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Advantages:

each standardized, scalar integral need only be computed once

all coefficients are easy to compute as on-shell diagrams
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finiteness and dual-conformal invariance of finite observables

breaks the symmetries of the actual, field-theory loop integrand
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Generalizing Unitarity to 2-Loop Amplitudes & Integrands

Finite Scalar Box Integrals and their Infrared-Divergent Limits
Maximally Preserving Dual-Conformal Invariance of Divergences

The Scalar “Four-Mass Box” Integral
The four-mass box integral is a manifestly finite, symmetric function of two

dual-conformally invariant cross ratios, denoted u and v.

Ia,b,c,d

∆ ≡
√

(1 u v)2 4uv u ≡ (a, b)(c, d)

(a, c)(b, d)
, v ≡ (b, c)(a, d)

(a, c)(b, d)

with pa≡xa+1 xa, and where 1/(`, a) denotes the standard propagator:

(a, b) ≡ (xa xb)2 = (pa+pa+1+ · · · +pb−1)2

, (`, a) ≡ (` xa)2 .
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A Dual-Conformal Regularization of Infrared Divergences
In order to regulate the infrared divergences of the box integrals, we render

all external legs off-shell by displacing the coordinates according to:

xa → x̂a ≡ xa + ε(xa+1 − xa)
(a 2, a)

(a 2, a +1)
Under this shift, all cross-ratios are displaced proportional to cross-ratios!

e.g., when a=b 1

, we have:

(a, b̂) 7→ε(a, b +1)
(b 2, b)

(b 2, b +1)
+O(ε2)

u=
(a, b̂)(c, d)

(a, c)(b, d)

= ε
(a, b +1)(b 2, b)(c, d)

(b 2, b +1)(a, c)(b, d)
+O(ε2) ≡ εu′ +O(ε2).
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Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

All the divergent contributions, A(k),2
n,div, are easy to identify

:
(As we saw above, this form guarantees the finiteness of the ratio-function.)

A(k),2
n,div

=

A(k),0
n

(
A(2),1

n,div
⊗A(2),1

n,div

)

+
(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

All the divergent contributions, A(k),2
n,div, are easy to identify:

(As we saw above, this form guarantees the finiteness of the ratio-function.)

A(k),2
n,div

=

A(k),0
n

(
A(2),1

n,div
⊗A(2),1

n,div

)

+
(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

All the divergent contributions, A(k),2
n,div, are easy to identify:

(As we saw above, this form guarantees the finiteness of the ratio-function.)

A(k),2
n,div =

A(k),0
n

(
A(2),1

n,div
⊗A(2),1

n,div

)

+
(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

All the divergent contributions, A(k),2
n,div, are easy to identify:

(As we saw above, this form guarantees the finiteness of the ratio-function.)

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)

+
(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

All the divergent contributions, A(k),2
n,div, are easy to identify:

(As we saw above, this form guarantees the finiteness of the ratio-function.)

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

All the divergent contributions, A(k),2
n,div, are easy to identify:

(As we saw above, this form guarantees the finiteness of the ratio-function.)

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

All the divergent contributions, A(k),2
n,div, are easy to identify:

(As we saw above, this form guarantees the finiteness of the ratio-function.)

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

All the divergent contributions, A(k),2
n,div, are easy to identify:

(As we saw above, this form guarantees the finiteness of the ratio-function.)

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

All the divergent contributions, A(k),2
n,div, are easy to identify:

(As we saw above, this form guarantees the finiteness of the ratio-function.)

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡

I ′L
(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R

7→ I ′L
(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X)

≡

I ′L
(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R

7→ I ′L
(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡

I ′L
(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R

7→ I ′L
(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R

7→ I ′L
(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸

︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸

︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸

︸ ︷︷ ︸

(b 1, b+1)(b,X)

(`1, b 1)(`1, b)(`1, b+1)(`1,X)

⊗(X, a)(a 1, a+1)

(X, `2)(`2, a 1)(`2, a)(`2, a+1)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸

︸ ︷︷ ︸

(b 1, b+1)(b, a)(a 1, a+1)

(`1, b 1)(`1, b)(`1, b+1)(`1, `2)(`2, a 1)(`2, a)(`2, a+1)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸

︸ ︷︷ ︸

(b 1, b+1)(b, a)(a 1, a+1)

(`1, b 1)(`1, b)(`1, b+1)(`1, `2)(`2, a 1)(`2, a)(`2, a+1)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸

︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸

︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸

︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion

A(k),2
n = A(k),2

n,fin +A(k),2
n,div

“Merging” One-Loop, Chiral (X-dependent) Integrands

IL(X)
⊗IR(X) ≡ I ′L

(NL,X)

(`1,X)

⊗(X,NR)

(X, `2)
I ′R 7→ I ′L

(NL,NR)

(`1, `2)
I ′R

A(k),2
n,div = A(k),0

n

(
A(2),1

n,div
⊗A(2),1

n,div

)
+

(
A(2),1

n,div
⊗A(k),1

n,fin

)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes
1. “Kissing” Boxes:

×
(
I j

e,f,g,h
⊗I i

a,b,c,d

)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes
1. “Kissing” Boxes:

×
(
I j

e,f,g,h
⊗I i

a,b,c,d

)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes
1. “Kissing” Boxes:

×
(
I j

e,f,g,h
⊗I i

a,b,c,d

)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes
1. “Kissing” Boxes:

×

(
I j

e,f,g,h
⊗I i

a,b,c,d

)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes
1. “Kissing” Boxes:

×

(
I j

e,f,g,h
⊗I i

a,b,c,d

)

2. Finite Penta-Boxes:

×
(
Ie,f,g,X

⊗I i
a,b,c,d

)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes
1. “Kissing” Boxes:

×

(
I j

e,f,g,h
⊗I i

a,b,c,d

)

2. Finite Penta-Boxes:

×
(
Ie,f,g,X

⊗I i
a,b,c,d

)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes
1. “Kissing” Boxes:

×

(
I j

e,f,g,h
⊗I i

a,b,c,d

)

2. Finite Penta-Boxes:

×
(
Ie,f,g,X

⊗I i
a,b,c,d

)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes
1. “Kissing” Boxes:

×

(
I j

e,f,g,h
⊗I i

a,b,c,d

)

2. Finite Penta-Boxes:

×

(
Ie,f,g,X

⊗I i
a,b,c,d

)

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes

1. “Kissing” Boxes:

×

(
I j

e,f,g,h
⊗I i

a,b,c,d

)

2. Finite Penta-Boxes:

×

(
Ie,f,g,X

⊗I i
a,b,c,d

)

3. Finite Double-Boxes:

×

{
+

}

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes

1. “Kissing” Boxes:

×

(
I j

e,f,g,h
⊗I i

a,b,c,d

)

2. Finite Penta-Boxes:

×

(
Ie,f,g,X

⊗I i
a,b,c,d

)

3. Finite Double-Boxes:

×

{
+

}

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes

1. “Kissing” Boxes:

×

(
I j

e,f,g,h
⊗I i

a,b,c,d

)

2. Finite Penta-Boxes:

×

(
Ie,f,g,X

⊗I i
a,b,c,d

)

3. Finite Double-Boxes:

×

{
+

}

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Finite Integrand Contributions to Two-Loop Amplitudes

1. “Kissing” Boxes:

×

(
I j

e,f,g,h
⊗I i

a,b,c,d

)

2. Finite Penta-Boxes:

×

(
Ie,f,g,X

⊗I i
a,b,c,d

)

3. Finite Double-Boxes:

×

{
+

}

Friday, 27th May Cracow School of Theoretical Physics, Zakopane Part III: Applications of On-Shell Physics: Generalized Unitarity (Redux)



Revisiting Generalized Unitarity: Improving the One-Loop Toolbox
Upgrading Unitarity at One-Loop: the Chiral Box Expansion

Generalizing Unitarity to 2-Loop Amplitudes & Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality

Novel Contributions Required

4. “Shifted” Double-Boxes:
It turns out that here are contributions to A(k),2

n,fin which cannot be written as
‘superfunction’×‘integral’.

To see this, consider the following 10-particle
all-scalar, component amplitude:

A(5)
10

(
ϕ12, ϕ12, ϕ12, ϕ23, ϕ23, ϕ34, ϕ34, ϕ34, ϕ41, ϕ41

)

∝ (η̃1
1 η̃

2
1)(η̃1

2 η̃
2
2)(η̃1

3 η̃
2
3)(η̃2

4 η̃
3
4)(η̃2

5 η̃
3
5)(η̃3

6 η̃
4
6)(η̃3

7 η̃
4
7)(η̃3

8 η̃
4
8)(η̃4

9 η̃
1
9)(η̃4

10η̃
1
10)

α∝(`2, 5)

=

=

∫
d4`1d4`2

(`1, 9)(`1, 1)(`1, 3)(`1, `2)(`2, 4)(`2, 6)(`2, 8)

Problem: all (isolated) on-shell functions vanish on this component!
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final formula: 18 pages of so-called
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Abstract: In the planar N = 4 supersymmetric Yang-Mills theory, the conformal sym-

metry constrains multi-loop n-edged Wilson loops to be given in terms of the one-loop

n-edged Wilson loop, augmented, for n ≥ 6, by a function of conformally invariant cross

ratios. That function is termed the remainder function. In a recent paper, we have dis-

played the first analytic computation of the two-loop six-edged Wilson loop, and thus of the

corresponding remainder function. Although the calculation was performed in the quasi-

multi-Regge kinematics of a pair along the ladder, the Regge exactness of the six-edged

Wilson loop in those kinematics entails that the result is the same as in general kinematics.

We show in detail how the most difficult of the integrals is computed, which contribute to

the six-edged Wilson loop. Finally, the remainder function is given as a function of uniform

transcendental weight four in terms of Goncharov polylogarithms. We consider also some

asymptotic values of the remainder function, and the value when all the cross ratios are

equal.

Keywords: QCD, MSYM, small x.
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H. The analytic expression of the remainder function

In this appendix we present the full analytic expression of the remainder function. The re-

sult is also available in electronic form from www.arXiv.org. Using the notation introduced

in Eqs. (3.23) and (5.7), the full expression reads,
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played the first analytic computation of the two-loop six-edged Wilson loop, and thus of the

corresponding remainder function. Although the calculation was performed in the quasi-

multi-Regge kinematics of a pair along the ladder, the Regge exactness of the six-edged

Wilson loop in those kinematics entails that the result is the same as in general kinematics.

We show in detail how the most difficult of the integrals is computed, which contribute to

the six-edged Wilson loop. Finally, the remainder function is given as a function of uniform

transcendental weight four in terms of Goncharov polylogarithms. We consider also some

asymptotic values of the remainder function, and the value when all the cross ratios are

equal.
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amplitude A(2),2

6 analytically—a truly heroic
computation on par with Parke and Taylor’s

dimensionally regulating thousands of
separately divergent integrals

final formula: 18 pages of so-called
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the expression should provide encouragement and guidance as we seek deeper understanding

of SYM at loop level.

We present our new expression for R
(2)
6 in the next section and then describe the algorithm

by which it was obtained.

II. THE REMAINDER FUNCTION R
(2)
6

The remainder function R
(2)
6 is usually presented as a function of the three dual conformal

cross-ratios

u1 =
s12s45

s123s345
, u2 =

s23s56

s234s123
, u3 =

s35s61

s345s234
, (1)

of the momentum invariants si···j = (ki + · · · kj)
2, though we will see shortly that cross-ratios

of momentum twistor invariants are more natural variables. In terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1 ±

√
∆

2u1u2u3

, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(u1, u2, u3) =
3∑

i=1

(
L4(x

+
i , x−

i ) − 1

2
Li4(1 − 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
J4

24
+ χ

π2

12

(
J2 + ζ(2)

)
. (3)

Here we use the functions

L4(x
+, x−) =

3∑

m=0

(−1)m

(2m)!!
log(x+x−)m($4−m(x+) + $4−m(x−)) +

1

8!!
log(x+x−)4 (4)

and

$n(x) =
1

2
(Lin(x) − (−1)n Lin(1/x)) , (5)

as well as the quantities

J =
3∑

i=1

($1(x
+
i ) − $1(x

−
i )),

χ =





−2 ∆ > 0 and u1 + u2 + u3 > 1,

+1 otherwise.

(6)
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were found to simplify, [arXiv:1006.5703]:

computation on par with Parke and Taylor’s

the expression should provide encouragement and guidance as we seek deeper understanding

of SYM at loop level.

We present our new expression for R
(2)
6 in the next section and then describe the algorithm

by which it was obtained.

II. THE REMAINDER FUNCTION R
(2)
6

The remainder function R
(2)
6 is usually presented as a function of the three dual conformal

cross-ratios

u1 =
s12s45
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s345s234
, (1)

of the momentum invariants si···j = (ki + · · · kj)
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i = uix
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∆
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$n(x) =
1

2
(Lin(x) − (−1)n Lin(1/x)) , (5)

as well as the quantities

J =
3∑

i=1

($1(x
+
i ) − $1(x

−
i )),

χ =




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+1 otherwise.
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played the first analytic computation of the two-loop six-edged Wilson loop, and thus of the

corresponding remainder function. Although the calculation was performed in the quasi-

multi-Regge kinematics of a pair along the ladder, the Regge exactness of the six-edged

Wilson loop in those kinematics entails that the result is the same as in general kinematics.

We show in detail how the most difficult of the integrals is computed, which contribute to

the six-edged Wilson loop. Finally, the remainder function is given as a function of uniform

transcendental weight four in terms of Goncharov polylogarithms. We consider also some

asymptotic values of the remainder function, and the value when all the cross ratios are
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