Yangian Symmetry of N=4 SYM

Aleksander Garus

Joint work with N. Beisert and M. Rosso

Zakopane, 29.05.2016

Table of contents

- 1. Introduction and Motivation*
- 2. Yangian Symmetry
- 3. Correlation Functions in Pictures
- 4. Conclusions & Outlook

N=4 SYM

Maximally supersymmetric gauge theory in 4D

I gauge field A_{μ} , 4 spinors Ψ , 4 conjugate spinors $\overline{\Psi}$, 6 scalars φ_m

psu(2,214) - symmetry algebra of the action

Integrability in N=4 SYM

Spectra of local operators

Wilson loops

Scattering amplitudes

Increased symmetry algebra: Yangian

Yangian Algebra

Infinitely many levels of generators.

Level 0 - original psu(2,2 | 4):

$$[J_a, J_b] = f_{ab}^c J_c$$

Level 1 - first higher level Yangian generators:

$$[J_a, \hat{J}_b] = f_{ab}^c \hat{J}_c$$

Coproduct (action on multiparticle states)

$$\Delta(J_a) = id \otimes J_a + J_a \otimes id$$

Yangian Algebra

Infinitely many levels of generators.

Level 0 - original psu(2,2 | 4):

$$[J_a, J_b] = f_{ab}^c J_c$$

Level 1 - first higher level Yangian generators:

$$[J_a, \hat{J}_b] = f_{ab}^c \hat{J}_c$$

Coproduct (action on multiparticle states)

$$\Delta(\hat{J}_a) = id \otimes \hat{J}_a + \hat{J}_a \otimes id + f_a^{bc} J_b \otimes J_c$$

Motivation (for advanced)

We know how Yangian generators act on

spin chains

scattering amplitudes

Wilson loops

Motivation (for advasticed) We know how Yangian generators realist on spin chains Scattering amplitudes

Wilson loops

Yangian Action Action

$$S = \int d^4x Tr(...)$$

Due to the trace, the action is cyclic:

$$Tr(ABC) = Tr(CAB)$$

However:

$$\hat{J}(ABC) \neq \hat{J}(CAB)$$

Yangian Action Action

$$S = \int d^4x Tr(...)$$

Due to the trace, the action is cyclic:

$$Tr(ABC) = Tr(CAB)$$

However:

$$\hat{J}(ABC) \neq \hat{J}(CAB)$$

Incombatiple:

(they are no longer cyclic)

Simplest level-I generator:

$$\Delta(\hat{P}^{\mu}) = D \wedge P^{\mu} + L^{\mu\nu} \wedge P_{\nu} - \frac{i}{4} \sigma^{\mu\alpha\dot{\alpha}} \bar{Q}^{a}_{\dot{\alpha}} \wedge Q_{a\alpha}$$

Easiest equation of motion:

$$\sigma^{\rho\dot{\alpha}\beta}[D_{\rho}, \Psi_{\beta a}] - ig\epsilon^{\dot{\alpha}\dot{\beta}}\sigma_{ab}^{m}[\Phi_{m}, \bar{\Psi}_{\dot{\beta}}^{b}] = 0$$

(they are no longer cyclic)

Simplest level-1 generator:

$$\Delta(\hat{P}^{\mu}) = D \wedge P^{\mu} + L^{\mu\nu} \wedge P_{\nu} - \frac{i}{4} \sigma^{\mu\alpha\dot{\alpha}} \bar{Q}^{a}_{\dot{\alpha}} \wedge Q_{a\alpha}$$

Easiest equation of motion:

$$\sigma^{\rho\dot{\alpha}\beta}[D_{\rho}, \Psi_{\beta a}] - ig\epsilon^{\dot{\alpha}\dot{\beta}}\sigma_{ab}^{m}[\Phi_{m}, \bar{\Psi}_{\dot{\beta}}^{b}] = 0$$

(they are no longer cyclic)

Simplest level-1 generator:

$$\Delta(\hat{P}^{\mu}) = D \wedge P^{\mu} + L^{\mu\nu} \wedge P_{\nu} - \frac{i}{4} \sigma^{\mu\alpha\dot{\alpha}} \bar{Q}^{a}_{\dot{\alpha}} \wedge Q_{a\alpha}$$

Easiest equation of motion:

$$\sigma^{\rho\dot{\alpha}\beta}[D_{\rho}, \Psi_{\beta a}] - ig\epsilon^{\dot{\alpha}\dot{\beta}}\sigma_{ab}^{m}[\Phi_{m}, \bar{\Psi}_{\dot{\beta}}^{b}] = 0$$

(they are no longer cyclic)

Introducing the single field action:

$$\hat{P}^{\mu}(D^{\rho}) = \frac{1}{2}g^2 \eta^{\mu\rho} \{\Phi^m, \Phi_m\}$$

$$\hat{P}^{\mu}(\Psi_{a\alpha}) = \frac{ig}{2} \sigma^{\mu}_{\alpha\dot{\beta}} \epsilon^{\dot{\beta}\dot{\gamma}} \sigma^{m}_{ab} \{\bar{\Psi}^{b}_{\dot{\gamma}}, \Phi_{m}\}$$

we obtain schematically:

$$\hat{P}(Dirac) = 0$$

(they are no longer cyclic)

Introducing the single field action:

$$\hat{P}^{\mu}(D^{\rho}) = \frac{1}{2}g^2 \eta^{\mu\rho} \{ \Phi^m, \Phi_m \}$$

$$\hat{P}^{\mu}(\Psi_{a\alpha}) = \frac{ig}{2} \sigma^{\mu}_{\alpha\dot{\beta}} \epsilon^{\dot{\beta}\dot{\gamma}} \sigma^{m}_{ab} \{\bar{\Psi}^{b}_{\dot{\gamma}}, \Phi_{m}\}$$

we obtain schematically:

$$\hat{P}(Dirac) = \{\Phi, \overline{Dirac}\}$$

(they are no longer cyclic)

Introducing the single field action:

$$\hat{P}^{\mu}(D^{\rho}) = \frac{1}{2}g^2 \eta^{\mu\rho} \{\Phi^m, \Phi_m\}$$

$$\hat{P}^{\mu}(\Psi_{a\alpha}) = \frac{ig}{2} \sigma^{\mu}_{\alpha\dot{\beta}} \epsilon^{\dot{\beta}\dot{\gamma}} \sigma^{m}_{ab} \{\bar{\Psi}^{b}_{\dot{\gamma}}, \Phi_{m}\}$$

we obtain schematically:

$$\hat{P}(Dirac) = \{\Phi, \overline{Dirac}\}$$

Similarly for all the other equations of motion!

Off-shell?

For level-O symmetry generators we have:

$$0 = JS = \int (JZ_a) \frac{\delta S}{\delta Z_a}$$

Varying again w. r. t. to a field:

Vanishes on-shell
$$J\frac{\delta S}{\delta Z_c} + \frac{\delta(JZ_a)}{\delta Z_c}\frac{\delta S}{\delta Z_a} = 0$$

Off-shell equality regarding behavior of eoms under J.

Off-shell!

Generalize to level-1 generators:

$$\hat{J}^k \frac{\delta S}{\delta Z_c} = -\frac{\delta(\hat{J}^k Z_a)}{\delta Z_c} \frac{\delta S}{\delta Z_a} + f^k_{mn} \left((J^m Z_a) \frac{\delta}{\delta Z_a} \wedge \frac{\delta S}{\delta Z_b} \frac{\delta}{\delta Z_c} \right) (J^n Z_b)$$

Vanishes on shell

Holds off-shell!

Generalize to level-I generators;
$$able$$
 field theories.

$$\hat{J}^k \frac{\delta S}{\delta \Phi_c} = \frac{\delta(\hat{J}^k \Phi_a)}{\delta \Phi_c} \frac{\delta S}{\delta \Phi_c} \frac{\delta S}{\delta \Phi_c} \frac{\delta S}{\delta \Phi_a} \wedge \frac{\delta S}{\delta \Phi_a} \frac{\delta}{\delta \Phi_c} \frac{\delta}{\delta \Phi_c} \left(J^n \Phi_b \right)$$

Whose on shell Holds off-shell!

Brief recap

- Yangian algebra appears in many observables in N=4 SYM.
- At the first level, the Yangian generators act bilocally (here - in color space).
- Cannot act with them on the action, but they are an on-shell symmetry of equations of motion.
- We put forward an off-shell equality we believe equivalent to the invariance of the action.

Correlation Functions

(tree level)

If JS=0 and J leaves the PI measure invariant, the correlation functions are also invariant (Slavnov-Taylor / Ward identity):

$$J < Z_1(x_1)Z_2(x_2)...Z_n(x_n) > = \sum_{i=1}^{N} \langle Z_1(x_1)...(JZ_i(x_i))...Z_n(x_n) \rangle = 0$$

Ars Gratia Artis*

Introduce graphical notation:

$$S = \left| \begin{array}{c} +g \end{array} \right| \left| \begin{array}{c} +g^2 \end{array} \right| \left| \begin{array}{c} +... \\ \end{array} \right|$$

$$JZ = \left| \begin{array}{c} +g \end{array} \right| \left| \begin{array}{c} +... \\ \end{array} \right|$$

$$\mathring{Z} = \left| \begin{array}{c} +g \end{array} \right| \left| \begin{array}{c} +... \\ \end{array} \right|$$

Example: Propagator Invariance

Level-O generator J acting on a propagator:

$$J = + +$$

Invariance under level-1

- Draw level-I magic formula
- Draw action of Yangian generator on the correlation function
- Local action cancels easily tricky part is the bilocal part of the coproduct
- Level-O is a symmetry, we can move it around
- Dual coxeter number of psu(2,214) vanishes:

$$f^a_{bc}f^{bc}_{d} = h\delta^a_b = 0$$

Final recap

Yangian of psu(2,214) - correct symmetry algebra of planar N=4 SYM.

Invariance of equations of motion under level-1.

Cannot act on the action, but exists a way to circumvent it.

Gauge-fixing (BRST) - compatible.

Implies invariance of the correlation functions.

Final recap

- · Yangian of psu(2,214) correct symmetry algebra
- of planar N=4 SYM.

 Invariance of equations of motion under level-1.

 Cannot act on the action, But exists a way to circumvent it.

 Gauge-fixing (SRST) - compatible.

 - Implies invariance of the correlation functions.

To investigate

Anomalies

Algebraic relations for Yangian generators

Proper Ward identities

Thanks for your attention!

