}
$$

Level I - first higher level Yangian generators:

$$
\left[J_{a}, \hat{J}_{b}\right\}=f_{a b}^{c} \hat{J}_{c}
$$

Coproduct (action on multiparticle states)

$$
\Delta\left(J_{a}\right)=i d \otimes J_{a}+J_{a} \otimes i d
$$

Yangian Algebra

Infinitely many levels of generators.
Level 0 - original psu(2,2| 4):

$$
\left[J_{a}, J_{b}\right\}=f_{a b}^{c} J_{c}
$$

Level I - first higher level Yangian generators:

$$
\left[J_{a}, \hat{J}_{b}\right\}=f_{a b}^{c} \hat{J}_{c}
$$

Coproduct (action on multiparticle states)

$$
\Delta\left(\hat{J}_{a}\right)=i d \otimes \hat{J}_{a}+\hat{J}_{a} \otimes i d+f_{a}^{b c} J_{b} \otimes J_{c}
$$

Motivation (for advanced)

We know how Yangian generators act on
spin chains

scattering amplitudes

Wilson loops

Wilson loops

Yangian Action anction

$$
S=\int d^{4} x T r(\ldots)
$$

Due to the trace, the action is cyclic:

$$
\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)
$$

However:

$$
\hat{J}(A B C) \neq \hat{J}(C A B)
$$

Yangian Action on action

$$
S=\int d^{4} x \operatorname{Tr}(\ldots)
$$

Due to the trace, the action is cyclic:

$$
\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)
$$

However:

$$
\hat{J}(A B C) \neq \hat{J}(C A B)
$$

Symmetry of the EoMs (they are no longer cyclic)

Simplest level-1 generator:

$$
\Delta\left(\hat{P}^{\mu}\right)=D \wedge P^{\mu}+L^{\mu \nu} \wedge P_{\nu}-\frac{i}{4} \sigma^{\mu \alpha \dot{\alpha}} \bar{Q}_{\dot{\alpha}}^{a} \wedge Q_{a \alpha}
$$

Easiest equation of motion:

$$
\sigma^{\rho \dot{\alpha} \beta}\left[D_{\rho}, \Psi_{\beta a}\right]-i g \epsilon^{\dot{\alpha} \dot{\beta}} \sigma_{a b}^{m}\left[\Phi_{m}, \bar{\Psi}_{\dot{\beta}}^{b}\right]=0
$$

Symmetry of the EoMs (they are no longer cyclic)

Simplest level-l generator:

$$
\begin{aligned}
& \Delta\left(\hat{P}^{\mu}\right)=D \wedge P^{\mu}+L^{\mu \nu} \wedge P_{\nu}-\frac{i}{4} \sigma^{\mu \alpha \dot{\alpha}} \bar{Q}_{\dot{\alpha}}^{a} \wedge Q_{a \alpha} \\
& \qquad \sigma^{\rho \dot{\alpha} \beta}\left[D_{\rho}, \Psi_{\beta a}\right]-i g \epsilon^{\dot{\alpha} \dot{\beta}} \sigma_{a b}^{m}\left[\Phi_{m}, \bar{\Psi}_{\dot{\beta}}^{b}\right]=0
\end{aligned}
$$

Symmetry of the EoMs (they are no longer cyclic)

Simplest level-I generator:

$$
\begin{gathered}
\Delta\left(\hat{P}^{\mu}\right)=D \wedge P^{\mu}+L^{\mu \nu} \wedge P_{\nu}-\frac{i}{4} \sigma^{\mu \alpha \dot{\alpha}} \bar{Q}_{\dot{\alpha}}^{a} \wedge Q_{a \alpha} \\
\text { Easiest equat义 motion: } \\
\sigma^{\rho \dot{\alpha} \beta}\left[D_{\rho}, \Psi_{\beta a}\right]-i g \epsilon^{\dot{\alpha} \dot{\beta}} \sigma_{a b}^{m}\left[\Phi_{m}, \bar{\Psi}_{\dot{\beta}}^{b}\right]=0
\end{gathered}
$$

Symmetry of the EoMs (they are no longer cyclic)

Introducing the single field action:

$$
\begin{aligned}
& \hat{P}^{\mu}\left(D^{\rho}\right)=\frac{1}{2} g^{2} \eta^{\mu \rho}\left\{\Phi^{m}, \Phi_{m}\right\} \\
& \hat{P}^{\mu}\left(\Psi_{a \alpha}\right)=\frac{i g}{2} \sigma_{\alpha \dot{\beta}}^{\mu} \epsilon^{\dot{\beta} \dot{\gamma}} \sigma_{a b}^{m}\left\{\bar{\Psi}_{\dot{\gamma}}^{b}, \Phi_{m}\right\}
\end{aligned}
$$

we obtain schematically:

$$
\hat{P}(\text { Dirac })=0
$$

Symmetry of the EoMs (they are no longer cyclic)

Introducing the single field action:

$$
\begin{aligned}
& \hat{P}^{\mu}\left(D^{\rho}\right)=\frac{1}{2} g^{2} \eta^{\mu \rho}\left\{\Phi^{m}, \Phi_{m}\right\} \\
& \hat{P}^{\mu}\left(\Psi_{a \alpha}\right)=\frac{i g}{2} \sigma_{\alpha \dot{\beta}}^{\mu} \epsilon^{\dot{\beta} \dot{\gamma}} \sigma_{a b}^{m}\left\{\bar{\Psi}_{\dot{\gamma}}^{b}, \Phi_{m}\right\}
\end{aligned}
$$

we obtain schematically:

$$
\hat{P}(\text { Dirac })=\{\Phi, \overline{\text { Dirac }}\}
$$

Symmetry of the EoMs (they are no longer cyclic)

Introducing the single field action:

$$
\begin{aligned}
& \hat{P}^{\mu}\left(D^{\rho}\right)=\frac{1}{2} g^{2} \eta^{\mu \rho}\left\{\Phi^{m}, \Phi_{m}\right\} \\
& \hat{P}^{\mu}\left(\Psi_{a \alpha}\right)=\frac{i g}{2} \sigma_{\alpha \dot{\beta}}^{\mu} \dot{\epsilon}^{\dot{\beta} \dot{\gamma}} \sigma_{a b}^{m}\left\{\bar{\Psi}_{\dot{\gamma}}^{b}, \Phi_{m}\right\}
\end{aligned}
$$

we obtain schematically:

$$
\hat{P}(\text { Dirac })=\{\Phi, \overline{D i r a c}\}
$$

Off-shell?

For level-O symmetry generators we have:

$$
0=J S=\int\left(J Z_{a}\right) \frac{\delta S}{\delta Z_{a}}
$$

Varying again w. r. t. to a field:

$$
J \frac{\delta S}{\delta Z_{c}}+\frac{\delta\left(J Z_{a}\right)}{\delta Z_{c}} \frac{\delta S}{\delta Z_{a}}=0
$$

Off-shell equality regarding behavior of eoms under J.

Off-shell!

Generalize to level-1 generators:

$$
\begin{aligned}
& \hat{J}^{k} \frac{\delta S}{\delta Z_{c}}=-\frac{\delta\left(\hat{J}^{k} Z_{a}\right)}{\delta Z_{c}} \frac{\delta S}{\delta Z_{a}}+f^{k}{ }_{m n}\left(\left(J^{m} Z_{a}\right) \frac{\delta}{\delta Z_{a}} \wedge \frac{\delta S}{\delta Z_{b}} \frac{\delta}{\delta Z_{c}}\right)\left(J^{n} Z_{b}\right) \\
& \text { Vanishes on shell }
\end{aligned}
$$

Brief recapYangian algebra appears in many observables in $N=4$ SYM.At the first level, the Yangian generators act bilocally (here - in color space).Cannot act with them on the action, but they are an on-shell symmetry of equations of motion.We put forward an off-shell equality we believe equivalent to the invariance of the action.

Correlation Functions (tree level)

If $J S=0$ and J leaves the PI measure invariant, the correlation functions are also invariant (Slaunov-Taylor / Ward identity):

$$
J<Z_{1}\left(x_{1}\right) Z_{2}\left(x_{2}\right) \ldots Z_{n}\left(x_{n}\right)>=\sum_{i=1}^{N}<Z_{1}\left(x_{1}\right) \ldots\left(J Z_{i}\left(x_{i}\right)\right) \ldots Z_{n}\left(x_{n}\right)>=0
$$

Ars Gratia Artis＊

Introduce graphical notation：

$$
\begin{aligned}
& \mathrm{S}=山+\mathrm{g}\left\lfloor+\mathrm{g}^{2} 山 \|+\ldots\right. \\
& \mathrm{JZ}=\stackrel{\square}{\square}+\mathrm{g}+\ldots \\
& \stackrel{\mathrm{V}}{\mathbf{Z}}=\downarrow+\mathbf{g} \llbracket+\ldots
\end{aligned}
$$

＊Art for art＇s sake

Example:
 Propagator Invariance

Level-O generator J acting on a propagator:

$$
\mathbf{J} \bigsqcup=\square+\square
$$

Level-O magic formula $J \frac{\delta S}{\delta Z_{c}}+\frac{\delta\left(J Z_{a}\right)}{\delta Z_{c}} \frac{\delta S}{\delta Z_{a}}=0$ at O-th order:

$$
\dot{\square}+\dot{\square}=\vec{\square}+\square=0
$$

Invariance under level-1

- Draw level-I magic formula
- Draw action of Yangian generator on the correlation function
- Local action cancels easily - tricky part is the bilocal part of the coproduct
- Level-O is a symmetry, we can move it around
- Dual coxeter number of psu(2,214) vanishes:

$$
f_{b c}^{a} f^{b c}{ }_{d}=h \delta_{b}^{a}=0
$$

Final recap

1 Yangian of psul2,214) - correct symmetry algebra of planar $N=4 \mathrm{SYM}$. Invariance of equations of motion under level-I. Cannot act on the action, but exists a way to circumvent it.
1 Gauge-fixing (BRST) - compatible.
Implies invariance of the correlation functions.

Final recap

Yangian of psu(2,2|4) - correct symmetry algebra of planar $N=4$ SYM.

- Invariance of equations of NOO° under level-1. Cannot act on the act put exists a way to circumvent it. fo^{r}
- Gauge- $\operatorname{yol}^{\text {de }}$ ST) - compatible. Implies invariance of the correlation functions.

To investigate

1. Anomalies

Algebraic relations for Yangian generators
Proper Ward identities

Thanks for your attention!

