On-Shell Diagrams, Recursion Relations, & Combinatorics

Jacob L. Bourjaily

Cracow School of Theoretical Physics LVI Course, 2016 A Panorama of Holography

The Niels Bohr International Academy

On-Shell Diagrams, Recursion Relations, & Combinatorics

Jacob L. Bourjaily

Cracow School of Theoretical Physics LVI Course, 2016 A Panorama of Holography

The Niels Bohr International Academy

Organization and Outline

- On-Shell Diagrams: Amalgamations of Scattering Amplitudes
 - Beyond (Mere) Scattering Amplitudes: On-Shell Functions
 - Systematics of Computation and the Auxiliary Grassmannian
 - Building-Up Diagrams with 'BCFW' Bridges
- On-Shell, All-Order Recursion Relations for Scattering Amplitudes
 - Deriving Diagrammatic Recursion Relations for Amplitudes
 - Exempli Gratia: On-Shell Representations of Tree Amplitudes
- 3 Combinatorics, Classification, and Canonical Computation
 - A Combinatorial Classification of On-Shell Functions
 - Building-Up (Representative) Diagrams and Functions with Bridges
 - Asymptotic Symmetries of the S-Matrix: the *Yangian*
- 4 Paths Forward: Beyond the Leading Order of Perturbation Theory
 - On-Shell Representations of Loop-Amplitude Integrands

We are interested in the class of functions involving **only** observable quantities

Internal Particles:

We are interested in the class of functions involving **only** observable quantities

Internal Particles: locality dictates that we multiply each amplitude,

We are interested in the class of functions involving **only** observable quantities

Internal Particles: locality dictates that we multiply each amplitude,

$$A_L(\ldots, I) \times A_R(I, \ldots)$$

We are interested in the class of functions involving **only** observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states

$$A_L(\ldots, I) \times A_R(I, \ldots)$$

We are interested in the class of functions involving **only** observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*,

$$A_L(\ldots, \underline{I}) \times A_R(\underline{I}, \ldots)$$

We are interested in the class of functions involving **only** observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*,

$$\int d^3 \text{LIPS}_{\boldsymbol{I}} \ \mathcal{A}_L(\ldots, \boldsymbol{I}) \times \mathcal{A}_R(\boldsymbol{I}, \ldots)$$

We are interested in the class of functions involving **only** observable quantities

$$\int d^3 \text{LIPS}_{\boldsymbol{I}} \ \mathcal{A}_L(\ldots, \boldsymbol{I}) \times \mathcal{A}_R(\boldsymbol{I}, \ldots)$$

We are interested in the class of functions involving **only** observable quantities

$$\sum_{\text{states } I} \int d^3 \text{LIPS}_I \ \mathcal{A}_L(\dots, I) \times \mathcal{A}_R(I, \dots)$$

We are interested in the class of functions involving **only** observable quantities

$$\sum_{\text{states } I} \int d^3 \text{LIPS}_I \ \mathcal{A}_L(\dots, I) \times \mathcal{A}_R(I, \dots)$$

We are interested in the class of functions involving **only** observable quantities

$$\sum_{\text{states } I} \int d^3 \text{LIPS}_I \ \mathcal{A}_L(\dots, I) \times \mathcal{A}_R(I, \dots)$$

We are interested in the class of functions involving **only** observable quantities

$$\sum_{\text{states } I} \int \frac{d^2 \lambda_I d^2 \widetilde{\lambda}_I}{\text{vol}(GL_1)} \, \mathcal{A}_L(\dots, I) \times \mathcal{A}_R(I, \dots)$$

We are interested in the class of functions involving **only** observable quantities

$$\int d^4 \widetilde{\eta}_{I} \int \frac{d^2 \lambda_{I} d^2 \widetilde{\lambda}_{I}}{\operatorname{vol}(GL_1)} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)$$

We are interested in the class of functions involving **only** observable quantities

$$\int d^4 \widetilde{\eta}_{I} \int \frac{d^2 \lambda_{I} d^2 \widetilde{\lambda}_{I}}{\operatorname{vol}(GL_1)} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions:

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

 n_{δ}

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

$$n_{\delta} \equiv 4 \times n_{V}$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

$$n_{\delta} \equiv 4 \times n_V - 3 \times n_I$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = \text{number of excess } \delta \text{-functions}$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = \text{number of excess } \delta \text{-functions}$$

$$(= \text{minus number of remaining integrations})$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = \text{number of excess } \delta \text{-functions}$$

$$(= \text{minus number of remaining integrations})$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = \text{number of excess } \delta \text{-functions}$$

$$(= \text{minus number of remaining integrations})$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ ordinary (rational) function}$$

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

On-Shell Functions: networks of amplitudes, A_{ν} , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \dots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Rightarrow \quad$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta} \equiv 4 \times n_V - 4 = 0 \quad \Longrightarrow \quad \widehat{n}_{\delta}$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \quad \Rightarrow \\
< 0 \quad \Rightarrow \\$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \quad \Rightarrow \\
< 0 \quad \Rightarrow \\$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \quad \Rightarrow \\
< 0 \quad \Rightarrow \\$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Rightarrow \quad < 0 \quad \Rightarrow \quad <$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Rightarrow \quad < 0 \quad \Rightarrow \quad <$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \quad \Rightarrow \\
< 0 \quad \Rightarrow \\$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Rightarrow \quad < 0 \quad \Rightarrow \quad <$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Rightarrow \quad$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad$$

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \quad \Longrightarrow \quad$$

We are interested in the class of functions involving **only** observable quantities

$$> 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints $\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow \text{ ordinary (rational) function}$
 $< 0 \Rightarrow (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$

We are interested in the class of functions involving **only** observable quantities

$$n_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0$$
 \Rightarrow (\widehat{n}_{δ}) kinematical constraints ordinary (rational) function $< 0 \Rightarrow (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0$$
 \Rightarrow ordinary (rational) function

 (\widehat{n}_{δ}) kinematical constraints $< 0 \implies (-\hat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0$$
 \Rightarrow (\widehat{n}_{δ}) kinematical constraints ordinary (rational) function < 0 \Rightarrow $(-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$> 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints $\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow \text{ ordinary (rational) function}$
 $< 0 \Rightarrow (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$

We are interested in the class of functions involving **only** observable quantities

$$> 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints $\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow \text{ ordinary (rational) function}$
 $< 0 \Rightarrow (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$

We are interested in the class of functions involving **only** observable quantities

$$> 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints $\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow \text{ ordinary (rational) function}$
 $< 0 \Rightarrow (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$> 0 \Rightarrow (\widehat{n}_{\delta})$$
 kinematical constraints $\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \Rightarrow \text{ ordinary (rational) function}$
 $< 0 \Rightarrow (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

We are interested in the class of functions involving **only** observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta})$$
 kinematical constraints ordinary (rational) function $< 0 \implies (-\widehat{n}_{\delta})$ non-trivial integrations

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory

Amalgamating Diagrams from Three-Particle Amplitudes

Amalgamating Diagrams from Three-Particle Amplitudes

Amalgamating Diagrams from Three-Particle Amplitudes

Amalgamating Diagrams from Three-Particle Amplitudes

Amalgamating Diagrams from Three-Particle Amplitudes

Amalgamating Diagrams from Three-Particle Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

$$=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^2-\delta^{2\times4}\big(\lambda\cdot\widetilde{\eta}\big)\delta^{2\times2}\big(\lambda\cdot\widetilde{\lambda}\big)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}_{\equiv}$$

$$=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^2-\delta^{2\times4}\big(\lambda\cdot\widetilde{\eta}\big)\delta^{2\times2}\big(\lambda\cdot\widetilde{\lambda}\big)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}_{\equiv}$$

$$=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^2-\delta^{2\times4}\big(\lambda\cdot\widetilde{\eta}\big)\delta^{2\times2}\big(\lambda\cdot\widetilde{\lambda}\big)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}_{\equiv}$$

$$=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^2-\delta^{2\times4}\big(\lambda\cdot\widetilde{\eta}\big)\delta^{2\times2}\big(\lambda\cdot\widetilde{\lambda}\big)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}_{\equiv}$$

$$=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^2-\delta^{2\times4}\big(\lambda\cdot\widetilde{\eta}\big)\delta^{2\times2}\big(\lambda\cdot\widetilde{\lambda}\big)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}_{\equiv}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use)

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda})$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda})$$

$$1 \longrightarrow \left(\begin{matrix} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda})$$

$$1 \longrightarrow \left(\begin{matrix} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3} B}{\mathrm{vol}(GL_{2})} \frac{\delta^{2\times4} \left(B \cdot \widetilde{\eta}\right)}{\langle 12 \rangle (23) \langle 31 \rangle} \delta^{2\times2} \left(B \cdot \widetilde{\lambda}\right) \delta^{1\times2} \left(\lambda \cdot B^{\perp}\right)$$

$$1 - \bigcirc \left(\Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 - \bigcirc \left(\begin{cases} 2 \\ 3 \end{cases} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \delta^{1\times2}(\lambda\cdot B^{\perp})$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4} \left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3} B}{\mathrm{vol}(GL_{2})} \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \delta^{1\times2} \big(\lambda \cdot B^{\perp}\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4} \left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3} B}{\mathrm{vol}(GL_{2})} \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \delta^{1\times2} \big(\lambda \cdot B^{\perp}\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4} \left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3}B}{\mathrm{vol}(GL_{2})} \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \, \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \, \, \delta^{1\times2} \big(\lambda \cdot B^{\perp}\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3}B}{\mathrm{vol}(GL_{2})} \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \, \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \, \, \delta^{1\times2} \big(\lambda \cdot B^{\perp}\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3}B}{\mathrm{vol}(GL_{2})} \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \, \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \, \, \delta^{1\times2} \big(\lambda \cdot B^{\perp}\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3}B}{\mathrm{vol}(GL_{2})} \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \, \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \, \, \delta^{1\times2} \big(\lambda \cdot B^{\perp}\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \ \frac{\delta^{2\times4} \big(\lambda \cdot \widetilde{\eta}\big)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \, \delta^{2\times2} \big(\lambda \cdot \widetilde{\lambda}\big) \ \equiv \int \frac{d^{2\times3} B}{\mathrm{vol}(GL_2)} \, \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \, \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \, \, \delta^{1\times2} \big(\lambda \cdot B^\perp\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \ \frac{\delta^{2\times4} \big(\lambda \cdot \widetilde{\eta}\big)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \, \delta^{2\times2} \big(\lambda \cdot \widetilde{\lambda}\big) \ \equiv \int \frac{d^{2\times3} B}{\mathrm{vol}(GL_2)} \, \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \, \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \, \, \delta^{1\times2} \big(\lambda \cdot B^\perp\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{ccc} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} 1 & 0 & b_3^1 \\ 0 & 1 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{ccc} 2 \\ \Leftrightarrow W \equiv \begin{pmatrix} 1 & w_2^1 & w_3^1 \end{pmatrix} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}\left(\lambda\cdot\widetilde{\eta}\right)}{\langle12\rangle\langle23\rangle\langle31\rangle}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d\,b_{3}^{1}}{b_{3}^{1}} \wedge \frac{d\,b_{3}^{2}}{b_{3}^{2}}\,\delta^{2\times4}\!\!\left(\boldsymbol{B}\cdot\widetilde{\eta}\right) \,\,\delta^{2\times2}\!\left(\boldsymbol{B}\cdot\widetilde{\lambda}\right)\,\delta^{1\times2}\!\left(\lambda\cdot\boldsymbol{B}^{\perp}\right)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]}\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{dw_{1}^{1}}{w_{2}^{1}} \wedge \frac{dw_{3}^{1}}{w_{3}^{1}}\delta^{1\times4}(W\cdot\widetilde{\eta}) \delta^{1\times2}(W\cdot\widetilde{\lambda})\delta^{2\times2}(\lambda\cdot W^{\perp})$$

$$1 \longrightarrow \begin{pmatrix} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & 1 & 0 \\ b_1^2 & 0 & 1 \end{pmatrix} \qquad 1 \longrightarrow \begin{pmatrix} 2 \\ \Leftrightarrow W \equiv \begin{pmatrix} w_1^1 & 1 & w_3^1 \end{pmatrix}$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d \, b_{1}^{1}}{b_{1}^{1}} \wedge \frac{d \, b_{1}^{2}}{b_{1}^{2}} \, \delta^{2\times4} \! \left(\boldsymbol{B} \cdot \widetilde{\boldsymbol{\eta}}\right) \, \, \delta^{2\times2} \! \left(\boldsymbol{B} \cdot \widetilde{\lambda}\right) \, \delta^{1\times2} \! \left(\lambda \cdot \boldsymbol{B}^{\perp}\right)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4} \left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d w_{3}^{1}}{w_{3}^{1}} \wedge \frac{d w_{1}^{1}}{w_{1}^{1}} \, \delta^{1\times4} \left(W \cdot \widetilde{\eta}\right) \, \, \delta^{1\times2} \left(W \cdot \widetilde{\lambda}\right) \delta^{2\times2} \left(\lambda \cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} 0 & b_2^1 & 1 \\ 1 & b_2^2 & 0 \end{array} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv \left(w_1^1 w_2^1 & 1 \right) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d \, b_{2}^{1}}{b_{2}^{1}} \wedge \frac{d \, b_{2}^{2}}{b_{2}^{2}} \, \delta^{2\times4} \! \left(\boldsymbol{B} \cdot \widetilde{\boldsymbol{\eta}}\right) \, \, \, \delta^{2\times2} \! \left(\boldsymbol{B} \cdot \widetilde{\boldsymbol{\lambda}}\right) \, \, \delta^{1\times2} \! \left(\lambda \cdot \boldsymbol{B}^{\perp}\right)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{dw_{1}^{1}}{w_{1}^{1}} \wedge \frac{dw_{2}^{1}}{w_{2}^{1}}\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right) \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \ \frac{\delta^{2\times4} \big(\lambda \cdot \widetilde{\eta}\big)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \, \delta^{2\times2} \big(\lambda \cdot \widetilde{\lambda}\big) \ \equiv \int \!\! \frac{d^{2\times3} B}{\mathrm{vol}(GL_2)} \frac{\delta^{2\times4} \! \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \, \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \, \, \delta^{1\times2} \big(\lambda \cdot B^\perp\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3}B}{\mathrm{vol}(GL_{2})} \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \, \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \, \, \delta^{1\times2} \big(\lambda \cdot B^{\perp}\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3}B}{\mathrm{vol}(GL_{2})} \frac{\delta^{2\times4} \big(B \cdot \widetilde{\eta}\big)}{(12)(23)(31)} \, \delta^{2\times2} \big(B \cdot \widetilde{\lambda}\big) \, \, \delta^{1\times2} \big(\lambda \cdot B^{\perp}\big)$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4} \left(\lambda \cdot \widetilde{\eta}\right)}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2} \left(\lambda \cdot \widetilde{\lambda}\right) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4} \left(B \cdot \widetilde{\eta}\right)}{(12)(23)(31)} \delta^{2\times2} \left(B \cdot \widetilde{\lambda}\right) \underbrace{\delta^{1\times2} \left(\lambda \cdot B^{\perp}\right)}_{} \underbrace{\delta^{1\times2} \left(\lambda \cdot B^{\perp}\right)}_{$$

$$\mathcal{A}_{3}^{(1)} = \ \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{\left[12\right]\left[23\right]\left[31\right]} \delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \ \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \ \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \ \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}}$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{\left(1\right)\left(2\right)\left(3\right)} \delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda}$$

$$\mathcal{A}_{3}^{(1)} = \ \frac{\delta^{1\times4}\big(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\big)}{[12][23][31]} \delta^{2\times2}\big(\lambda\cdot\widetilde{\lambda}\big) \ \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \ \frac{\delta^{1\times4}\big(W\cdot\widetilde{\eta}\big)}{(1)\ (2)\ (3)} \ \delta^{1\times2}\big(W\cdot\widetilde{\lambda}\big)\delta^{2\times2}\big(\lambda\cdot W^{\perp}\big)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda}$$

$$\mathcal{A}_{3}^{(1)} = \ \frac{\delta^{1\times4}\big(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\big)}{[12][23][31]} \delta^{2\times2}\big(\lambda\cdot\widetilde{\lambda}\big) \ \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \ \frac{\delta^{1\times4}\big(W\cdot\widetilde{\eta}\big)}{(1)\ (2)\ (3)} \ \delta^{1\times2}\big(W\cdot\widetilde{\lambda}\big)\delta^{2\times2}\big(\lambda\cdot W^{\perp}\big)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda}$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]}\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1\times2}(W\cdot\widetilde{\lambda})} \delta^{2\times2}(\lambda\cdot W^{\perp})$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda}$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]} \delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{(1)(2)(3)} \underbrace{\delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)}_{W\mapsto W^{*}} \delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda}$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{(1)\left(2\right)\left(3\right)} \underbrace{\delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)}_{W\mapsto W^{*}=\widetilde{\lambda}^{\perp}}\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda}$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{(1)\left(2\right)\left(3\right)} \underbrace{\delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)}_{W\mapsto W^{*}=\widetilde{\lambda}^{\perp}}\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 \longrightarrow \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda}$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}\left(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta}\right)}{[12][23][31]}\delta^{2\times2}\left(\lambda\cdot\widetilde{\lambda}\right) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}\left(W\cdot\widetilde{\eta}\right)}{(1)\left(2\right)\left(3\right)} \underbrace{\delta^{1\times2}\left(W\cdot\widetilde{\lambda}\right)}_{W\mapsto W^{*}=\widetilde{\lambda}^{\perp}}\delta^{2\times2}\left(\lambda\cdot W^{\perp}\right)$$

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$\underbrace{f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})}_{2}$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$k \equiv 2n_{B} + n_{W} - n_{I}$$

$$C \in G(k, n)$$

$$k \equiv 2n_{B} + n_{W} - n_{I}$$

$$C \in G(k, n)$$

$$k \equiv 2n_{B} + n_{W} - n_{I}$$

$$f = \int \Omega_{C} \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$k = 2n_{B} + n_{W} - n_{I}$$

$$1$$

$$\frac{1}{(1 + w_{2} + w_{I})}$$

$$4$$

$$f \equiv \int \Omega_{C} \quad \delta^{k \times 4} (C \cdot \widetilde{\eta}) \, \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \, \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$f \equiv \int \Omega_{C} \quad \delta^{k \times 4} (C \cdot \widetilde{\eta}) \, \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \, \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$\downarrow C \in G(k, n)$$

$$\downarrow k \equiv 2n_{B} + n_{W} - n_{I}$$

$$\downarrow I$$

$$\downarrow$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$\downarrow C \in G(k, n)$$

$$\downarrow k \equiv 2n_{B} + n_{W} - n_{I}$$

$$\downarrow I$$

$$\downarrow$$

$$f = \int \Omega_C \quad \delta^{k \times 4} (C \cdot \widetilde{\eta}) \, \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \, \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$f \equiv \int \Omega_C \quad \delta^{k \times 4} (C \cdot \widetilde{\eta}) \, \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \, \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Indiving us to represent all on-shell functions in the form:
$$f \equiv \int \Omega_C \ \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)}(\lambda \cdot C^{\perp})$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$k \equiv 2n_{B} + n_{W} - n_{I}$$

$$1 \qquad \qquad 4$$

$$\frac{1 \quad 2 \quad \mathbf{I}}{(1 \quad w_{2} \quad w_{I})} \qquad \frac{\mathbf{I'} \quad 3 \quad 4}{(1 \quad 0 \quad b^{1})}$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$k \equiv 2n_{B} + n_{W} - n_{I}$$

$$1$$

$$\frac{1}{(1 \quad w_{2} \quad w_{I})} \frac{1' \quad 3 \quad 4}{(1 \quad 0 \quad I^{\perp})}$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$k \equiv 2n_{B} + n_{W} - n_{I}$$

$$2$$

$$1 \quad I'$$

$$f \equiv \int \Omega_{C} \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$k \equiv 2n_{B} + n_{W} - n_{I}$$

$$2$$

$$1 \quad I'$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$C \in G(k,n)$$
$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

$$f \equiv \int \Omega_C \ \delta^{k \times 4} \left(C \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C^{\perp} \right)$$

$$C \in G(k,n)$$

$$k \equiv 2n_B + n_W - n_I$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a \widetilde{\lambda}_a - \lambda_I \widetilde{\lambda}_I$$
 and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \lambda_I \widetilde{\lambda}_I$,

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a \widetilde{\lambda}_a - \lambda_I \widetilde{\lambda}_I$$
 and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \lambda_I \widetilde{\lambda}_I$,

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a \widetilde{\lambda}_a - \alpha \lambda_a \widetilde{\lambda}_I$$
 and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \alpha \lambda_a \widetilde{\lambda}_I$,

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a \widetilde{\lambda}_a - \alpha \lambda_a \widetilde{\lambda}_b \quad \text{and} \quad \lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \alpha \lambda_a \widetilde{\lambda}_b,$$

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a \big(\widetilde{\lambda}_a - \alpha \widetilde{\lambda}_b \big) \quad \text{and} \quad \lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \alpha \lambda_a \widetilde{\lambda}_b,$$

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a (\widetilde{\lambda}_a - \alpha \widetilde{\lambda}_b)$$
 and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = (\lambda_b + \alpha \lambda_a) \widetilde{\lambda}_b$,

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

$$f(\ldots,a,b,\ldots) = \frac{d\alpha}{\alpha} f_0(\ldots,\widehat{a},\widehat{b},\ldots)$$

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

$$f(\ldots,a,b,\ldots) = \frac{d\alpha}{\alpha} f_0(\ldots,\widehat{a},\widehat{b},\ldots)$$

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

$$f(\ldots,a,b,\ldots) = \frac{d\alpha}{\alpha} f_0(\ldots,\widehat{a},\widehat{b},\ldots)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude:

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude:

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus)

the sum of residues away from the origin:

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus)

the sum of residues away from the origin:

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus)

the sum of residues away from the origin:

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin:

 $\widehat{A}_{n}(\alpha)$ $1 \quad n$ $1 \quad n$ $1 \quad n$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin—these come in two types: factorization-channels

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin—these come in two types: factorization-channels and forward-limits

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin—these come in two types: factorization-channels and forward-limits

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(\alpha \to 0) \propto \oint \frac{d\alpha}{\alpha} \widehat{\mathcal{A}}_n(\alpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin—these come in two types: factorization-channels and forward-limits

Forward-limits and loop-momenta:

$$=\sum_{L,R} \frac{1}{1} \frac{1}{n} = \sum_{n=1}^{\infty} \frac{1}{n} \frac{A_{n+2}^{\ell-1}}{n}$$

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n \quad \text{with} \quad d^4 \ell = \frac{d^2 \lambda_I d^2 \widetilde{\lambda}_I}{\text{vol}(GL_1)} d\alpha \, \langle 1 \, I \rangle \, [n \, I]$$

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n \quad \text{with} \quad d^4 \ell = \frac{d^2 \lambda_I d^2 \widetilde{\lambda}_I}{\text{vol}(GL_1)} d\alpha \, \langle 1 \, I \rangle \, [n \, I]$$

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n \quad \text{with} \quad d^4 \ell = \frac{d^2 \lambda_I d^2 \widetilde{\lambda}_I}{\text{vol}(GL_1)} d\alpha \, \langle 1 \, I \rangle \, [n \, I]$$

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n$$
 with $d^4 \ell = d^3 LIPS_I d\alpha \langle 1 I \rangle [n I]$

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n$$
 with $d^4 \ell = d^3 LIPS_I d\alpha \langle 1 I \rangle [n I]$

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n$$
 with $d^4 \ell = d^3 LIPS_I d\alpha \langle 1 I \rangle [n I]$

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$!

$$A_4^{(2)} =$$

$$A_5^{(2)} =$$

$$A_{4}^{(2)} = \begin{bmatrix} 2 & 3 & 2 & 3 \\ & & & & \\ & & & \\ & & & & \\ & &$$

$$A_{4}^{(2)} = \begin{array}{c} 2 & 3 & 2 & 3 \\ 4 & 1 & 4 & 4 \\ 4 & 1 & 4$$

$$A_6^{(3)} =$$

$$A_6^{(3)} = 2 \underbrace{A_5^{(3)}}_{1} \underbrace{A_5^{(3)}}_{6}$$

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—e.g. $\mathcal{A}_6^{(3)}$:

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—e.g. $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

• varying recursion 'schema' can generate many 'BCFW formulae'

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—e.g. $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

• varying recursion 'schema' can generate many 'BCFW formulae'

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—e.g. $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

• varying recursion 'schema' can generate many 'BCFW formulae'

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—e.g. $\mathcal{A}_6^{(3)}$:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—e.g. $\mathcal{A}_6^{(3)}$:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—e.g. $\mathcal{A}_6^{(3)}$:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—e.g. $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
 - on-shell diagrams can often be related in surprising ways

Is there any way to invariantly characterize the on-shell functions associated with on-shell diagrams?

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—e.g. $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
 - on-shell diagrams can often be related in surprising ways

Is there any way to invariantly characterize the on-shell functions associated with on-shell diagrams?

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the *Yangian*

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

On-shell diagrams can be altered without changing their associated functions

On-shell diagrams can be altered without changing their associated functions

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

These moves leave invariant a permutation defined by 'left-right paths': Starting from any leg a, turn:

These moves leave invariant a permutation defined by 'left-right paths': Starting from any leg a, turn:

• left at each white vertex;

These moves leave invariant a permutation defined by 'left-right paths':

Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

These moves leave invariant a permutation defined by 'left-right paths':

Starting from any leg a, turn:

- *left* at each white vertex;
- right at each blue vertex.

These moves leave invariant a permutation defined by 'left-right paths':

Starting from any leg a, turn:

- *left* at each white vertex;
- right at each blue vertex.

These moves leave invariant a permutation defined by 'left-right paths'

Starting from any leg a, turn:

- *left* at each white vertex;
- right at each blue vertex.

These moves leave invariant a permutation defined by 'left-right paths'

Starting from any leg a, turn:

- *left* at each white vertex;
- right at each blue vertex.

These moves leave invariant a permutation defined by 'left-right paths'

Starting from any leg a, turn:

- *left* at each white vertex;
- right at each blue vertex.

These moves leave invariant a permutation defined by 'left-right paths'

Starting from any leg a, turn:

- *left* at each white vertex;
- right at each blue vertex.

These moves leave invariant a permutation defined by 'left-right paths'

Starting from any leg a, turn:

- *left* at each white vertex;
- right at each blue vertex.

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

These moves leave invariant a permutation defined by 'left-right paths'.

Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

left-right permutation σ $\sigma : \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \end{pmatrix}$

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

left-right permutation σ $\sigma : \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & & & & & \\ 3 & & & & & \end{pmatrix}$

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

left-right permutation σ $\sigma: \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & & & & \end{pmatrix}$

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

left-right permutation σ $\sigma : \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & 6 & \end{pmatrix}$

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

left-right permutation σ $\sigma : \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & 6 & 1 \end{pmatrix}$

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

left-right permutation σ $\sigma : \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & 6 & 1 & 2 \end{pmatrix}$

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

left-right permutation σ $\sigma: \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & 6 & 1 & 2 & 4 \end{pmatrix}$

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

left-right permutation σ $\sigma: \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & 6 & 1 & 2 & 4 \end{pmatrix}$

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $A_6^{(3)}$ were related by rotation:

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant.

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

• it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

- it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

- it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

- it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Such factors of $d\alpha/\alpha$ arising from bubble deletion encode loop integrands!

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the *Yangian*

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams.

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations: it merely transposes the images of σ !

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations: it merely transposes the images of σ !

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Read the other way,

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Read the other way,

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Read the other way, we can 'peel-off' bridges and thereby decompose a permutation into transpositions according to $\sigma = (ab) \circ \sigma'$

There are many ways to decompose a permutation into transpositions

There are many ways to decompose a permutation into transpositions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} f_1$$

'Bridge' Decomposition 1 2 3 4 5 6 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \tau$ $f_0 \{3 5 6 7 8 10\}$ $f_1 \{5 3 6 7 8 10\}$ (12)

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} f_1$$

'Bridge' Decomposition

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} f_2$$

'Bridge' Decomposition

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} f_2$$

'Bridg	ge' D	ecomp	position
$f_0 \begin{cases} 3 \\ f_1 \end{cases} \begin{cases} 5 \\ f_2 \end{cases} \begin{cases} 5 \end{cases}$	2 3 ↓ ↓ ↓ 5 6 3 6 6 3	4 5 ↓ ↓ ↓ 7 8 7 8 7 8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\}(12) \\ 10\}(23) \\ 10\}(12) \end{array} $

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} f_3$$

'Bridge' Decomposition

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} f_3$$

'Brid	ge' De	ecom	positi	on
$f_0 \begin{cases} 3 \\ 5 \\ f_1 \end{cases} \begin{cases} 5 \\ f_2 \end{cases} \begin{cases} 5 \\ f_3 \end{cases} \begin{cases} 6 \end{cases}$	2 3 ↓ ↓ ↓ 5 6 3 6 6 3 5 3	4 5 7 8 7 8 7 8 7 8	5 6 ↓ 3 10} 3 10} 3 10} 3 10}	τ 12) 23) 12) 24)

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} f_4$$

'Bridge' Decomposition 1 2 3 4 5 6 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow \tau$ $f_0 \{3 5 6 7 8 10\} (12)$ $f_1 \{5 3 6 7 8 10\} (23)$ $f_2 \{5 6 3 7 8 10\} (12)$ $f_3 \{6 5 3 7 8 10\} (12)$ $f_4 \{6 7 3 5 8 10\} (24)$

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} f_4$$

'Bridge' Decomposition

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} f_5$$

'Bridge' Decomposition

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} f_5$$

'Bridg	e' I	Deco	mpc	sition
	2	2 4		c

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} f_6$$

'Bridge' Decomposition

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} f_6$$

'Bridge' Decomposition							
1	2 ↓ 5 3 6 5 7 6	3 6 6 3 3 3	4 → 7 7 7 7 5 5	5 ↓ 8 8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\} \\ 10\} \\ 23) \\ 10\} \\ 12) \\ 10\} \\ 24) \\ 10\} \\ 10\} \\ 45) \\ 10\} \\ 24) $		

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} f_7$$

'Brid	ge'	De	eco	mp	osition
f_{0} {3} f_{1} {5} f_{2} {5} f_{3} {6} f_{4} {6} f_{5} {7	2 5 3 6 5 7 6	3	4 → 7 7 7 7 5 5	5 ↓ 8 8	$\begin{array}{c} 6 \\ \downarrow \tau \\ 10\} (12) \\ 10\} (23) \\ 10\} (12) \\ 10\} (24) \\ 10\} (12) \\ 10\} (45) \\ 10\} (24) \\ \end{array}$
$f_6 \{ 7 \\ f_7 \{ 7 \} $	8	3	8	5	10 $\{(24)$

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} f_7$$

	ion
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	au (12) (23)

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

'Bridg	ge'	De	ecoi	mţ	osition
1	2 ↓	3	4 ↓		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	5	↓ 6	₇	8	$10\}_{(1,2)}$
f_1 {5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2 {5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $
f_3 {6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	10}(12) 10}(24) 10}(12) 10}(45) 10}(24) 10}(46)
f_8 {7	8	3	10	5	$\{6\}^{(40)}$

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

'Brid	ge'	De	ecoi	mţ	osition
1	2	3	4		6 τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	↓ 6	↓ 7	8	
f_1 {5	3	6	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $
f_2 {5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10\}_{(45)}^{(12)}$
f_6 {7	6	3	8	5	$10\}_{(24)}^{(73)}$
f_7 {7	8	3	6	5	10}(12) 10}(24) 10}(12) 10}(45) 10}(24) 10}(46)
f_8 {7	8	3	10	5	$\left\{ 6\right\} ^{(40)}$

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

'Brid	lge'	De	ecoi	mp	osi	tion
	2 ↓					au
f_1 {5	3	6	7	8	10	\{(23)\{(12)\}(24)\}((45)\}((46))
$f_2 \{ 5 \}$	6	3	7	8	10	$\binom{(23)}{(12)}$
$f_2 \{5 \\ f_3 \{6 \}$	5	3	7	8	10	$\binom{(12)}{(24)}$
$f_4 \{ 6 \}$	7		5	8	10	$\binom{(24)}{(12)}$
f_5 {7	6	3	5	8	10	$\binom{12}{45}$
f_6 {7	6	3	8	5	10	$\{\frac{(43)}{(24)}\}$
f_7 {7	8	3	6	5	10	$\binom{(44)}{(46)}$
f_8 {7	8	3	10	5	6	}(+0)

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

'Brid	ge'	De	eco	mŗ	osi	tion
1	2	3	4 ↓	5	6	au
*	*	*	*	*	*	·
£ (5	6	2	7	0	10	1
f_2 {5	6	2	7	0	10	(12)
f_3 {6	3	3	/	8	10	$\frac{1}{(2.4)}$
f_4 {6	7	3	5	8	10	$\{(1,2)^{(1,2)}\}$
f_5 {7	6	3	5	8	10	$\binom{1}{(15)}$
f_6 {7	6	3	8	5	10	\{(12) \{(24) \{(12) \{(45) \{(24) \{(46)}
f_7 {7	8	3	6	5	10	$\binom{(24)}{(46)}$
f_8 {7	8	3	10	5	6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

'Bridge' Decomposition 1 2 3 4 5 6 f_3 {6 5 3 7 8 10}(24) f_4 {6 7 3 5 8 10}(12) f_5 {7 6 3 5 8 10}(45) f_6 {7 6 3 8 5 10}(24) f_7 {7 8 3 6 5 10}(24) f_8 {7 8 3 10 5 6}

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

'Bridge' Decomposition 1 2 3 4 5 6 f_4 {6 7 3 5 8 10}(12) f_5 {7 6 3 5 8 10}(45) f_6 {7 6 3 8 5 10}(24) f_7 {7 8 3 6 5 10}(24) f_8 {7 8 3 10 5 6}

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

'Bridge' Decomposition 1 2 3 4 5 6

$$f_5 \{7 \ 6 \ 3 \ 5 \ 8 \ 10\}_{(45)}$$
 $f_6 \{7 \ 6 \ 3 \ 8 \ 5 \ 10\}_{(24)}$
 $f_7 \{7 \ 8 \ 3 \ 6 \ 5 \ 10\}_{(46)}$
 $f_8 \{7 \ 8 \ 3 \ 10 \ 5 \ 6\}_{(46)}$

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

1 2 3 4 5 6 $f_6 \{7 \ 6 \ 3 \ 8 \ 5 \ 10\}_{(2 \ 4)}$ $f_7 \{7 \ 8 \ 3 \ 6 \ 5 \ 10\}_{(4 \ 6)}$

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

'Bridge' Decomposition 1 2 3 4 5 6 $f_7 \{7 \ 8 \ 3 \ 6 \ 5 \ 10\}$ $f_8 \{7 \ 8 \ 3 \ 10 \ 5 \ 6 \}$ (46)

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_8 = \prod_{a=\sigma(a)+n} \left(\delta^4(\widetilde{\eta}_a) \delta^2(\widetilde{\lambda}_a) \right) \prod_{b=\sigma(b)} \left(\delta^2(\lambda_b) \right)$$

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_8 = \prod_{\mathbf{a} = \sigma(\mathbf{a}) + n} \left(\delta^4(\widetilde{\eta}_{\mathbf{a}}) \delta^2(\widetilde{\lambda}_{\mathbf{a}}) \right) \prod_{b = \sigma(b)} \left(\delta^2(\lambda_b) \right)$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{0} & \frac{3}{0} & \frac{4}{0} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

'Bridge' Decomposition 1 2 3 4 5 6

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_8 = \delta^{3\times4} \big(C \cdot \widetilde{\eta}\big) \delta^{3\times2} \big(C \cdot \widetilde{\lambda}\big) \delta^{2\times3} \big(\lambda \cdot C^\perp\big)$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{0} & \frac{3}{0} & \frac{4}{0} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

'Bridge' Decomposition 1 2 3 4 5 6

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_8 = \delta^{3\times4} \big(C \cdot \widetilde{\eta}\big) \delta^{3\times2} \big(C \cdot \widetilde{\lambda}\big) \delta^{2\times3} \big(\lambda \cdot C^\perp\big)$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{0} & \frac{3}{0} & \frac{4}{0} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

'Bridge' Decomposition 1 2 3 4 5 6

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_7 = \frac{d\alpha_8}{\alpha_8} \delta^{3\times 4} (C \cdot \widetilde{\eta}) \delta^{3\times 2} (C \cdot \widetilde{\lambda}) \delta^{2\times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{0} & \frac{3}{0} & \frac{4}{0} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \alpha_8 \end{pmatrix}$$

$$(46): c_6 \mapsto c_6 + \alpha_8 c_4$$

'Bridge' Decomposition 1 2 3 4 5 6

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_6 = \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} \delta^{3\times4} (C \cdot \widetilde{\eta}) \delta^{3\times2} (C \cdot \widetilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_6 \{7 \ 6 \ 3 \ 8 \ 5 \ 10\}_{(24)}$$

 $f_7 \{7 \ 8 \ 3 \ 6 \ 5 \ 10\}_{(46)}$
 $f_8 \{7 \ 8 \ 3 \ 10 \ 5 \ 6\}_{(46)}$

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_5 = \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} \delta^{3\times 4} (C \cdot \widetilde{\eta}) \delta^{3\times 2} (C \cdot \widetilde{\lambda}) \delta^{2\times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{0} & \frac{3}{0} & \frac{4}{0} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & 0 & \alpha_7 & \alpha_6 \alpha_7 & 0 \\ 0 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix} \qquad f_5 \left\{ 7 & 6 & 3 & 5 & 8 & 10 \right\} (45) \\ (45): c_5 \mapsto c_5 + \alpha_6 c_4 \qquad f_8 \left\{ 7 & 8 & 3 & 6 & 5 & 10 \right\} (46) \\ \frac{1}{6} \left\{ 7 & 8 & 3 & 6 & 5 & 10 \right\} (46)$$

$$f_5$$
 {7 6 3 5 8 10}(45)
 f_6 {7 6 3 8 5 10}(24)
 f_7 {7 8 3 6 5 10}(46)
 f_8 {7 8 3 10 5 6}

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_4 = \frac{d\alpha_5}{\alpha_5} \cdots \frac{d\alpha_8}{\alpha_8} \delta^{3\times 4} (C \cdot \widetilde{\eta}) \delta^{3\times 2} (C \cdot \widetilde{\lambda}) \delta^{2\times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{\alpha_5} & \frac{3}{0} & \frac{4}{0} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & 0 & \alpha_7 & \alpha_6 \alpha_7 & 0 \\ 0 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

$$(12): c_2 \mapsto c_2 + \alpha_5 c_1$$

$$f_4 \{6 & 7 & 3 & 5 & 8 & 10\} (12)$$

$$f_5 \{7 & 6 & 3 & 5 & 8 & 10\} (45)$$

$$f_6 \{7 & 6 & 3 & 8 & 5 & 10\} (24)$$

$$f_7 \{7 & 8 & 3 & 6 & 5 & 10\} (46)$$

$$f_4$$
 {6 7 3 5 8 10}(12)
 f_5 {7 6 3 5 8 10}(45)
 f_6 {7 6 3 8 5 10}(24)
 f_7 {7 8 3 6 5 10}(24)
 f_8 {7 8 3 10 5 6}

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_3 = \frac{d\alpha_4}{\alpha_4} \cdots \frac{d\alpha_8}{\alpha_8} \delta^{3\times4} (C \cdot \widetilde{\eta}) \delta^{3\times2} (C \cdot \widetilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{\alpha_5} & \frac{3}{0} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & 0 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0 \\ 0 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

$$(24): c_4 \mapsto c_4 + \alpha_4 c_2$$

$$f_3$$
 {6 5 3 7 8 10}(24)
 f_4 {6 7 3 5 8 10}(12)
 f_5 {7 6 3 5 8 10}(45)
 f_6 {7 6 3 8 5 10}(24)
 f_7 {7 8 3 6 5 10}(24)
 f_8 {7 8 3 10 5 6}

There are many ways to decompose a permutation into transpositions—e.g., always choose the first transposition $\tau \equiv (a \ b)$ such that $\sigma(a) < \sigma(b)$:

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_2 = \frac{d\alpha_3}{\alpha_3} \cdots \frac{d\alpha_8}{\alpha_8} \delta^{3\times 4} (C \cdot \widetilde{\eta}) \delta^{3\times 2} (C \cdot \widetilde{\lambda}) \delta^{2\times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_3 + \alpha_5)} & \frac{3}{0} & \frac{4}{\alpha_4 \alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & 0 & (\alpha_4 + \alpha_7) & \alpha_6 & \alpha_7 & 0 \\ 0 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

$$(12): c_2 \mapsto c_2 + \alpha_3 c_1$$

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_1 = \frac{d\alpha_2}{\alpha_2} \cdots \frac{d\alpha_8}{\alpha_8} \delta^{3\times 4} (C \cdot \widetilde{\eta}) \delta^{3\times 2} (C \cdot \widetilde{\lambda}) \delta^{2\times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7)\alpha_6\alpha_7 & 0 \\ 0 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

$$(23): c_3 \mapsto c_3 + \alpha_2 c_2$$

	'B							tion
		1 ↓	2 ↓	3 ↓	4 ↓	5 ↓	6 ↓	au
)	f_1	{5	3	6	7	8	10]	(23)
	f_3	{5 {6	5	3	7	8	10	(12) $ (24)$
	f_4 f_5	{ 6 {7	7 6	3	5 5	8	10 10	(12)
	f_6 f_7	{7 {7	6 8	3	8	55	10] 10]	{(23) (12) (24) (12) (45) (24) (46)
	£	(7	0	2	10	5	6	(40)

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_0 = \frac{d\alpha_1}{\alpha_1} \cdots \frac{d\alpha_8}{\alpha_8} \delta^{3\times 4} (C \cdot \widetilde{\eta}) \delta^{3\times 2} (C \cdot \widetilde{\lambda}) \delta^{2\times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0 \\ 0 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

$$(12): c_2 \mapsto c_2 + \alpha_1 c_1$$

	'Brid	ge'	De	ecoi	mp	osition
	1	2	3	4	5	6 τ
	$f_0 \left\{ \begin{array}{l} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	$\overset{\downarrow}{7}$	8	$ \downarrow \tau $ $ 10} $ $ 10 \rbrace (12) $
-)	$f_1 \ \{ 5 \}$		6	7		
	<i>f</i> ₂ { 5	6	3	7	8	10 (2.3) (1.2)
	f_3 {6	5	3	7		$\{0\}_{(2,4)}$
	f_4 {6	7	3	5		$\{10\}_{(1,2)}$
	f_5 {7	6	3	5		$10\}_{(45)}^{(12)}$
	$f_6 \{7$	6	3	8	5	$\frac{10}{10}$ (24)
	$f_7 \{ 7 \}$	8		6	5	10 (46)
	$f_8 \{7$	8	3	10	5	6 } ()

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_0 = \frac{d\alpha_1}{\alpha_1} \cdots \frac{d\alpha_8}{\alpha_8} \delta^{3\times 4} (C \cdot \widetilde{\eta}) \delta^{3\times 2} (C \cdot \widetilde{\lambda}) \delta^{2\times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7)\alpha_6\alpha_7 & 0 \\ 0 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

$f_{0} \begin{cases} 3 & 5 & 6 & 7 & 8 & 10 \end{cases} (1) \\ f_{1} \begin{cases} 5 & 3 & 6 & 7 & 8 & 10 \end{cases} (2) \\ f_{2} \begin{cases} 5 & 6 & 3 & 7 & 8 & 10 \end{cases} (2) \\ f_{3} \begin{cases} 6 & 5 & 3 & 7 & 8 & 10 \end{cases} (2) \\ f_{4} \begin{cases} 6 & 7 & 3 & 5 & 8 & 10 \end{cases} (1) \\ f_{5} \begin{cases} 7 & 6 & 3 & 5 & 8 & 10 \end{cases} (2) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (2) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (2) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (2) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (3) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & $		'Brid	ge'	De	ecoi	mp	oosition
f_3 {6 5 3 7 8 10}(2) f_4 {6 7 3 5 8 10}(1) f_5 {7 6 3 5 8 10}(4) f_6 {7 6 3 8 5 10}(2)	^L)	$f_0 \begin{cases} 1 \\ \downarrow \\ f_0 \end{cases} \begin{cases} 3 \\ f_1 \end{cases} \{ 5 $	2 ↓ 5 3	3 ↓ 6		5 ↓ 8 8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\}\\ 10\}\\ (12)\\ (23) \end{array} $
$f_6 \{7 \ 6 \ 3 \ 8 \ 5 \ 10\}_{(2)}^{(4)}$		<i>f</i> ₃ {6 <i>f</i> ₄ {6	7	_		8 8	$10\}_{(1,2)}^{(2,4)}$
$f_7 \{7 \ 8 \ 3 \ 6 \ 5 \ 10\} $ $(4 \ f_8 \{7 \ 8 \ 3 \ 10 \ 5 \ 6\} $		$f_6 \ \{7\}$ $f_7 \ \{7\}$	6 8	3 3		5 5	10 $\{(45)$ $\{(24)\}$ $\{(46)\}$

$$f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$$

$$f_0 = \frac{d\alpha_1}{\alpha_1} \cdots \frac{d\alpha_8}{\alpha_8} \delta^{3\times 4} (C \cdot \widetilde{\eta}) \delta^{3\times 2} (C \cdot \widetilde{\lambda}) \delta^{2\times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7)\alpha_6\alpha_7 & 0 \\ 0 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

$f_{0} \begin{cases} 3 & 5 & 6 & 7 & 8 & 10 \end{cases} (1) \\ f_{1} \begin{cases} 5 & 3 & 6 & 7 & 8 & 10 \end{cases} (2) \\ f_{2} \begin{cases} 5 & 6 & 3 & 7 & 8 & 10 \end{cases} (2) \\ f_{3} \begin{cases} 6 & 5 & 3 & 7 & 8 & 10 \end{cases} (2) \\ f_{4} \begin{cases} 6 & 7 & 3 & 5 & 8 & 10 \end{cases} (1) \\ f_{5} \begin{cases} 7 & 6 & 3 & 5 & 8 & 10 \end{cases} (2) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (2) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (2) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (2) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (3) \\ f_{6} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 5 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 & 10 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & 3 & 8 \end{cases} (4) \\ f_{7} \begin{cases} 7 & 6 & $		'Brid	ge'	De	ecoi	mp	oosition
f_3 {6 5 3 7 8 10}(2) f_4 {6 7 3 5 8 10}(1) f_5 {7 6 3 5 8 10}(4) f_6 {7 6 3 8 5 10}(2)	^L)	$f_0 \begin{cases} 1 \\ \downarrow \\ f_0 \end{cases} \begin{cases} 3 \\ f_1 \end{cases} \{ 5 $	2 ↓ 5 3	3 ↓ 6		5 ↓ 8 8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\}\\ 10\}\\ (12)\\ (23) \end{array} $
$f_6 \{7 \ 6 \ 3 \ 8 \ 5 \ 10\}_{(2)}^{(4)}$		<i>f</i> ₃ {6 <i>f</i> ₄ {6	7	_		8 8	$10\}_{(1,2)}^{(2,4)}$
$f_7 \{7 \ 8 \ 3 \ 6 \ 5 \ 10\} $ $(4 \ f_8 \{7 \ 8 \ 3 \ 10 \ 5 \ 6\} $		$f_6 \ \{7\}$ $f_7 \ \{7\}$	6 8	3 3		5 5	10 $\{(45)$ $\{(24)\}$ $\{(46)\}$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & 0\\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0\\ 0 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

'Brid	lge'	De	ecoi	mŗ	osition
1	2	3	4	5	6 τ
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	6	↓ 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {5		6	7	8	10 (23) (23)
<i>f</i> ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7		$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5		$10\}_{(12)}^{(24)}$
f_5 {7	6	3	5		10 (45)
$f_6 \{ 7 \}$	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	10 (46)
$f_8 \{7$	8	3	10	5	6 }

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0 \\ \alpha_0\alpha_8 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

$$(61): c_1 \mapsto c_1 + \alpha_0 c_6$$

'Bridg	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	→ 5	♦	→ 7	♦	$ \begin{array}{c} \downarrow & \tau \\ 10\} \\ 10\} \\ 10\} \\ (23) \\ 10\} \\ (12) \end{array} $
$f_1 \{ 5 \}$	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f ₂ {5	6	3	7	8	$\frac{10}{10}$ (12)
<i>f</i> ₃ { 6	5	3	7	8	$10\}_{(2.4)}^{(1.2)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}^{(43)}$
f_7 {7	8		6	5	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ 6 \end{array} $
f_8 {7	8	3	10	5	6

'B	rid	ge'	De	ecoi	mŗ	osition
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	{5	6	3	7	8	10 (23) 10 (12)
f_3	{6	5	3	7	8	$\frac{10}{(24)}$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	1/21/1
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'B	rid	ge'	De	ecoi	mţ	osition
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	{5	6	3	7	8	10 (23) 10 (12)
f_3	{6	5	3	7	8	$\frac{10}{(24)}$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	1/21/1
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 τ			
f_0	$\left\{\stackrel{\star}{3}\right\}$	5	6	[*] 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $			
	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $			
f_3	{6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$			
f_4	6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $			
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6			

'B	'Bridge' Decomposition								
	1 ↓	2 ↓	3		5	6 ↓ τ			
f_0	${3 \choose 3}$	5	↓ 6	$\overset{\downarrow}{7}$	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$			
f_1		3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{10}$ (24)			
f_4	6	7	3	5	8	$10\}(12)$			
f_5	{7	6	3	5	8	$10\}(45)$			
f_6	{7	6	3	8	5	10 (24)			
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)			
f_8	{7	8	3	10	5	6			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4	5	6 τ			
f_0	${3 \choose 3}$	5	$\overset{\downarrow}{6}$	→ 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $			
f_1		3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$\frac{10}{10}$ (12)			
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ			
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	1/21/1			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ			
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	1/21/1			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ			
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	1/21/1			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ			
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	1/21/1			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	rid	ge'	De	ecoi	mţ	osition
	1 ↓	2 ↓	3		5	6 ↓ τ
f_0	${3 \choose 3}$	5	↓ 6	→ 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1		3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	5	6	3	7	8	10 (23) 10 (12)
f_3	6	5	3	7	8	$\frac{10}{10}$ (24)
f_4	6	7	3	5	8	$10\}(12)$
f_5	{7	6	3	5	8	$10\}(45)$
f_6	{7	6	3	8	5	10 (24)
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)
f_8	{7	8	3	10	5	6 } (40)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{5$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	10 (23) 10 (12)
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'B	rid	ge'	De	ecoi	mţ	osition
	1 ↓	2 ↓	3 ↓	4 ↓	5	6 ↓ τ
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$		8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	{5	6	3	7	8	10 (23) 10 (12)
f_3	{6	5	3	7	8	$\frac{10}{(24)}$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	1/71/1
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'B	rid	ge'	De	ecoi	mţ	osition
	1 ↓	2 ↓	3 ↓	4 ↓	5	6 ↓ τ
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$		8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	{5	6	3	7	8	10 (23) 10 (12)
f_3	{6	5	3	7	8	$\frac{10}{(24)}$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	1/71/1
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{5$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	10 (23) 10 (12)
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'Br	id	ge'	Dε	ecoi	mŗ	oosition
	1	2	3	4	5	6
f_0 {	3	5	↓ 6	$\overset{\downarrow}{7}$	♦	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {			6	7	8	10 (23)
f_2 {	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {	6	5	3	7		$10\}_{(24)}$
f_4 {	6	7	3	5		$10\}_{(1,2)}$
f_5 {	7	6	3	5	8	$10\}_{(4.5)}$
f_6 {		6	3	8	5	$10\}_{(24)}$
f_7 {		8		6	5	(46)
f_8 {	7	8	3	10	5	6 } (10)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{5$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	10 (23) 10 (12)
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'B	rid	ge'	De	eco:	mŗ	osition
	1	2 ↓	3 ↓	4 ↓	5	6 τ
f_0	${3 \choose 3}$	5	6	[*] 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	{5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $
f_3	{6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
f_4	<u>{</u> 6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{5$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	10 (23) 10 (12)
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'Bridg	ge'	De	eco	mp	osition
1	2	3	4	5	6 τ
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
f_1 {5		6	7	8	10 (23)
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 {6	7	3	5		$\{10\}_{(1,2)}$
f_5 {7	6	3	5		$\frac{10}{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	(46)
$f_8 \{7$	8	3	10	5	6 } (13)

'Br	id	ge'	Dε	ecoi	mŗ	oosition
	1	2	3	4	5	6
f_0 {	→ 3	5	↓ 6	$\overset{\downarrow}{7}$	♦	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {			6	7	8	10 (23)
f_2 {	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {	6	5	3	7		$10\}_{(24)}$
f_4 {	6	7	3	5		$10\}_{(1,2)}$
f_5 {	7	6	3	5	8	$10\}_{(4.5)}$
f_6 {		6	3	8	5	$10\}_{(24)}$
f_7 {		8		6	5	(46)
f_8 {	7	8	3	10	5	6 } (10)

'B	rid	ge'	De	ecoi	mŗ	osition
	1 ↓	2 ↓	3		5	6 ↓ τ
f_0	${3 \choose 3}$	5	↓ 6	→ 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1		3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	5	6	3	7	8	10 (23) 10 (12)
f_3	6	5	3	7	8	$\frac{10}{10}$ (24)
f_4	6	7	3	5	8	$10\}(12)$
f_5	{7	6	3	5	8	$10\}(45)$
f_6	{7	6	3	8	5	10 (24)
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)
f_8	{7	8	3	10	5	6 } (40)

'Br	id	ge'	Dε	ecoi	mŗ	oosition
	1	2	3	4	5	6
f_0 {	→ 3	5	↓ 6	$\overset{\downarrow}{7}$	♦	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {			6	7	8	10 (23)
f_2 {	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {	6	5	3	7		$10\}_{(24)}$
f_4 {	6	7	3	5		$10\}_{(1,2)}$
f_5 {	7	6	3	5	8	$10\}_{(4.5)}$
f_6 {		6	3	8	5	$10\}_{(24)}$
f_7 {		8		6	5	(46)
f_8 {	7	8	3	10	5	6 } (10)

'B	rid	ge'	De	eco:	mŗ	osition
	1	2	3 ↓	4 ↓	5	6 τ
f_0	${3 \choose 3}$	5	6	$\overset{\star}{7}$	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	5	6	3	7	8	10 (23) 10 (12)
f_3	{6	5	3	7	8	$\frac{10}{(24)}$
f_4	6	7	3	5	8	$\frac{10}{10}$ (12)
f_5	{7	6	3	5	8	$\frac{10}{10}$ (45)
f_6	{7	6	3	8	5	$\frac{10}{10}$ (24)
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'B	rid	ge'	De	ecoi	mŗ	osition
	1 ↓	2 ↓	3		5	6 ↓ τ
f_0	${3 \choose 3}$	5	↓ 6	→ 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1		3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	5	6	3	7	8	10 (23) 10 (12)
f_3	6	5	3	7	8	$\frac{10}{10}$ (24)
f_4	6	7	3	5	8	$10\}(12)$
f_5	{7	6	3	5	8	$10\}(45)$
f_6	{7	6	3	8	5	10 (24)
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)
f_8	{7	8	3	10	5	6 } (40)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{5$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	10 (23) 10 (12)
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'Brio	lge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{l} \downarrow \\ 3 \end{array} \right.$. ↓ 5	$\overset{\downarrow}{6}$	↓ 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \end{array}$
$f_1 \{ 5 \}$		6	7		10 (12)
$f_2 \{ 5 \}$	6	3	7	8	10 (23) 10 (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 {6	7	3	5		$10\}_{(1,2)}$
$f_5 \{ 7 \}$		3	5	8	$\frac{10}{(4.5)}$
$f_6 \{ 7 \}$		3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8		6	5	$10\}(21)$
$f_8 \{ 7 \}$	8	3	10	5	6 } ()

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{5$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	10 (23) 10 (12)
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	♦	→ 7	♦	$ \begin{array}{c} \downarrow & \tau \\ 10\} \\ 10\} \\ 10\} \\ (23) \\ 10\} \\ (12) \end{array} $
$f_1 \{ 5 \}$	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f ₂ {5	6	3	7	8	$\frac{10}{10}$ (12)
<i>f</i> ₃ {6	5	3	7	8	$10\}_{(2.4)}^{(1.2)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}^{(43)}$
f_7 {7	8		6	5	$10\}_{(46)}^{(24)}$
f_8 {7	8	3	10	5	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ 6 \end{array} $

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{ 5 \}$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	10 (23) 10 (12)
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	♦	→ 7	♦	$ \begin{array}{c} \downarrow & \tau \\ 10\} \\ 10\} \\ 10\} \\ (23) \\ 10\} \\ (12) \end{array} $
$f_1 \{ 5 \}$	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f ₂ {5	6	3	7	8	$\frac{10}{10}$ (12)
<i>f</i> ₃ {6	5	3	7	8	$10\}_{(2.4)}^{(1.2)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}^{(43)}$
f_7 {7	8		6	5	$10\}_{(46)}^{(24)}$
f_8 {7	8	3	10	5	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ 6 \end{array} $

'Bri	dge	' De	eco	mŗ	osition
	1 2	3	4	5	6
f_0 {	\downarrow	$\overset{\downarrow}{6}$	$\stackrel{\downarrow}{7}$	♦	$\downarrow \tau$ 10 $\rbrace_{(1,2)}$
f_1 {:	5 3	6	7		101(12)
f_2 {		3	7		$10^{(23)}$
f_3 {		3	7	8	$10^{10}(12)$ $10^{10}(12)$
f_4 {		3	5	8	$10^{10}(24)$ $10^{10}(12)$
f_5 {	7 6	3	5	8	10 (12) 10 (45)
f_6 {		3	8	5	$10\}_{(24)}^{(43)}$
f_7 {	7 8	3	6	5	$10\}_{(46)}^{(24)}$
f_8 {	7 8	3	10	5	6 }(40)

'Bridg	ge'	De	ecoi	mŗ	osition
1	2	3		5	6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓ 6	$\overset{\downarrow}{7}$	♦	$ \downarrow \tau $ 10} 10)(12)
f_1 {5		6	7	8	$10\}_{(2,3)}^{(1,2)}$
f ₂ { 5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5		$\frac{10}{(1.2)}$
$f_5 \ \{7$	6	3	5		$10\}_{(4.5)}$
f_6 {7	6	3	8		$10\}_{(24)}$
f_7 {7	8	3	6	5	10 (46)
f_8 {7	8	3	10	5	6 }(40)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{ 5 \}$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	10 (23) 10 (12)
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'Brid	ge'	De	eco	mŗ	osition
1					6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓	↓ 7	γ	$\downarrow \tau$
$f_1 \{ 5 \}$		6	7	8	$\frac{10}{10}$ (12)
f_2 {5	6	3	7	8	10 $\{(23)$ $\{(23)\}$ $\{(12)\}$
f_3 {6	5	3	7		101(12)
f_4 {6	7	3	5	8	$10^{10}(24)$ $10^{10}(12)$
f_5 {7	6	3	5	8	10 (12) 10 (45)
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	10 (24) 10 (46)
f_8 {7	8	3	10	5	6 } (40)

'Br	id	ge'	Dε	ecoi	mŗ	oosition
	1	2	3	4	5	6
f_0 {	→ 3	5	↓ 6	$\overset{\downarrow}{7}$	♦	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {			6	7	8	10 (23)
f_2 {	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {	6	5	3	7		$10\}_{(24)}$
f_4 {	6	7	3	5		$10\}_{(1,2)}$
f_5 {	7	6	3	5	8	$10\}_{(4.5)}$
f_6 {		6	3	8	5	$10\}_{(24)}$
f_7 {		8		6	5	(46)
f_8 {	7	8	3	10	5	6 } (10)

'Bridg	ge'	De	ecoi	mŗ	osition
1	2	3		5	6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓ 6	$\overset{\downarrow}{7}$	♦	$ \downarrow \tau $ 10} 10)(12)
f_1 {5		6	7	8	$10\}_{(2,3)}^{(1,2)}$
f ₂ { 5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5		$\frac{10}{(1.2)}$
$f_5 \ \{7$	6	3	5		$10\}_{(4.5)}$
f_6 {7	6	3	8		$10\}_{(24)}$
f_7 {7	8	3	6	5	10 (46)
f_8 {7	8	3	10	5	6 }(40)

'Brid	ge'	De	eco	mŗ	osition
1					6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓	↓ 7	γ	$\downarrow \tau$
$f_1 \{ 5 \}$		6	7	8	$\frac{10}{10}$ (12)
f_2 {5	6	3	7	8	10 $\{(23)$ $\{(23)\}$ $\{(12)\}$
f_3 {6	5	3	7		101(12)
f_4 {6	7	3	5	8	$10^{10}(24)$ $10^{10}(12)$
f_5 {7	6	3	5	8	10 (12) 10 (45)
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	10 (24) 10 (46)
f_8 {7	8	3	10	5	6 } (40)

'Brid	'Bridge' Decomposition									
1	2	3	4	5	6 τ					
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $					
f_1 {5		6	7	8	10 (23)					
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)					
f_3 {6	5	3	7		$10\}_{(24)}$					
f_4 {6	7	3	5		$\frac{10}{10}$ (12)					
f_5 {7	6	3	5		$10\}_{(4.5)}$					
$f_6 \{7$	6	3	8	5	$10\}_{(24)}$					
$f_7 \{ 7 \}$	8	3	6	5	(46)					
$f_8 \ \{7$	8	3	10	5	6 }					

'Brid	ge'	De	eco	mŗ	osit	ion
1	2	3	4	5	6	_
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	↓ 5	♦	↓ 7	γ	↓ 10}	au
$f_1 \{5$		6	7	8	10)	(12)
f_2 {5	6	3	7		10}	(23)
f_3 {6	5	3	7		10}	(12)
f_4 {6	7	3	5	8	10}	(24)
f_5 {7	6	3	5	8	10)	$\begin{array}{c} (12) \\ (45) \end{array}$
f_6 {7	6	3	8	5	10}	(24)
f_7 {7	8	3	6	5	10	(46)
f_8 {7	8	3	10	5	6 }	(+0)

'Brid	'Bridge' Decomposition									
1	2	3	4	5	6					
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	5	6	† 7	8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\} \\ 10\} \\ \end{array} $					
$f_1 \{ 5 \}$	3	6	7	_	-~ J/ ^ 2\					
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)					
f_3 {6	5	3	7		$10\}_{(24)}$					
f_4 { 6	7	3	5		$\{10\}_{(1,2)}$					
f_5 {7	6	3	5	8	$10\}_{(4.5)}$					
f_6 {7	6	3	8	5	$10\}_{(24)}$					
f_7 {7	8	3	6	5	1461					
f_8 {7	8	3	10	5	6					

'Brid	ge'	De	eco	mŗ	osition
1					6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓	↓ 7	γ	$\downarrow \tau$
$f_1 \{ 5 \}$		6	7	8	$\frac{10}{10}$ (12)
f_2 {5	6	3	7	8	10 $\{(23)$ $\{(23)\}$ $\{(12)\}$
f_3 {6	5	3	7		101(12)
f_4 {6	7	3	5	8	$10^{10}(24)$ $10^{10}(12)$
f_5 {7	6	3	5	8	10 (12) 10 (45)
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	10 (24) 10 (46)
f_8 {7	8	3	10	5	6 } (40)

'Brid	'Bridge' Decomposition									
1	2	3	4	5	6 τ					
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $					
f_1 {5		6	7	8	10 (23)					
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)					
f_3 {6	5	3	7		$10\}_{(24)}$					
f_4 {6	7	3	5		$\frac{10}{10}$ (12)					
f_5 {7	6	3	5		$10\}_{(4.5)}$					
$f_6 \{7$	6	3	8	5	$10\}_{(24)}$					
$f_7 \{ 7 \}$	8	3	6	5	(46)					
$f_8 \ \{7$	8	3	10	5	6 }					

'Brid	'Bridge' Decomposition									
1	2	3	4	5	6					
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	♦	→ 7	♦	$ \begin{array}{c} \downarrow & \tau \\ 10\} \\ 10\} \\ 10\} \\ (23) \\ 10\} \\ (12) \end{array} $					
$f_1 \{ 5 \}$	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$					
f ₂ {5	6	3	7	8	$\frac{10}{10}$ (12)					
<i>f</i> ₃ {6	5	3	7	8	$10\}_{(2.4)}^{(1.2)}$					
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $					
f_5 {7	6	3	5	8	$10\}_{(4.5)}$					
f_6 {7	6	3	8	5	$10\}_{(24)}^{(43)}$					
f_7 {7	8		6	5	$10\}_{(46)}^{(24)}$					
f_8 {7	8	3	10	5	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ 6 \end{array} $					

'Brid	'Bridge' Decomposition									
1	2	3	4	5	6					
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	♦	→ 7	♦	$ \begin{array}{c} \downarrow & \tau \\ 10\} \\ 10\} \\ 10\} \\ (23) \\ 10\} \\ (12) \end{array} $					
$f_1 \{ 5 \}$	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$					
f ₂ {5	6	3	7	8	$\frac{10}{10}$ (12)					
f_3 {6	5	3	7	8	$10\}_{(2.4)}^{(1.2)}$					
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $					
f_5 {7	6	3	5	8	$10\}_{(4.5)}$					
f_6 {7	6	3	8	5	$10\}_{(24)}^{(43)}$					
f_7 {7	8		6	5	$10\}_{(46)}^{(24)}$					
f_8 {7	8	3	10	5	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ 6 \end{array} $					

'Brid	'Bridge' Decomposition									
1	2	3	4	5	6					
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	♦	→ 7	♦	$ \begin{array}{c} \downarrow & \tau \\ 10\} \\ 10\} \\ 10\} \\ (23) \\ 10\} \\ (12) \end{array} $					
$f_1 \{ 5 \}$	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$					
f ₂ {5	6	3	7	8	$\frac{10}{10}$ (12)					
f_3 {6	5	3	7	8	$10\}_{(2.4)}^{(1.2)}$					
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $					
f_5 {7	6	3	5	8	$10\}_{(4.5)}$					
f_6 {7	6	3	8	5	$10\}_{(24)}^{(43)}$					
f_7 {7	8		6	5	$10\}_{(46)}^{(24)}$					
f_8 {7	8	3	10	5	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ 6 \end{array} $					

'Brid	ge'	De	eco	mŗ	osition
1					6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓	↓ 7	γ	$\downarrow \tau$
$f_1 \{ 5 \}$		6	7	8	$\frac{10}{10}$ (12)
f_2 {5	6	3	7	8	10 $\{(23)$ $\{(23)\}$ $\{(12)\}$
f_3 {6	5	3	7		101(12)
f_4 {6	7	3	5	8	$10^{10}(24)$ $10^{10}(12)$
f_5 {7	6	3	5	8	10 (12) 10 (45)
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	10 (24) 10 (46)
f_8 {7	8	3	10	5	6 } (40)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{ 5 \}$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'Brid	ge'	De	eco	mŗ	osit	ion
1	2	3	4	5	6	_
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	↓ 5	♦	↓ 7	γ	↓ 10}	au
$f_1 \{5$		6	7	8	10)	(12)
f_2 {5	6	3	7		10}	(23)
f_3 {6	5	3	7		10}	(12)
f_4 {6	7	3	5	8	10}	(24)
f_5 {7	6	3	5	8	10)	$\begin{array}{c} (12) \\ (45) \end{array}$
f_6 {7	6	3	8	5	10}	(24)
f_7 {7	8	3	6	5	10	(46)
f_8 {7	8	3	10	5	6 }	(+0)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{ 5 \}$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \{7$	8	3	10	5	6 } (10)

'Brid	ge'	De	eco	mp	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
f_1 {5		6	7	8	10 (23)
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 {6	7	3	5		$\frac{10}{10}$ (12)
f_5 {7	6	3	5		$10\}_{(4.5)}$
$f_6 \{7$	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	(46)
$f_8 \ \{7$	8	3	10	5	6 }

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	5	6	† 7	8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\} \\ 10\} \\ \end{array} $
$f_1 \{ 5 \}$	3	6	7	_	-~ J/ ^ 2\
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 { 6	7	3	5		$\{10\}_{(1,2)}$
f_5 {7	6	3	5	8	$10\}_{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}$
f_7 {7	8	3	6	5	100/(46)
f_8 {7	8	3	10	5	6

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	5	6	† 7	8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\} \\ 10\} \\ \end{array} $
$f_1 \{ 5 \}$	3	6	7	_	-~ J/ ^ 2\
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 { 6	7	3	5		$\{10\}_{(1,2)}$
f_5 {7	6	3	5	8	$10\}_{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}$
f_7 {7	8	3	6	5	100/(46)
f_8 {7	8	3	10	5	6

'Brid	ge'	De	eco	mŗ	osition
1					6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓	↓ 7	γ	$\downarrow \tau$
$f_1 \{ 5 \}$		6	7	8	$\frac{10}{10}$ (12)
f_2 {5	6	3	7	8	10 $\{(23)$ $\{(23)\}$ $\{(12)\}$
f_3 {6	5	3	7		101(12)
f_4 {6	7	3	5	8	$10^{10}(24)$ $10^{10}(12)$
f_5 {7	6	3	5	8	10 (12) 10 (45)
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	10 (24) 10 (46)
f_8 {7	8	3	10	5	6 } (40)

'Brid	ge'	De	eco	mp	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
f_1 {5		6	7	8	10 (23)
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 {6	7	3	5		$\frac{10}{10}$ (12)
f_5 {7	6	3	5		$10\}_{(4.5)}$
$f_6 \{7$	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	(46)
$f_8 \ \{7$	8	3	10	5	6 }

'Brid	ge'	De	eco	mŗ	osition
1					6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓	↓ 7	γ	$\downarrow \tau$
$f_1 \{ 5 \}$		6	7	8	$\frac{10}{10}$ (12)
f_2 {5	6	3	7	8	10 $\{(23)$ $\{(23)\}$ $\{(12)\}$
f_3 {6	5	3	7		101(12)
f_4 {6	7	3	5	8	$10^{10}(24)$ $10^{10}(12)$
f_5 {7	6	3	5	8	10 (12) 10 (45)
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	10 (24) 10 (46)
f_8 {7	8	3	10	5	6 } (40)

'Brid	lge'	De	ecoi	mŗ	osition
1	2	3	4	5	6 τ
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	6	↓ 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {5		6	7	8	10 (23) (23)
<i>f</i> ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7		$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5		$10\}_{(12)}^{(24)}$
f_5 {7	6	3	5		10 (45)
$f_6 \{ 7 \}$	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	10 (46)
$f_8 \{7$	8	3	10	5	6 }

'Brid	lge'	De	ecoi	mŗ	osition
1	2	3	4	5	6 τ
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	6	↓ 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {5		6	7	8	10 (23) (23)
<i>f</i> ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7		$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5		$10\}_{(12)}^{(24)}$
f_5 {7	6	3	5		10 (45)
$f_6 \{ 7 \}$	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	10 (46)
$f_8 \{7$	8	3	10	5	6 }

'Bridg	ge'	De	eco:	mŗ	osit	ion
1	2	3	4	5	6	_
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	↓ 5	♦	→ 7	♦	↓ 10}	τ
$f_1 \{ 5 \}$	3	6			10}	(12)
f_2 {5	6	3	7		10	(23)
f_3 {6	5	3	7	8	10	(12)
f_4 {6	7	3	5	8	10}	(24) (12)
f_5 {7	6	3	5	8	10	(45)
f_6 {7	6	3	8	5	10}	(24)
f_7 {7	8		6	5	10)	(46)
$f_8 \{7$	8	3	10	5	6 }	(.0)

'Bridg	ge'	De	eco	mŗ	osit	ion
1	2	3		5	6	
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	↓ 5	↓ 6	↓ 7	♦	↓ 10}	au (12)
$f_1 \{ 5 \}$		6	7	8		(12) (23)
f ₂ {5	6	3	7	8	10	(23) (12)
f_3 {6	5	3	7		10}	(24)
f_4 {6	7	3	5		10}	(12)
f_5 {7	6	3	5		10}	(45)
$f_6 \{7\}$	6	3	8	5	10}	(24)
$f_7 \{ 7 \}$	8	3	6	5	10)	(46)
f_8 {/	8	3	10	5	6 }	

'Bridg	ge'	De	eco	mŗ	osition
1	2	3		5	6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓ 6		♦	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
$f_1 \{ 5 \}$		6	7	8	10 (23) (23)
f ₂ {5	6	3	7	8	10 (12) (12)
f_3 {6	5	3	7		10 ₍₂₄₎
f_4 {6	7	3	5		$\frac{10}{(1.2)}$
$f_5 \{7$	6	3	5	8	$\frac{10}{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}$
$f_7 \{7$	8	3	6	5	$\frac{10}{(46)}$
$f_8 \{7$	8	3	10	5	6 } (10)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	6	† 7	8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10 \\ 10 \end{array} $
$f_1 \{ 5 \}$	3	6	7	8	10 (23)
<i>f</i> ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7		$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5		$10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5		$10\}_{(45)}^{(12)}$
f_6 {7	6	3	8	5	(2.4)
$f_7 \{7\}$	8		6	5	(46)
$f_8 \{ 7 \}$	8	3	10	5	6 }

'Brid	ge'	De	eco	mp	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
f_1 {5		6	7	8	10 (23)
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 {6	7	3	5		$\frac{10}{10}$ (12)
f_5 {7	6	3	5		$10\}_{(4.5)}$
$f_6 \{7$	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	(46)
$f_8 \ \{7$	8	3	10	5	6 }

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	5	6	† 7	8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\} \\ 10\} \\ \end{array} $
$f_1 \{ 5 \}$	3	6	7	_	-~ J/ ^ 2\
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 { 6	7	3	5		$\{10\}_{(1,2)}$
f_5 {7	6	3	5	8	$10\}_{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}$
f_7 {7	8	3	6	5	100/(46)
f_8 {7	8	3	10	5	6

'Brid	lge'	De	ecoi	mŗ	osition
1	2	3	4	5	6 τ
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	6	↓ 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {5		6	7	8	10 (23) (23)
<i>f</i> ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7		$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5		$10\}_{(12)}^{(24)}$
f_5 {7	6	3	5		10 (45)
$f_6 \{ 7 \}$	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	10 (46)
$f_8 \{7$	8	3	10	5	6 }

'Brid	ge'	De	eco	mp	osition
1	2	3	4	5	6 τ
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
f_1 {5		6	7	8	10 (23)
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 {6	7	3	5		$\frac{10}{10}$ (12)
f_5 {7	6	3	5		$10\}_{(4.5)}$
$f_6 \{7$	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	(46)
$f_8 \ \{7$	8	3	10	5	6 }

'Brid	lge'	De	ecoi	mŗ	osition
1	2	3	4	5	6 τ
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	6	↓ 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {5		6	7	8	10 (23) (23)
<i>f</i> ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7		$10\}_{(24)}^{(12)}$
f_4 {6	7	3	5		$10\}_{(12)}^{(24)}$
f_5 {7	6	3	5		10 (45)
$f_6 \{ 7 \}$	6	3	8	5	$10\}_{(24)}$
$f_7 \{ 7 \}$	8	3	6	5	10 (46)
$f_8 \{7$	8	3	10	5	6 }

'Bridg	ge'	De	eco	mŗ	osit	ion
1	2	3		5	6	
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	↓ 5	↓ 6	↓ 7	♦	↓ 10}	au (12)
$f_1 \{ 5 \}$		6	7	8		(12) (23)
f ₂ {5	6	3	7	8	10	(23) (12)
f_3 {6	5	3	7		10}	(24)
f_4 {6	7	3	5		10}	(12)
f_5 {7	6	3	5		10}	(45)
$f_6 \{7\}$	6	3	8	5	10}	(24)
$f_7 \{ 7 \}$	8	3	6	5	10)	(46)
f_8 {/	8	3	10	5	6 }	

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	5	6	† 7	8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\} \\ 10\} \\ \end{array} $
$f_1 \{ 5 \}$	3	6	7	_	-~ J/ ^ 2\
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 { 6	7	3	5		$\{10\}_{(1,2)}$
f_5 {7	6	3	5	8	$10\}_{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}$
f_7 {7	8	3	6	5	1461
f_8 {7	8	3	10	5	6

'Brid	ge'	De	eco	mŗ	osition
1					6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓	↓ 7	γ	$\downarrow \tau$
$f_1 \{ 5 \}$		6	7	8	$\frac{10}{10}$ (12)
f_2 {5	6	3	7	8	10 $\{(23)$ $\{(23)\}$ $\{(12)\}$
f_3 {6	5	3	7		101(12)
f_4 {6	7	3	5	8	$10^{10}(24)$ $10^{10}(12)$
f_5 {7	6	3	5	8	10 (12) 10 (45)
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	10 (24) 10 (46)
f_8 {7	8	3	10	5	6 } (40)

'Brid	'Bridge' Decomposition								
1	2	3	4	5	6 τ				
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $				
f_1 {5		6	7	8	10 (23)				
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)				
f_3 {6	5	3	7		$10\}_{(24)}$				
f_4 {6	7	3	5		$\frac{10}{10}$ (12)				
f_5 {7	6	3	5		$10\}_{(4.5)}$				
$f_6 \{7$	6	3	8	5	$10\}_{(24)}$				
$f_7 \{ 7 \}$	8	3	6	5	(46)				
$f_8 \ \{7$	8	3	10	5	6 }				

'Bri	'Bridge' Decomposition								
	1 2	3	4	5	6				
f_0 {	\downarrow	$\overset{\downarrow}{6}$	$\stackrel{\downarrow}{7}$	♦	$\downarrow \tau$ 10 $\rbrace_{(1,2)}$				
f_1 {:	5 3	6	7		101(12)				
f_2 {		3	7		$10^{(23)}$				
f_3 {		3	7	8	$10^{10}(12)$ $10^{10}(12)$				
f_4 {		3	5	8	$10^{10}(24)$ $10^{10}(12)$				
f_5 {	7 6	3	5	8	10 (12) 10 (45)				
f_6 {		3	8	5	$10\}_{(24)}^{(43)}$				
f_7 {	7 8	3	6	5	$10\}_{(46)}^{(24)}$				
f_8 {	7 8	3	10	5	6 }(40)				

'Br	'Bridge' Decomposition								
	1 ↓	2 ↓	3 ↓	4 ↓	5	6 ↓ τ			
f_0 {	* [3	5	6		8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$			
f_1 {		3	6	7	8	10 (23)			
f_2 {	5	6	3	7	8	$\frac{10}{10}$ (12)			
f_3 {	6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$			
f_4 {	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5 {	[7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$			
f_6 {	[7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$			
f_7 {	[7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8 {	[7	8	3	10	5	6			

'Brid	'Bridge' Decomposition								
1	2	3	4	5	6 τ				
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	6	↓ 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $				
f_1 {5		6	7	8	10 (23) (23)				
<i>f</i> ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$				
f_3 {6	5	3	7		$10\}_{(24)}^{(12)}$				
f_4 {6	7	3	5		$10\}_{(12)}^{(24)}$				
f_5 {7	6	3	5		10 (45)				
$f_6 \{ 7 \}$	6	3	8	5	$10\}_{(24)}$				
$f_7 \{ 7 \}$	8	3	6	5	10 (46)				
$f_8 \{7$	8	3	10	5	6 }				

'Bri	dge	' De	eco:	mŗ	osit	ion
	1 2		4		6	au
f_0 {	$\stackrel{\downarrow}{3} \stackrel{\downarrow}{5}$	6	↓ 7	8	↓ 10}	(12)
f_1 {:			7	8	10}	(23)
f_2 {	5 6	3	7	8	10}	(23)
f_3 {	6 5	3	7	8	10}	(12)
f_4 {	6 7	3	5	8	10}	(24) (12)
f_5 {	7 6	3	5	8	10}	
f_6 {	7 6	3	8	5	10}	(45)
f_7 {	7 8	3	6	5	10}	(24)
f_8 {	7 8	3	10	5	6 }	(40)

'Bri	dge	' De	eco:	mŗ	osit	ion
	1 2		4		6	au
f_0 {	$\stackrel{\downarrow}{3} \stackrel{\downarrow}{5}$	6	↓ 7	8	↓ 10}	(12)
f_1 {:			7	8	10}	(23)
f_2 {	5 6	3	7	8	10}	(23)
f_3 {	6 5	3	7	8	10}	(12)
f_4 {	6 7	3	5	8	10}	(24) (12)
f_5 {	7 6	3	5	8	10}	
f_6 {	7 6	3	8	5	10}	(45)
f_7 {	7 8	3	6	5	10}	(24)
f_8 {	7 8	3	10	5	6 }	(40)

'Bri	dge	' De	eco:	mŗ	osit	ion
	1 2		4		6	au
f_0 {	$\stackrel{\downarrow}{3} \stackrel{\downarrow}{5}$	6	↓ 7	8	↓ 10}	(12)
f_1 {:			7	8	10}	(23)
f_2 {	5 6	3	7	8	10}	(23)
f_3 {	6 5	3	7	8	10}	(12)
f_4 {	6 7	3	5	8	10}	(24) (12)
f_5 {	7 6	3	5	8	10}	
f_6 {	7 6	3	8	5	10}	(45)
f_7 {	7 8	3	6	5	10}	(24)
f_8 {	7 8	3	10	5	6 }	(40)

'Bri	dge	' De	eco:	mŗ	osit	ion
	1 2		4		6	au
f_0 {	$\stackrel{\downarrow}{3} \stackrel{\downarrow}{5}$	6	↓ 7	8	↓ 10}	(12)
f_1 {:			7	8	10}	(23)
f_2 {	5 6	3	7	8	10}	(23)
f_3 {	6 5	3	7	8	10}	(12)
f_4 {	6 7	3	5	8	10}	(24) (12)
f_5 {	7 6	3	5	8	10}	
f_6 {	7 6	3	8	5	10}	(45)
f_7 {	7 8	3	6	5	10}	(24)
f_8 {	7 8	3	10	5	6 }	(40)

'Bri	dge	' De	eco:	mŗ	osit	ion
	1 2		4		6	au
f_0 {	$\stackrel{\downarrow}{3} \stackrel{\downarrow}{5}$	6	↓ 7	8	↓ 10}	(12)
f_1 {:			7	8	10}	(23)
f_2 {	5 6	3	7	8	10}	(23)
f_3 {	6 5	3	7	8	10}	(12)
f_4 {	6 7	3	5	8	10}	(24) (12)
f_5 {	7 6	3	5	8	10}	
f_6 {	7 6	3	8	5	10}	(45)
f_7 {	7 8	3	6	5	10}	(24)
f_8 {	7 8	3	10	5	6 }	(40)

'Bridg	ge'	De	ecoi	mŗ	osit	ion
1	2	3	4	5	6	au
<i>t</i> o 3.3	↓ 5	6	†	8	[↓] 10}	au (12)
$f_1 \{ 5 \}$	3	6	7	8	10}	(12) (23)
<i>f</i> ₂ { 5	6	3	7		10}	(23)
f_3 {6	5	3	7		10}	(24)
f_4 { 6	7	3	5		$10\}$	(27)
f_5 {7	6	3	5	8	$10\}$	(45)
f_6 {7	6	3	8	5	10}	(1 3) (24)
f_7 {7	8	3	6	5	10)	(44) (46)
f_8 {7	8	3	10	5	6 }	(+0)

'Brid	ge'	De	eco	mp	osition
f_0 {3	2 ↓ 5	3 ↓ 6	4 ↓ 7	5 ↓ 8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10 \\ 10 \\ 10 \\ 10 \end{array} $
f_1 {5 f_2 {5	3	6 3	7 7	8	10 (23) (23) (12)
f_3 {6 f_4 {6	5 7	3	7 5	8	10 $\{(24)$ $\{(12)\}$ $\{$
$f_5 \ \{7 \ f_6 \ \{7 \ f_6 \ \}\}$	6	3	5	8	$10\}_{(45)}^{(12)}$
f_7 {7 f_8 {7	8	3 3	6 10		$10\}_{(46)}^{(24)}$

'Brio	lge'	De	ecoi	mp	osition
f_0 {3		3 ↓ 6	4 ↓ 7	8	$\downarrow \tau$ 10 ₁₀
$f_1 \ \{5\}$ $f_2 \ \{5\}$ $f_3 \ \{6\}$	6	633	7 7 7	8	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \end{array} $ $ \begin{array}{c} (23) \\ 10 \end{array} $
$f_4 \ \{ 6 \ f_5 \ \{ 7 \ \} \}$	7 6	3	5 5	8 8	$ \begin{array}{c} 10 \\ (12) \\ 10 \\ (45) \end{array} $
$f_6 \ \{7\}$ $f_7 \ \{7\}$ $f_8 \ \{7\}$		3 3 3	8 6 10	555	10 $\{(24)\}$ $\{(46)\}$

'Brid	ge'	De	ecoi	mp	osition
1 ↓ f ₀ {3	2 ↓ 5	3 ↓ 6	4 ↓ 7	5 ↓ 8	6 ↓ τ 10} _(1.2)
f_1 {5 f_2 {5	3	6 3	7 7	8	10 $\{(23)$ $\{(23)\}$ $\{(23)\}$ $\{(23)\}$ $\{(23)\}$ $\{(23)\}$ $\{(23)\}$ $\{(23)\}$ $\{(23)\}$ $\{(23)\}$
f_3 {6 f_4 {6	5	3	7 5	8	$ \begin{array}{c} (12) \\ 10 \\ (24) \\ 10 \\ (12) \end{array} $
$f_5 \ \{7 \ f_6 \ \{7 \ \}\}$	6	3	5	8 5	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 45 \end{array} $
$f_{7} \{7\}$	8	3 3	6 10	5 5	10 $\begin{cases} (24) \\ (46) \end{cases}$

'Brio	'Bridge' Decomposition								
1	. 2	3	4			au			
$f_0 \left\{ 3 \right\}$	√5	6	$\overset{\downarrow}{7}$	8	↓ 10}	τ (12)			
$f_1 $ {5	3		7		10	(23)			
f_2 {5		3	7		10}	(12)			
$f_3 \{ \epsilon \}$		3	7		10}	(24)			
$f_4 \left\{ e \right\}$		3	5		10	(12)			
$f_5 \ \{7, f_6 \ \}$		3	5 8	5	10 }	(45)			
$f_7 \{ 7 \}$		J	6	5	,	(24)			
f_8 {7	8	3	10	5	-)	(46)			

'Brio	dge'	De	eco:	mŗ	osit	tion
1	2	3	4	5	6	au
f_0 {	↓5	$\overset{\downarrow}{6}$	↓ 7	8	10}	
$f_1 \{ 5 \}$		6	7	8	10}	(23)
f_2 {5	6	3	7	8	10}	(23)
$f_3 \{ \epsilon$	5	3	7	8	10}	(24)
f_4 {	7	3	5	8	10}	_ ` /
f_5 {7	6	3	5	8	10}	(12) (45)
f_6 {7	6	3	8	5	10}	(24)
f_7 {7	8	3	6	5	10}	(44)
f_8 {7	8	3	10	5	6 }	(40)

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Brid	ge'	De	eco	mŗ	osit	ion
1	2	3	4			au
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	↓ 5	$\overset{\downarrow}{6}$	†	8	↓ 10}	au (12)
f_1 {5	3	6	7		10}	(23)
<i>f</i> ₂ { 5	6	3	7		10}	(23)
<i>f</i> ₃ { 6	5	3	7		10}	(24)
f_4 {6	7	3	5		10}	(12)
$f_5 \{ 7 \}$	6	3	5		10}	(45)
$f_6 \{ 7 \}$	6	3	8	5	- 0	(24)
$f_7 \{ 7 \}$	8	3	6	5		(46)
J8 {/	8	3	10	5	0 }	

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Brid	ge'	De	eco	mŗ	osit	ion
1	2	3	4			au
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	↓ 5	$\overset{\downarrow}{6}$	†	8	↓ 10}	au (12)
f_1 {5	3	6	7		10}	(23)
<i>f</i> ₂ { 5	6	3	7		10}	(23)
<i>f</i> ₃ { 6	5	3	7		10}	(24)
f_4 {6	7	3	5		10}	(12)
$f_5 \{ 7 \}$	6	3	5		10}	(45)
$f_6 \{ 7 \}$	6	3	8	5	- 0	(24)
$f_7 \{ 7 \}$	8	3	6	5		(46)
J8 {/	8	3	10	5	0 }	

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Brid	ge'	De	eco	mŗ	osit	ion
1	2	3	4			au
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	↓ 5	$\overset{\downarrow}{6}$	†	8	↓ 10}	au (12)
f_1 {5	3	6	7		10}	(23)
<i>f</i> ₂ { 5	6	3	7		10}	(23)
<i>f</i> ₃ { 6	5	3	7		10}	(24)
f_4 {6	7	3	5		10}	(12)
$f_5 \{ 7 \}$	6	3	5		10}	(45)
$f_6 \{ 7 \}$	6	3	8	5	- 0	(24)
$f_7 \{ 7 \}$	8	3	6	5		(46)
J8 {/	8	3	10	5	0 }	

'Brid	ge'	De	eco	mŗ	osit	ion
1	2	3	4			au
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	↓ 5	$\overset{\downarrow}{6}$	†	8	↓ 10}	au (12)
f_1 {5	3	6	7		10}	(23)
<i>f</i> ₂ { 5	6	3	7		10}	(23)
<i>f</i> ₃ { 6	5	3	7		10}	(24)
f_4 {6	7	3	5		10}	(12)
$f_5 \{ 7 \}$	6	3	5		10}	(45)
$f_6 \{ 7 \}$	6	3	8	5	- 0	(24)
$f_7 \{ 7 \}$	8	3	6	5		(46)
J8 {/	8	3	10	5	0 }	

'Brid	ge'	De	eco	mŗ	osit	ion
1	2	3	4			au
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	↓ 5	$\overset{\downarrow}{6}$	†	8	↓ 10}	au (12)
f_1 {5	3	6	7		10}	(23)
<i>f</i> ₂ { 5	6	3	7		10}	(23)
<i>f</i> ₃ { 6	5	3	7		10}	(24)
f_4 {6	7	3	5		10}	(12)
$f_5 \{ 7 \}$	6	3	5		10}	(45)
$f_6 \{ 7 \}$	6	3	8	5	- 0	(24)
$f_7 \{ 7 \}$	8	3	6	5		(46)
J8 {/	8	3	10	5	0 }	

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Bri	'Bridge' Decomposition								
	1 2		4		6	au			
f_0 {	$\stackrel{\downarrow}{3} \stackrel{\downarrow}{5}$	6	↓ 7	8	↓ 10}	(12)			
f_1 {:			7	8	10}	(23)			
f_2 {	5 6	3	7	8	10}	(23)			
f_3 {	6 5	3	7	8	10}	(12)			
f_4 {	6 7	3	5	8	10}	(24) (12)			
f_5 {	7 6	3	5	8	10}				
f_6 {	7 6	3	8	5	10}	(45)			
f_7 {	7 8	3	6	5	10}	(24)			
f_8 {	7 8	3	10	5	6 }	(40)			

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Brio	dge'	De	eco	mŗ	osit	ion
1	. 2	3	4	5	6	au
f_0 {	\$ 5	$\overset{\downarrow}{6}$	$\check{7}$	8	↓ 10}	(12)
f_1 {5	3	6	7	8	$10\}$	(23)
f_2 {5	6	3	7	8	$10\}$	(23) (13)
f_3 { ϵ	5	3	7	8	10	(12) (24)
f_4 { ϵ	7	3	5	8	10	(44) (1 2)
f_5 {7	6	3	5	8	10	(12) (45)
f_6 {7	6	3	8	5	$10\}$	(43)
f_7 {7	8	3	6	5	10	(44) (46)
f_8 {7	8	3	10	5	6 }	(+0)

'Brid	'Bridge' Decomposition								
1	2	3	4	5	6	au			
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	6	↓ 7	8	10}				
f_1 {5		6	7	8	10}	(23)			
$f_2 \{ 5 \}$	6	3	7	8	10}	(23)			
f_3 {6	5	3	7	8	10}	(24)			
f_4 {6	7	3	5	8	10}				
f_5 {7	6	3	5	8	10}	(12)			
f_6 {7	6	3	8	5	10}	(45)			
f_7 {7	8	3	6	5	10}	(24)			
f_8 {7	8	3	10	5	6 }	(40)			

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Br	id	ge'	Dε	ecoi	mp	osition
	1	2	3	4	5	6 ↓ τ
f_0 {	3	↓ 5	6	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1 {		3	6	7	8	10 (23)
f_2 {	5	6	3	7	8	10 (23) (12)
f_3 {	6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
f_4 {	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5 {	7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6 {	7	6	3	8	5	$10\}_{(24)}^{(43)}$
f_7 {	7	8	3	6	5	$10\}_{(46)}^{(24)}$
f_8 {	7	8	3	10	5	6

'Brid	lge'	De	eco:	mŗ	osition
1	2	3	4 ↓		6 ↓ τ
$f_0 \left\{ \stackrel{Y}{3} \right\}$	↓ 5	$\overset{\downarrow}{6}$	$\check{7}$	8	$\frac{10}{10}$ (12)
<i>f</i> ₁ {5	3	6	7	8	$\frac{10}{(23)}$
f ₂ {5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	10 (24)
f_4 {6	7	3	5	8	$\frac{10}{10}$ (12)
f_5 {7	6	3	5	8	$\frac{10}{10}$ (45)
f_6 {7	6	3	8	5	10 \\ \ \ \ \ \ \
f_7 {7	8	3	6	5	10 (24) (46)
f_8 {7	8	3	10	5	6 } (40)

'Brid	'Bridge' Decomposition								
1	2	3	4			au			
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	↓ 5	$\overset{\downarrow}{6}$	†	8	↓ 10}	au (12)			
f_1 {5	3	6	7		10}	(23)			
<i>f</i> ₂ { 5	6	3	7		10}	(23)			
<i>f</i> ₃ { 6	5	3	7		10}	(24)			
f_4 {6	7	3	5		10}	(12)			
$f_5 \{ 7 \}$	6	3	5		10}	(45)			
$f_6 \{ 7 \}$	6	3	8	5	- 0	(24)			
$f_7 \{ 7 \}$	8	3	6	5		(46)			
J8 {/	8	3	10	5	0 }				

'Brid	'Bridge' Decomposition								
1	2	3	4			au			
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	↓ 5	$\overset{\downarrow}{6}$	†	8	↓ 10}	au (12)			
f_1 {5	3	6	7		10}	(23)			
<i>f</i> ₂ { 5	6	3	7		10}	(23)			
<i>f</i> ₃ { 6	5	3	7		10}	(24)			
f_4 {6	7	3	5		10}	(12)			
$f_5 \{ 7 \}$	6	3	5		10}	(45)			
$f_6 \{ 7 \}$	6	3	8	5	- 0	(24)			
$f_7 \{ 7 \}$	8	3	6	5		(46)			
J8 {/	8	3	10	5	0 }				

'Brid	ge'	De	eco	mp	osition
f_0 {3	2 ↓ 5	3 ↓ 6	4 ↓ 7	5 ↓ 8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10 \\ 10 \\ 10 \\ 10 \end{array} $
f_1 {5 f_2 {5	3	6 3	7 7	8	10 (23) (23) (12)
f_3 {6 f_4 {6	5 7	3	7 5	8	10 $\{(24)$ $\{(12)\}$ $\{$
$f_5 \ \{7 \ f_6 \ \{7 \ f_6 \ \}\}$	6	3	5	8	$10\}_{(45)}^{(12)}$
f_7 {7 f_8 {7	8	3 3	6 10		$10\}_{(46)}^{(24)}$

'Brid	ge'	De	eco:	mŗ	osit	ion
1	2	3	4	5	6	au
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	6	↓ 7	8	10}	
f_1 {5		6	7	8	10}	(23)
$f_2 \{ 5 \}$	6	3	7	8	10}	(23)
f_3 {6	5	3	7	8	10}	(24)
f_4 {6	7	3	5	8	10}	
f_5 {7	6	3	5	8	10}	(12)
f_6 {7	6	3	8	5	10}	(45)
f_7 {7	8	3	6	5	10}	(24)
f_8 {7	8	3	10	5	6 }	(40)

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Bridg	ge'	De	ecoi	mŗ	osition
f_0 $\begin{cases} 1 \\ \downarrow \end{cases}$	2 ↓ 5 3	3 ↓ 6 6	4 ↓	5 ↓ 8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10 \\ 10 \\ 10 \end{array} $
f ₂ {5 f ₃ {6	6 5	3	7 7	8 8	$ \begin{array}{c} 10 \\ (12) \\ 10 \\ (24) \end{array} $
f ₄ {6 f ₅ {7 f ₆ {7	7 6 6	3 3 3	5 5 8	8	$ \begin{array}{c} 10 \\ (12) \\ 10 \\ (45) \\ 10 \\ (24) \end{array} $
$f_7 \ \{7 \ f_8 \ \{7 \ $	8	3	6 10	5 5	$10\}_{(46)}^{(24)}$

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{\stackrel{\star}{3}\right\}$	↓ 5	$\overset{\downarrow}{6}$	₇	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5	3	6	7	8	$\frac{10}{10}$ (23)
<i>f</i> ₂ { 5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
f_3 {6	5	3	7	8	$\{10\}_{(2,4)}^{(1,2)}$
f_4 {6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10^{10}(12)$ $10^{10}(12)$
f_6 {7	6	3	8	5	$10 \ (45) \ (10) \ (24)$
f_7 {7	8	3	6	5	$10^{10}(24)$ $10^{10}(46)$
f_8 {7	8	3	10	5	6 } (4 0)

'Brid	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right\}$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{5$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$
<i>f</i> ₂ { 5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 { 6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(45)}$
f_6 {7	6	3	8	5	$10\}(2.4)$
f_7 {7	8	3	6	5	(4 0)
$f_8 \ \{7$	8	3	10	5	6 } (10)

'Br	id	ge'	Dε	eco ₁	mŗ	osition
	1	2	3	4	5	6
f_0 {	→ 3	5	↓ 6	$\stackrel{\downarrow}{7}$	♦	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {			6	7	8	10 (23)
f_2 {	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {	6	5	3	7		$10\}_{(24)}$
f_4 {		7	3	5		$10\}_{(1,2)}$
f_5 {	7	6	3	5	8	$10\}_{(4.5)}$
f_6 {		6	3	8	5	$10\}_{(24)}$
f_7 {		8		6	5	(46)
f_8 {	7	8	3	10	5	6 } (10)

'Brio	dge'	De	eco	mp	osition
$f_0 \ \{ 5 \ f_1 \ \{ 5 \ f_2 \ \{ 5 \ f_2 \ \{ 5 \ f_2 \ \} \} \}$	2 3 5 5 3	3 ↓ 6 6 3	4 ↓	5 ↓ 8 8	$ \begin{array}{c} 6 \\ \downarrow \tau \\ 10\} \\ 10\} \\ 10\} \\ (23) \\ 10\} \\ (12) \end{array} $
$f_3 \ \{ \epsilon \}$	5 5	3	7 5	8	$10\}_{(24)}^{(12)}$
$f_5 \ \{7\}$ $f_6 \ \{7\}$ $f_7 \ \{7\}$	7 6 7 6 7 8	3 3	5 8 6	855	$ \begin{array}{c} 10 \\ (45) \\ 10 \\ (24) \\ 10 \\ (46) \end{array} $
$f_8 \{ 7 \}$	7 8	3	10	5	(40)

'B	rid	ge'	De	ecoi	mţ	osition
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	{5	6	3	7	8	10 (23) 10 (12)
f_3	{6	5	3	7	8	$\frac{10}{(24)}$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	1/21/1
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'Bı	rid	ge'	De	ecoi	mp	osition
	1	2 ↓	3	4 ↓	5	6 ↓ τ
f_0	${3 \choose 3}$	5	6	[*] 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1		3	6	7	8	10 (23)
f_2	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3	{6	5	3	7	8	$10\} (24)$
f_4	6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'Bı	rid	ge'	De	ecoi	mp	osition
	1	2 ↓	3	4 ↓	5	6 ↓ τ
f_0	${3 \choose 3}$	5	6	[*] 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1		3	6	7	8	10 (23)
f_2	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3	{6	5	3	7	8	$10\} (24)$
f_4	6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'Bı	rid	ge'	De	ecoi	mp	osition
	1	2 ↓	3	4 ↓	5	6 ↓ τ
f_0	${3 \choose 3}$	5	6	[*] 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1		3	6	7	8	10 (23)
f_2	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3	{6	5	3	7	8	$10\} (24)$
f_4	6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'Bı	rid	ge'	De	ecoi	mp	osition
	1	2 ↓	3	4 ↓	5	6 ↓ τ
f_0	${3 \choose 3}$	5	6	[*] 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1		3	6	7	8	10 (23)
f_2	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3	{6	5	3	7	8	$10\} (24)$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'Bı	id	ge'	Dε	ecoi	mţ	osition
	1 ↓	2 ↓	3	4	5	6 ↓ τ
f_0	3	5	6	[*] 7	8	$\frac{10}{10}$ (12)
f_1		3	6	7	8	$10\} (23)$
f_2	[5	6	3	7	8	$10\}_{(12)}^{(23)}$
f_3	[6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6

'Bridg	ge'	De	ecoi	mp	osition
1	2	3	4	5	6 τ
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right.$	5	$\overset{\downarrow}{6}$	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
f_1 {5		6	7	8	10 (23)
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {6	5	3	7	8	$\frac{10}{10}$ (24)
<i>f</i> ₄ { 6	7	3	5		$\{10\}_{(1,2)}$
f_5 {7	6	3	5	8	$\frac{10}{(45)}$
f_6 {7	6	3	8	5	$10\}_{(24)}$
f_7 {7	8	3	6	5	10 (46)
f_8 {7	8	3	10	5	6 }(40)

'B	rid	ge'	De	ecoi	mţ	osition
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	{5	6	3	7	8	10 (23) 10 (12)
f_3	{6	5	3	7	8	$\frac{10}{(24)}$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	1/21/1
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'B	rid	ge'	De	eco:	mŗ	osition
	1	2 ↓	3 ↓	4 ↓	5	6 τ
f_0	$\left\{\stackrel{\star}{3}\right\}$	5	6	[*] 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	{5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $
f_3	{6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
f_4	6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6

'Bı	id	ge'	Dε	ecoi	mţ	osition
	1 ↓	2 ↓	3	4	5	6 ↓ τ
f_0	3	5	6	[*] 7	8	$\frac{10}{10}$ (12)
f_1		3	6	7	8	$10\} (23)$
f_2	[5	6	3	7	8	$10\}_{(12)}^{(23)}$
f_3	[6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6

'Bridg	ge'	De	eco	mp	oosition
1	2	3	4	5	
$f_0 \left\{\stackrel{\downarrow}{3}\right\}$	5	6	↓ 7	8	$\downarrow \tau$ 10 $\rbrace_{(1,2)}$
f_1 {5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f ₂ {5	6	3	7	8	$\{10\}_{(1,2)}^{(2,3)}$
<i>f</i> ₃ { 6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
<i>f</i> ₄ { 6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6 {7	6	3	8	5	$10\}_{(2.4)}^{(4.5)}$
f_7 {7	8	3	6	5	$10\}_{(46)}^{(24)}$
f_8 {7	8	3	10	5	6

'Brid	ge'	De	ecoi	mŗ	osition
$f_0 \begin{cases} 3 \\ 4 \end{cases}$	2 ↓ 5	3 ↓ 6 6	4 ↓ 7	8	$\downarrow \tau$ 10 ₁₀
<i>f</i> ₁ {5 <i>f</i> ₂ {5 <i>f</i> ₃ {6	6 5	3	7 7 7	8 8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \\ 10 \\ (24) \end{array} $
f ₄ {6 f ₅ {7 f ₆ {7	7 6 6	3 3 3	5 5 8	8 8 5	$ \begin{array}{c} 10 \\ (12) \\ 10 \\ (45) \\ 10 \\ (24) \end{array} $
$f_7 \ \{7 \ f_8 \ \{7 \ $	8	3	6 10	5 5	$10\}_{(46)}^{(24)}$

'Bridg	ge'	De	eco	mŗ	osition
1	2	3	4	5	6
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	→ 5	♦	→ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10\} \\ 10\} \\ 10\} \\ (23) \\ 10\} \\ (12) \end{array} $
$f_1 \{ 5 \}$	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f ₂ {5	6	3	7	8	$\frac{10}{10}$ (12)
<i>f</i> ₃ { 6	5	3	7	8	$10\}_{(2.4)}^{(1.2)}$
f_4 {6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $
f_5 {7	6	3	5	8	$10\}_{(4.5)}$
f_6 {7	6	3	8	5	$10\}_{(24)}^{(43)}$
f_7 {7	8		6	5	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ 6 \end{array} $
f_8 {7	8	3	10	5	6

'B	rid	ge'	De	ecoi	mţ	osition
	1 ↓	2 ↓	3		5	6 ↓ τ
f_0	${3 \choose 3}$	5	↓ 6	$\overset{\downarrow}{7}$	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
	5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$
f_2	5	6	3	7	8	10 (23) 10 (12)
f_3	{6	5	3	7	8	$\frac{10}{10}$ (24)
f_4	6	7	3	5	8	$10\}(12)$
f_5	{7	6	3	5	8	$10\}(45)$
f_6	{7	6	3	8	5	10 (24)
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)
f_8	{7	8	3	10	5	6

'Bric	lge'	De	eco	mŗ	oosition
1	2	3	4	5	6 τ
$f_0 \left\{ \begin{array}{l} \downarrow \\ 3 \end{array} \right.$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $
$f_1 \ \{ 5 \}$		6	7	8	10 (23)
f ₂ {5	6	3	7	8	$\frac{10}{(12)}$
f_3 {6	5	3	7		$10\}_{(24)}$
f_4 {6		3	5		$\frac{10}{(1.2)}$
f_5 {7	6	3	5	8	10 ₍₄₅₎
f_6 {7	6	3	8	5	$10\}_{(24)}$
f_7 {7		3	6	5	10 (46)
f_8 {7	8	3	10	5	6 }(40)

'Bı	rid	ge'	De	ecoi	mp	osition
	1	2 ↓	3	4 ↓	5	6 ↓ τ
f_0	${3 \choose 3}$	5	6	[*] 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$
f_1		3	6	7	8	10 (23)
f_2	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3	{6	5	3	7	8	$10\} (24)$
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8	{7	8	3	10	5	6 } (40)

'Bı	'Bridge' Decomposition								
	1	2 ↓	3	4 ↓	5	6 ↓ τ			
f_0	${3 \choose 3}$	5	6	[*] 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$			
f_1		3	6	7	8	10 (23)			
f_2	5	6	3	7	8	$\frac{10}{10}$ (12)			
f_3	{6	5	3	7	8	$10\} (24)$			
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1	2	3 ↓	4 ↓	5	6 τ			
f_0	₹ {3	5	$\overset{\star}{6}$	7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $			
	{5		6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	10 }(23) 10 }(12)			
f_3	{6	5	3	7	8	$10\}_{(2,4)}$			
f_4	{6	7	3	5	8	$\frac{10}{10}$ (12)			
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8		$10\}_{(2,4)}^{(4,3)}$			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	$\{6\}^{(40)}$			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 τ			
f_0	$\left\{\stackrel{\star}{3}\right\}$	5	6	[*] 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $			
	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $			
f_3	{6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$			
f_4	6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $			
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6			

'B	'Bridge' Decomposition								
	1 ↓	2 ↓	3		5	6 ↓ τ			
f_0	${3 \choose 3}$	5	↓ 6	$\overset{\downarrow}{7}$	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$			
	5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{10}$ (24)			
f_4	6	7	3	5	8	$10\}(12)$			
f_5	{7	6	3	5	8	$10\}(45)$			
f_6	{7	6	3	8	5	10 (24)			
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)			
f_8	{7	8	3	10	5	6			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 τ			
f_0	$\left\{\stackrel{\star}{3}\right\}$	5	6	[*] 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $			
	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $			
f_3	{6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$			
f_4	6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $			
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6			

'B	'Bridge' Decomposition								
	1 ↓	2 ↓	3		5	6 ↓ τ			
f_0	${3 \choose 3}$	5	↓ 6	$\overset{\downarrow}{7}$	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$			
	5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{10}$ (24)			
f_4	6	7	3	5	8	$10\}(12)$			
f_5	{7	6	3	5	8	$10\}(45)$			
f_6	{7	6	3	8	5	10 (24)			
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)			
f_8	{7	8	3	10	5	6			

'Brid	'Bridge' Decomposition								
1	2	3	4	5	6				
$f_0 \left\{ \begin{array}{c} \downarrow \\ 3 \end{array} \right\}$	5	6	↓ 7	8	$ \begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \\ 10 \end{array} $				
$f_1 \ \{5$	3	6	7	8	$10\}_{(2,3)}^{(1,2)}$				
<i>f</i> ₂ { 5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $				
f_3 {6	5	3	7	8	$10\}_{(24)}^{(12)}$				
f_4 { 6	7	3	5	8	$ \begin{array}{c} 10 \\ (24) \\ 10 \\ (12) \end{array} $				
f_5 {7	6	3	5	8	$10\}_{(45)}$				
f_6 {7	6	3	8	5	$10\}(2.4)$				
f_7 {7	8	3	6	5	(4 0)				
$f_8 \ \{7$	8	3	10	5	6 } (10)				

'B	'Bridge' Decomposition								
	1 ↓	2 ↓	3		5	6 ↓ τ			
f_0	${3 \choose 3}$	5	↓ 6	$\overset{\downarrow}{7}$	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$			
	5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{10}$ (24)			
f_4	6	7	3	5	8	$10\}(12)$			
f_5	{7	6	3	5	8	$10\}(45)$			
f_6	{7	6	3	8	5	10 (24)			
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)			
f_8	{7	8	3	10	5	6			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4	5	6 τ			
f_0	${3 \choose 3}$	5	$\overset{\downarrow}{6}$	→ 7	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $			
f_1		3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	$ \begin{array}{c} 10 \\ (23) \\ 10 \\ (12) \end{array} $			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$\frac{10}{10}$ (12)			
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1 ↓	2 ↓	3		5	6 ↓ τ			
f_0	${3 \choose 3}$	5	↓ 6	$\overset{\downarrow}{7}$	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$			
	5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{10}$ (24)			
f_4	6	7	3	5	8	$10\}(12)$			
f_5	{7	6	3	5	8	$10\}(45)$			
f_6	{7	6	3	8	5	10 (24)			
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)			
f_8	{7	8	3	10	5	6			

'Bri	'Bridge' Decomposition								
1	1 2	3	4		6 τ				
f_0 {	$\frac{1}{3}$ $\frac{1}{5}$	$\overset{\downarrow}{6}$		8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$				
f_1 {	5 3	6	7	8	$10\}_{(2,2)}^{(1,2)}$				
f_2 {	5 6	3	7	8	10 $\{(23)$ $\{(12)\}$ $\{(12)\}$				
f_3 {	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$				
f_4 {	5 7	3	5	8	$\frac{10}{10}$ (12)				
f_5 {	7 6	3	5	8	10 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
f_6 {	7 6	3	8	5	$10\}_{(2,4)}^{(4,5)}$				
f_7 {	7 8	3	6	5	10 (24) (46)				
f_8 {	7 8	3	10	5	6				

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ			
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	1/21/1			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1	2	3 ↓	4 ↓	5	6 τ			
f_0	${3 \choose 3}$	5	6	$\overset{\star}{7}$	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$\frac{10}{10}$ (12)			
f_5	{7	6	3	5	8	$\frac{10}{10}$ (45)			
f_6	{7	6	3	8	5	$\frac{10}{10}$ (24)			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1 ↓	2 ↓	3		5	6 ↓ τ			
f_0	${3 \choose 3}$	5	↓ 6	$\overset{\downarrow}{7}$	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$			
	5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{10}$ (24)			
f_4	6	7	3	5	8	$10\}(12)$			
f_5	{7	6	3	5	8	$10\}(45)$			
f_6	{7	6	3	8	5	10 (24)			
f_7	{7	8	3	6	5	$\frac{10}{6}$ (46)			
f_8	{7	8	3	10	5	6			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ			
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	1/21/1			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ			
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	1/21/1			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'Brio	'Bridge' Decomposition								
1	2	3	4	5	6				
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓5	$\stackrel{\downarrow}{6}$	↓ 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$				
$f_1 \ \{ 5 \}$		6	7		$10\}_{(2,3)}^{(1,2)}$				
f_2 {5	6	3	7		$10\}_{(1,2)}^{(2,3)}$				
f_3 { ϵ	5	3	7		$10\}_{(24)}^{(12)}$				
$f_4 \{ \epsilon$	7	3	5		$10\}_{(1,2)}^{(2,4)}$				
f_5 {7	6	3	5	8	$10\}_{(45)}^{(12)}$				
f_6 {7		3	8	5	$10\}_{(24)}^{(13)}$				
f_7 {7	8	3	6	5	$10\}_{(46)}^{(24)}$				
f_8 {7	8	3	10	5	6				

'B	'Bridge' Decomposition								
	1	2 ↓	3 ↓	4 ↓	5	6 ↓ τ			
f_0	$\{\stackrel{\star}{3}$	5	$\overset{\star}{6}$	7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	{5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	1/21/1			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'Bri	'Bridge' Decomposition								
1	1 2	3	4		6 τ				
f_0 {	$\frac{1}{3}$ $\frac{1}{5}$	$\overset{\downarrow}{6}$		8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$				
f_1 {	5 3	6	7	8	$10\}_{(2,2)}^{(1,2)}$				
f_2 {	5 6	3	7	8	10 $\{(23)$ $\{(12)\}$ $\{(12)\}$				
f_3 {	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$				
f_4 {	5 7	3	5	8	$\frac{10}{10}$ (12)				
f_5 {	7 6	3	5	8	10 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
f_6 {	7 6	3	8	5	$10\}_{(2,4)}^{(4,5)}$				
f_7 {	7 8	3	6	5	10 (24) (46)				
f_8 {	7 8	3	10	5	6				

'Bri	'Bridge' Decomposition								
1	1 2	3	4		6 τ				
f_0 {	$\frac{1}{3}$ $\frac{1}{5}$	$\overset{\downarrow}{6}$		8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace \\ 10 \rbrace (12) \end{array}$				
f_1 {	5 3	6	7	8	$10\}_{(2,2)}^{(1,2)}$				
f_2 {	5 6	3	7	8	10 $\{(23)$ $\{(12)\}$ $\{(12)\}$				
f_3 {	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$				
f_4 {	5 7	3	5	8	$\frac{10}{10}$ (12)				
f_5 {	7 6	3	5	8	10 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
f_6 {	7 6	3	8	5	$10\}_{(2,4)}^{(4,5)}$				
f_7 {	7 8	3	6	5	10 (24) (46)				
f_8 {	7 8	3	10	5	6				

'Bı	'Bridge' Decomposition								
	1	2 ↓	3	4 ↓	5	6 ↓ τ			
f_0	${3 \choose 3}$	5	6	[*] 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \rbrace (12) \end{array}$			
f_1		3	6	7	8	10 (23)			
f_2	5	6	3	7	8	$\frac{10}{10}$ (12)			
f_3	{6	5	3	7	8	$10\} (24)$			
f_4	6	7	3	5	8	$\{10\}_{(1,2)}^{(2,4)}$			
f_5	{7	6	3	5	8	$\{10\}_{(4.5)}^{(1.2)}$			
f_6	{7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'B	'Bridge' Decomposition								
	1	2	3 ↓	4 ↓	5	6 τ			
f_0	${3 \choose 3}$	5	6	₇	8	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $			
f_1	{5	3	6	7	8	$10\}_{(2,2)}^{(1,2)}$			
f_2	5	6	3	7	8	10 (23) 10 (12)			
f_3	{6	5	3	7	8	$\frac{10}{(24)}$			
f_4	6	7	3	5	8	$\frac{10}{10}$ (12)			
f_5	{7	6	3	5	8	$\frac{10}{10}$ (45)			
f_6	{7	6	3	8	5	$\frac{10}{10}$ (24)			
f_7	{7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$			
f_8	{7	8	3	10	5	6 } (40)			

'Br	id	ge'	Dε	ecoi	mŗ	oosition
	1	2	3	4	5	6
f_0 {	→ 3	5	↓ 6	$\overset{\downarrow}{7}$	♦	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {			6	7	8	10 (23)
f_2 {	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {	6	5	3	7		$10\}_{(24)}$
f_4 {	6	7	3	5		$10\}_{(1,2)}$
f_5 {	7	6	3	5	8	$10\}_{(4.5)}$
f_6 {		6	3	8	5	$10\}_{(24)}$
f_7 {		8		6	5	(46)
f_8 {	7	8	3	10	5	6 } (10)

'Br	id	ge'	Dε	ecoi	mŗ	osition
	1	2	3	4	5	6
f_0 {	→ 3	5	↓ 6	$\overset{\downarrow}{7}$	♦	$ \downarrow \tau $ $ 10} $ $ 10\}(12) $
f_1 {			6	7	8	10 (23)
f_2 {	5	6	3	7	8	$\frac{10}{10}$ (12)
f_3 {	6	5	3	7		$10\}_{(24)}$
f_4 {	6	7	3	5		$10\}_{(1,2)}$
f_5 {	7	6	3	5	8	$10\}_{(4.5)}$
f_6 {		6	3	8	5	$10\}_{(24)}$
f_7 {		8		6	5	(46)
f_8 {	7	8	3	10	5	6 } (10)

'Brid	ge'	De	eco	mŗ	osit	ion
1	2				6	
f	<u></u>	†	\downarrow	V	10)	au
$f_0 \{3 \\ f_1 \} \{5 \}$	2	6	7	0	10}	(12)
			7	0	10)	(23) (12)
f_2 {5	6	3				
$f_3 \{ 6 \}$	5	3	7	8	10}	(24)
f_4 {6	1	3	5	8	10)	(12)
$f_5 $ {7	6	3	5	_	10}	(45)
$f_6 \{ 7 \}$	6	3	8	5	10}	(24)
$f_7 \{ 7 \}$		3	6			
J ₈ {/	8	3	10	5	6 }	.` ′

$$\mathcal{L}_{6,3} \equiv \frac{d\alpha_0}{\alpha_0} \cdots \frac{d\alpha_8}{\alpha_8}$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0 \\ \alpha_0\alpha_8 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

'Brid	ge'	De	eco	mp	osition
1	2	3	4	5	6 ↓ τ
$f_0 \left\{ \stackrel{\checkmark}{3} \right\}$	5	ě	$\overset{\diamond}{7}$	8	$\frac{10}{10}$ (12)
	3	6	7	8	
<i>f</i> ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
<i>f</i> ₃ { 6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 { 6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10\}_{(45)}^{(12)}$
f_6 {7	6	3	8	5	$10\}(24)$
$f_7 \{7$	8	3	6	5	$10\}(46)$
$f_8 \{ 7 \}$	8	3	10	5	6 }

$$\mathcal{L}_{6,3} \equiv \frac{d\alpha_0}{\alpha_0} \cdots \frac{d\alpha_8}{\alpha_8}$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0 \\ \alpha_0\alpha_8 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

'Brid	ge'	De	eco	mp	osition
1	2	3	4	5	6 ↓ τ
$f_0 \left\{ \stackrel{\checkmark}{3} \right\}$	5	ě	$\overset{\diamond}{7}$	8	$\frac{10}{10}$ (12)
	3	6	7	8	
<i>f</i> ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
<i>f</i> ₃ { 6	5	3	7	8	$10\}_{(24)}^{(12)}$
f_4 { 6	7	3	5	8	$10\}_{(1,2)}^{(2,4)}$
f_5 {7	6	3	5	8	$10\}_{(45)}^{(12)}$
f_6 {7	6	3	8	5	$10\}(24)$
$f_7 \{7$	8	3	6	5	$10\}(46)$
$f_8 \{ 7 \}$	8	3	10	5	6 }

$$\mathcal{L}_{6,3} \equiv \frac{d\alpha_0}{\alpha_0} \cdots \frac{d\alpha_8}{\alpha_8} = \frac{d^{3\times 6}C}{\text{vol}(GL(3))} \frac{1}{(123)(234)(345)(456)(561)(612)}$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{1} & (\alpha_1 + \alpha_3 + \alpha_5) & \alpha_2 (\alpha_3 + \alpha_5) & \alpha_4 \alpha_5 & 0 & 0 \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6 \alpha_7 & 0 \\ \alpha_0 \alpha_8 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

'Bridg	ge'	De	eco:	mŗ	osition
1	2	3	4		6 ↓ τ
$f_0 \left\{ \stackrel{\downarrow}{3} \right\}$	↓ 5	↓ 6	↓ 7	8	$\begin{array}{c} \downarrow & \tau \\ 10 \\ 10 \end{array}$
f_1 {5		6	7	8	10 (23) (23)
<i>f</i> ₂ { 5	6	3	7	8	$\frac{10}{10}$ (12)
<i>f</i> ₃ { 6	5	3	7		$10\}_{(24)}$
f_4 { 6	7	3	5		$10\}_{(1,2)}$
f_5 {7	6	3	5	8	$\frac{10}{(4.5)}$
f_6 {7	6	3	8	5	$\frac{10}{10}$ (24)
$f_7 \{ 7 \}$	8	3	6	5	$10\}_{(46)}^{(24)}$
$f_8 \{7$	8	3	10	5	6 } (10)

$$\mathcal{L}_{n,k} \equiv \frac{d\alpha_1}{\alpha_1} \cdots \frac{d\alpha_{k(n-k)}}{\alpha_{k(n-k)}} = \frac{d^{k \times n}C}{\operatorname{vol}(GL(k))} \frac{1}{(1 \cdots k)(2 \cdots k+1) \cdots (n \cdots k-1)}$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0 \\ \alpha_0\alpha_8 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

'Brid	ge'	De	eco	mp	osition
1	2 ↓	3 ↓	4 ↓	5 ↓	6 ↓ τ
$f_0 \{3$	5	6	7	8	$\{10\}$
$f_1 \{ 5 \}$	3	6	7	8	10 (23)
f ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
<i>f</i> ₃ {6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
<i>f</i> ₄ { 6	7	3	5	8	$\frac{10}{10}$ (12)
f_5 {7	6	3	5	8	$10\}_{(45)}^{(12)}$
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8 {7	8	3	10	5	6 } (40)

$$\mathcal{L}_{n,k} \equiv \frac{d\alpha_1}{\alpha_1} \cdots \frac{d\alpha_{k(n-k)}}{\alpha_{k(n-k)}} = \frac{d^{k \times n}C}{\operatorname{vol}(GL(k))} \frac{1}{(1 \cdots k)(2 \cdots k+1) \cdots (n \cdots k-1)}$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0 \\ \alpha_0\alpha_8 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

'Brid	ge'	De	eco	mp	osition
1	2 ↓	3 ↓	4 ↓	5 ↓	6 ↓ τ
$f_0 \{3$	5	6	7	8	$\{10\}$
$f_1 \{ 5 \}$	3	6	7	8	10 (23)
f ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
<i>f</i> ₃ {6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
<i>f</i> ₄ { 6	7	3	5	8	$\frac{10}{10}$ (12)
f_5 {7	6	3	5	8	$10\}_{(45)}^{(12)}$
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8 {7	8	3	10	5	6 } (40)

$$\mathcal{L}_{n,k} \equiv \frac{d\alpha_1}{\alpha_1} \cdots \frac{d\alpha_{k(n-k)}}{\alpha_{k(n-k)}} = \frac{d^{k \times n}C}{\operatorname{vol}(GL(k))} \frac{1}{(1 \cdots k)(2 \cdots k+1) \cdots (n \cdots k-1)}$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0 \\ \alpha_0\alpha_8 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

'Brid	ge'	De	eco	mp	osition
1	2 ↓	3 ↓	4 ↓	5 ↓	6 ↓ τ
$f_0 \{3$	5	6	7	8	$\{10\}$
$f_1 \{ 5 \}$	3	6	7	8	10 (23)
f ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
<i>f</i> ₃ {6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
<i>f</i> ₄ { 6	7	3	5	8	$\frac{10}{10}$ (12)
f_5 {7	6	3	5	8	$10\}_{(45)}^{(12)}$
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8 {7	8	3	10	5	6 } (40)

$$\mathcal{L}_{n,k} \equiv \frac{d\alpha_1}{\alpha_1} \cdots \frac{d\alpha_{k(n-k)}}{\alpha_{k(n-k)}} = \frac{d^{k \times n}C}{\operatorname{vol}(GL(k))} \frac{1}{(1 \cdots k)(2 \cdots k+1) \cdots (n \cdots k-1)}$$

$$C \equiv \begin{pmatrix} \frac{1}{1} & \frac{2}{(\alpha_1 + \alpha_3 + \alpha_5)} & \frac{3}{\alpha_2(\alpha_3 + \alpha_5)} & \frac{4}{\alpha_4\alpha_5} & \frac{5}{0} & \frac{6}{0} \\ 0 & 1 & \alpha_2 & (\alpha_4 + \alpha_7) & \alpha_6\alpha_7 & 0 \\ \alpha_0\alpha_8 & 0 & 0 & 1 & \alpha_6 & \alpha_8 \end{pmatrix}$$

'Brid	ge'	De	eco	mp	osition
1	2 ↓	3 ↓	4 ↓	5 ↓	6 ↓ τ
$f_0 \{3$	5	6	7	8	$\{10\}$
$f_1 \{ 5 \}$	3	6	7	8	10 (23)
f ₂ { 5	6	3	7	8	$10\}_{(1,2)}^{(2,3)}$
<i>f</i> ₃ {6	5	3	7	8	$10\}_{(2,4)}^{(1,2)}$
<i>f</i> ₄ { 6	7	3	5	8	$\frac{10}{10}$ (12)
f_5 {7	6	3	5	8	$10\}_{(45)}^{(12)}$
f_6 {7	6	3	8	5	$10\}_{(2,4)}^{(4,3)}$
f_7 {7	8	3	6	5	$10\}_{(4.6)}^{(2.4)}$
f_8 {7	8	3	10	5	6 } (40)

All on-shell diagrams, in terms of canonical coordinates, take the form:

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \left(C(\vec{\alpha}) \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C(\vec{\alpha}) \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C(\vec{\alpha})^{\perp} \right)$$

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \left(C(\vec{\alpha}) \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C(\vec{\alpha}) \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C(\vec{\alpha})^{\perp} \right)$$

Measure-preserving diffeomorphisms leave the function invariant

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \left(C(\vec{\alpha}) \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C(\vec{\alpha}) \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C(\vec{\alpha})^{\perp} \right)$$

Measure-preserving diffeomorphisms leave the function invariant, but—via the δ -functions—can be recast variations of the kinematical data.

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \left(C(\vec{\alpha}) \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C(\vec{\alpha}) \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C(\vec{\alpha})^{\perp} \right)$$

Measure-preserving diffeomorphisms leave the function invariant, but—via the δ -functions—can be recast variations of the kinematical data.

The *Yangian* corresponds to those diffeomorphisms that simultaneously preserve the measures of *all* on-shell diagrams.

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \left(C(\vec{\alpha}) \cdot \widetilde{\eta} \right) \delta^{k \times 2} \left(C(\vec{\alpha}) \cdot \widetilde{\lambda} \right) \delta^{2 \times (n-k)} \left(\lambda \cdot C(\vec{\alpha})^{\perp} \right)$$

Measure-preserving diffeomorphisms leave the function invariant, but—via the δ -functions—can be recast variations of the kinematical data.

The *Yangian* corresponds to those diffeomorphisms that simultaneously preserve the measures of *all* on-shell diagrams.

Let's look at an example of how loop amplitudes are represented by recursion.

Let's look at an example of how loop amplitudes are represented by recursion.

Let's look at an example of how loop amplitudes are represented by recursion.

$$=\sum_{L,R} \frac{1}{L} + \frac{A_{n+2}^{\ell-1}}{n}$$

$$=\sum_{L,R} \frac{1}{1} \frac{1}{n} + \frac{1}{n} \frac{A_{n+2}^{\ell-1}}{n}$$

$$=\sum_{L,R} \frac{1}{1} \frac{1}{n} + \frac{1}{1} \frac{A_{n+2}^{\ell-1}}{n}$$

$$=\sum_{L,R} \frac{1}{1} \frac{1}{n} + \frac{1}{n} \frac{A_{n+2}^{\ell-1}}{n}$$

$$=\sum_{L,R} \frac{1}{1} \frac{1}{n} + \frac{1}{n} \frac{A^{\ell_1}}{n}$$

$$=\sum_{L,R} \frac{1}{1} \frac{1}{n} + \frac{1}{n} \frac{A^{\ell 1}_{n+2}}{n}$$

$$\int d^4\ell \ell \ell \in \mathbb{R}^{3,1}$$

$$=\sum_{L,R} \frac{1}{1} \frac{1}{n} \frac{1$$

$$=\sum_{L,R} \frac{1}{L} \frac{1}{R} + \frac{A_{n+2}^{\ell-1}}{n}$$

$$=\sum_{L,R} \frac{1}{1} \frac{1}{n} + \frac{A^{\ell-1}_{n+2}}{1}$$

$$\int_{\ell \in \mathbb{R}^{3,1}} d^4 \ell \quad \iff \quad \int_{\frac{1}{2}} \frac{d^2 \lambda_{\mathrm{I}} d^2 \widetilde{\lambda}_{\mathrm{I}}}{\mathrm{vol}(GL_1)} d\alpha \langle \mathrm{I1} \rangle [n\mathrm{I}]$$

$$\ell = (\lambda_{\mathrm{I}} \widetilde{\lambda}_{\mathrm{I}} + \alpha \lambda_{\mathrm{I}} \widetilde{\lambda}_{\mathrm{4}}) \in \mathbb{R}^{3,1}$$

$$\mathcal{A}_{4}^{(2),0} \times \int d\log\left(\frac{\ell^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell+p_{1})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell+p_{1}+p_{2})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell-p_{4})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell-p_$$

$$\int_{\ell \in \mathbb{R}^{3,1}} d^4 \ell \quad \iff \quad \int_{\text{vol}(GL_1)} \frac{d^2 \lambda_{\text{I}} d^2 \widetilde{\lambda}_{\text{I}}}{\text{vol}(GL_1)} d\alpha \langle \text{I1} \rangle [n\text{I}]$$

$$\ell \equiv (\lambda_{\text{I}} \widetilde{\lambda}_{\text{I}} + \alpha \lambda_{\text{I}} \widetilde{\lambda}_{\text{4}}) \in \mathbb{R}^{3,1}$$

$$\mathcal{A}_{4}^{(2),0} \times \int d\log\left(\frac{\ell^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell+p_{1})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell+p_{1}+p_{2})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell-p_{4})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell-p_$$

$$= \mathcal{A}_{4}^{(2),0} \times \int d^{4}\ell \frac{(p_{1}+p_{2})^{2}(p_{3}+p_{4})^{2}}{\ell^{2}(\ell+p_{1})^{2}(\ell+p_{1}+p_{2})^{2}(\ell-p_{4})^{2}}$$