On-Shell
 SiRecursion Relations, GOmbinatorics

Jacob L. Bourjaily
Cracow School of Theoretical Physics
LVI Course, 2016
A Panorama of Holography
The Niels Bohr
International Academy

On-Shell
 SiRecursion Relations, GOmbinatorics

Jacob L. Bourjaily
Cracow School of Theoretical Physics
LVI Course, 2016
A Panorama of Holography
The Niels Bohr
International Academy

Organization and Outline

(1) On-Shell Diagrams: Amalgamations of Scattering Amplitudes

- Beyond (Mere) Scattering Amplitudes: On-Shell Functions
- Systematics of Computation and the Auxiliary Grassmannian
- Building-Up Diagrams with 'BCFW' Bridges
(2) On-Shell, All-Order Recursion Relations for Scattering Amplitudes
- Deriving Diagrammatic Recursion Relations for Amplitudes
- Exempli Gratia: On-Shell Representations of Tree Amplitudes
(3) Combinatorics, Classification, and Canonical Computation
- A Combinatorial Classification of On-Shell Functions
- Building-Up (Representative) Diagrams and Functions with Bridges
- Asymptotic Symmetries of the S-Matrix: the Yangian

4 Paths Forward: Beyond the Leading Order of Perturbation Theory

- On-Shell Representations of Loop-Amplitude Integrands

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude,

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude,

$$
\mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states

$$
\mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states-integrating over the Lorentz-invariant phase space ("LIPS") for each particle I,

$$
\mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states-integrating over the Lorentz-invariant phase space ("LIPS") for each particle I,

$$
\int d^{3} \operatorname{LIPS}_{I} \quad \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states-integrating over the Lorentz-invariant phase space ("LIPS") for each particle I, and summing over the possible states

$$
\int d^{3} \operatorname{LIPS}_{I} \quad \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states-integrating over the Lorentz-invariant phase space ("LIPS") for each particle I, and summing over the possible states

$$
\sum_{\text {states } I} \int d^{3} \operatorname{LIPS}_{I} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states-integrating over the Lorentz-invariant phase space ("LIPS") for each particle I, and summing over the possible states (helicities, masses, colours, etc.).

$$
\sum_{\text {states } I} \int d^{3} \operatorname{LIPS}_{I} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states-integrating over the Lorentz-invariant phase space ("LIPS") for each particle I, and summing over the possible states (helicities, masses, colours, etc.).

$$
\sum_{\text {states } I} \int d^{3} \operatorname{LIPS}_{I} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states-integrating over the Lorentz-invariant phase space ("LIPS") for each particle I, and summing over the possible states (helicities, masses, colours, etc.).

$$
\sum_{\text {states } I} \int \frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda}_{I}}{\operatorname{vol}\left(G L_{1}\right)} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states-integrating over the Lorentz-invariant phase space ("LIPS") for each particle I, and summing over the possible states (helicities, masses, colours, etc.).

$$
\int d^{4} \widetilde{\eta}_{I} \int \frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda}_{I}}{\operatorname{vol}\left(G L_{1}\right)} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states-integrating over the Lorentz-invariant phase space ("LIPS") for each particle I, and summing over the possible states (helicities, masses, colours, etc.).

$$
\int d^{4} \widetilde{\eta}_{I} \int \frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda}_{I}}{\operatorname{vol}\left(G L_{1}\right)} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)
$$

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
n_{\delta}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
n_{\delta} \equiv 4 \times n_{V}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
n_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=\text { number of excess } \delta \text {-functions }
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4 & =\text { number of excess } \delta \text {-functions } \\
& (=\text { minus number of remaining integrations })
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4 & =\text { number of excess } \delta \text {-functions } \\
& (=\text { minus number of remaining integrations })
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4 & =\text { number of excess } \delta \text {-functions } \\
& (=\text { minus number of remaining integrations })
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 \quad \Rightarrow \quad \text { ordinary (rational) function }
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, \mathcal{A}_{v}, connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{\substack{h_{i}, c_{i}, m_{i}, \cdots}} \int d^{3} \operatorname{LIPS}_{i}\right) \prod_{v} \mathcal{A}_{v}
$$

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
& >0 \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4 & \Rightarrow 0 \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \\
& <0
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
& <0
\end{aligned} \begin{aligned}
& \left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \quad \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$
\begin{aligned}
>0 & \Rightarrow\left(\widehat{n}_{\delta}\right) \text { kinematical constraints } \\
\widehat{n}_{\delta} \equiv 4 \times n_{V}-3 \times n_{I}-4=0 & \Rightarrow \text { ordinary (rational) function } \\
<0 & \Rightarrow\left(-\widehat{n}_{\delta}\right) \text { non-trivial integrations }
\end{aligned}
$$

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:
O

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:
O

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:
O

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:
O

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:
O

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:
O

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

p-q

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

p-q

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

p-o

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

$$
=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^{2} \quad \delta^{2 \times 4}(\lambda \cdot \widetilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}
$$

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

$$
=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^{2} \quad \delta^{2 \times 4}(\lambda \cdot \widetilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}
$$

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

$$
=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^{2} \quad \delta^{2 \times 4}(\lambda \cdot \widetilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}
$$

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

$$
=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^{2} \quad \delta^{2 \times 4}(\lambda \cdot \widetilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}
$$

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only three-particle amplitudes are well-defined to all orders of perturbation theory, generating a large class of functions:

$$
=\frac{(\langle 91\rangle\langle 23\rangle\langle 46\rangle-\langle 16\rangle\langle 34\rangle\langle 29\rangle)^{2} \quad \delta^{2 \times 4}(\lambda \cdot \widetilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 67\rangle\langle 78\rangle\langle 81\rangle\langle 14\rangle\langle 42\rangle\langle 29\rangle\langle 96\rangle\langle 63\rangle\langle 39\rangle\langle 91\rangle}
$$

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use)

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle(23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right)
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle(23)\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\tilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle(23)\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle(23)\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d b_{3}^{1}}{b_{3}^{1}} \wedge \frac{d b_{3}^{2}}{b_{3}^{2}} \delta^{2 \times 4}(B \cdot \widetilde{\eta}) \quad \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}(\widetilde{\lambda} \cdot \widetilde{\eta})}{[12][23][31]} \delta^{\perp \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d w_{2}^{1}}{w_{2}^{1}} \wedge \frac{d w_{3}^{1}}{w_{3}^{1}} \delta^{1 \times 4}(W \cdot \widetilde{\eta}) \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d b_{1}^{1}}{b_{1}^{1}} \wedge \frac{d b_{1}^{2}}{b_{1}^{2}} \delta^{2 \times 4}(B \cdot \widetilde{\eta}) \quad \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\tilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d w_{3}^{1}}{w_{3}^{1}} \wedge \frac{d w_{1}^{1}}{w_{1}^{1}} \delta^{1 \times 4}(W \cdot \widetilde{\eta}) \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d b_{2}^{1}}{b_{2}^{1}} \Lambda \frac{d b_{2}^{2}}{b_{2}^{2}} \delta^{2 \times 4}(B \cdot \widetilde{\eta}) \quad \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d w_{1}^{1}}{w_{1}^{1}} \Lambda \frac{d w_{2}^{1}}{w_{2}^{1}} \delta^{1 \times 4}(W \cdot \widetilde{\eta}) \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \underbrace{1 \times 2}\left(\lambda \cdot B^{\perp}\right) \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \underbrace{\delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right)}_{B \rightarrow B^{*}} \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \underbrace{\delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right)}_{B \rightarrow B^{*}=\lambda} \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \underbrace{\delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right)}_{B \rightarrow B^{*}=\lambda} \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \delta^{1 \times 2}(W \cdot \widetilde{\lambda}) \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23 \backslash\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \underbrace{\delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right)}_{B \rightarrow B^{*}=\lambda} \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}(\widetilde{\lambda} \cdot \widetilde{\eta})}{[12][23][31]} \delta^{\perp \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1 \times 2}(W \cdot \widetilde{\lambda})} \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \underbrace{\delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right)}_{B \mapsto B^{*}=\lambda} \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1 \times 2}(W \cdot \widetilde{\lambda})}_{W \mapsto W^{*}} \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \underbrace{\delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right)}_{B \mapsto B^{*}=\lambda} \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1 \times 2}(W \cdot \widetilde{\lambda})}_{W \mapsto W^{*}=\tilde{\lambda}^{\perp}} \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \underbrace{\delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right)}_{B \mapsto B^{*}=\lambda} \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1 \times 2}(W \cdot \widetilde{\lambda})}_{W \mapsto W^{*}=\tilde{\lambda}^{\perp}} \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$
\begin{aligned}
& \mathcal{A}_{3}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{2 \times 3} B}{\operatorname{vol}\left(G L_{2}\right)} \frac{\delta^{2 \times 4}(B \cdot \widetilde{\eta})}{(12)(23)(31)} \delta^{2 \times 2}(B \cdot \widetilde{\lambda}) \underbrace{\delta^{1 \times 2}\left(\lambda \cdot B^{\perp}\right)}_{B \mapsto B^{*}=\lambda} \\
& \mathcal{A}_{3}^{(1)}=\frac{\delta^{1 \times 4}\left(\widetilde{\lambda}^{\perp} \cdot \widetilde{\eta}\right)}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d^{1 \times 3} W}{\operatorname{vol}\left(G L_{1}\right)} \frac{\delta^{1 \times 4}(W \cdot \widetilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1 \times 2}(W \cdot \widetilde{\lambda})}_{W \mapsto W^{*}=\tilde{\lambda}^{\perp}} \delta^{2 \times 2}\left(\lambda \cdot W^{\perp}\right)
\end{aligned}
$$

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex-

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \mid \quad C \in G(k, n)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

2

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
\left(\begin{array}{ccc}
1 & 2 & \mathrm{I} \\
\hline 1 & w_{2} & w_{\mathrm{I}}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \quad \begin{array}{r}
C \in G(k, n)
\end{array}
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \quad \begin{array}{r}
C \in G(k, n)
\end{array}
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
\underbrace{2}_{1}
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \mid \quad k \equiv 2 n_{B}+n_{W}-n_{I}
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \mid \quad k \equiv 2 n_{B}+n_{W}-n_{I}
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$\left(\begin{array}{lll}1 & 2 & \mathrm{I} \\ \hline 1 & w_{2} & w_{\mathrm{I}}\end{array}\right)$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
\left(\begin{array}{lll}
1 & 0 & b_{4}^{1} \\
0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \mid \quad k \equiv 2 n_{B}+n_{W}-n_{I}
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad k \equiv \begin{array}{r}
C \in G(k, n) \\
2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
\left(\begin{array}{lll}
1 & 0 & b_{4}^{1} \\
0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
\left(\begin{array}{lll}
1 & 0 & b_{4}^{1} \\
0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad k \equiv \begin{array}{r}
C \in G(k, n) \\
2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
\left.\begin{array}{lllll}
1 & 2 & 1 & w_{2} & w_{\mathrm{I}}
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 0 & b_{4}^{1} \\
0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad k \equiv \begin{array}{r}
C \in G(k, n) \\
2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
\left.\begin{array}{lllll}
1 & 2 & 1 & w_{2} & w_{\mathrm{I}}
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 0 & b_{4}^{1} \\
0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & \mathrm{I} & \mathrm{I} & 3 & 4 \\
1 & w_{2} & w_{\mathrm{I}} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b_{4}^{1} \\
0 & 0 & 0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & \mathrm{I} & \mathrm{I} & 3 & 4 \\
1 & w_{2} & w_{\mathrm{I}} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b_{4}^{1} \\
0 & 0 & 0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & \mathrm{I} & \mathrm{I} & 3 & 4 \\
1 & w_{2} & w_{\mathrm{I}} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b_{4}^{1} \\
0 & 0 & 0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & \mathrm{I} & \mathrm{I} & 3 & 4 \\
1 & w_{2} & w_{\mathrm{I}} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b_{4}^{1} \\
0 & 0 & 0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & \mathrm{I} & \mathrm{I} & 3 & 4 \\
1 & w_{2} & w_{\mathrm{I}} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & b_{4}^{1} \\
0 & 0 & 0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

2-3

$$
C \equiv\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & w_{2} & 0 & b_{4}^{\mathrm{T}} \\
0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

2-3

$$
C \equiv\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & w_{2} & 0 & b_{4}^{\mathrm{T}} \\
0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

2-3

$$
C \equiv\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & w_{2} & 0 & b_{4}^{\mathrm{T}} \\
0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

2-3

$$
C \equiv\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & w_{2} & 0 & b_{4}^{\mathrm{T}} \\
0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

Grassmannian Representations of On-Shell Functions

In order to linearize momentum conservation at each three-particle vertex, (and to specify which of the solutions to three-particle kinematics to use) we introduce auxiliary $B \in G(2,3)$ and $W \in G(1,3)$ for each vertexallowing us to represent all on-shell functions in the form:

$$
f \equiv \int \Omega_{C} \quad \delta^{k \times 4}(C \cdot \widetilde{\eta}) \delta^{k \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C^{\perp}\right) \left\lvert\, \quad \begin{array}{r}
C \in G(k, n) \\
k \equiv 2 n_{B}+n_{W}-n_{I}
\end{array}\right.
$$

2-3

$$
C \equiv\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & w_{2} & 0 & b_{4}^{\mathrm{T}} \\
0 & 0 & 1 & b_{4}^{2}
\end{array}\right)
$$

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a} \widetilde{\lambda}_{a}-\lambda_{I} \widetilde{\lambda}_{I} \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\lambda_{I} \widetilde{\lambda}_{I},
$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a} \widetilde{\lambda}_{a}-\lambda_{I} \widetilde{\lambda}_{I} \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\lambda_{I} \widetilde{\lambda}_{I},
$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a} \widetilde{\lambda}_{a}-\alpha \lambda_{a} \widetilde{\lambda}_{I} \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\alpha \lambda_{a} \widetilde{\lambda}_{I},
$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a} \widetilde{\lambda}_{a}-\alpha \lambda_{a} \widetilde{\lambda}_{b} \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\alpha \lambda_{a} \widetilde{\lambda}_{b},
$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\alpha \lambda_{a} \widetilde{\lambda}_{b},
$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b},
$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b}
$$

introducing a new parameter α, in terms of which we may write:

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b}
$$

introducing a new parameter α, in terms of which we may write:

$$
f(\ldots, a, b, \ldots)=\frac{d \alpha}{\alpha} f_{0}(\ldots, \widehat{a}, \widehat{b}, \ldots)
$$

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b}
$$

introducing a new parameter α, in terms of which we may write:

$$
f(\ldots, a, b, \ldots)=\frac{d \alpha}{\alpha} f_{0}(\ldots, \widehat{a}, \widehat{b}, \ldots)
$$

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b}
flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b}
$$

introducing a new parameter α, in terms of which we may write:

$$
f(\ldots, a, b, \ldots)=\frac{d \alpha}{\alpha} f_{0}(\ldots, \widehat{a}, \widehat{b}, \ldots)
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

[^0]
The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus)

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus)

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin-these come in two types:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin-these come in two types: factorization-channels

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin-these come in two types: factorization-channels and forward-limits

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin-these come in two types: factorization-channels and forward-limits

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin-these come in two types: factorization-channels and forward-limits

The Analytic Boot-Strap: All-Loop Recursion Relations

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

the familiar "off-shell" loop-momentum is represented by on-shell data as:

$$
\ell \equiv \lambda_{I} \widetilde{\lambda}_{I}+\alpha \lambda_{1} \widetilde{\lambda}_{n} \quad \text { with } \quad d^{4} \ell=\frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda}_{I}}{\operatorname{vol}\left(G L_{1}\right)} d \alpha\langle 1 I\rangle[n I]
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

the familiar "off-shell" loop-momentum is represented by on-shell data as:

$$
\ell \equiv \lambda_{I} \widetilde{\lambda}_{I}+\alpha \lambda_{1} \widetilde{\lambda}_{n} \quad \text { with } \quad d^{4} \ell=\frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda}_{I}}{\operatorname{vol}\left(G L_{1}\right)} d \alpha\langle 1 I\rangle[n I]
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

the familiar "off-shell" loop-momentum is represented by on-shell data as:

$$
\ell \equiv \lambda_{I} \widetilde{\lambda}_{I}+\alpha \lambda_{1} \widetilde{\lambda}_{n} \quad \text { with } \quad d^{4} \ell=\frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda}_{I}}{\operatorname{vol}\left(G L_{1}\right)} d \alpha\langle 1 I\rangle[n I]
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

the familiar "off-shell" loop-momentum is represented by on-shell data as:

$$
\ell \equiv \lambda_{I} \widetilde{\lambda}_{I}+\alpha \lambda_{1} \widetilde{\lambda}_{n} \quad \text { with } \quad d^{4} \ell=d^{3} L I P S_{I} d \alpha\langle 1 I\rangle[n I]
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

the familiar "off-shell" loop-momentum is represented by on-shell data as:

$$
\ell \equiv \lambda_{I} \widetilde{\lambda}_{I}+\alpha \lambda_{1} \widetilde{\lambda}_{n} \quad \text { with } \quad d^{4} \ell=d^{3} L I P S_{I} d \alpha\langle 1 I\rangle[n I]
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

the familiar "off-shell" loop-momentum is represented by on-shell data as:

$$
\ell \equiv \lambda_{I} \widetilde{\lambda}_{I}+\alpha \lambda_{1} \widetilde{\lambda}_{n} \quad \text { with } \quad d^{4} \ell=d^{3} L I P S_{I} d \alpha\langle 1 I\rangle[n I]
$$

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

$$
\mathcal{A}_{4}^{(2)}=
$$

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

$$
\mathcal{A}_{5}^{(2)}=
$$

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$!
And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Is there any way to invariantly characterize the on-shell functions associated with on-shell diagrams?

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they directly produces the Parke-Taylor formula for all amplitudes with $k=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Is there any way to invariantly characterize the on-shell functions associated with on-shell diagrams?

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths': Starting from any leg a, turn:

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths’
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths’
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths’
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths’
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths’
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
& & & & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & & & & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & & & \\
3 & 5 & & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & & & \\
3 & 5 & 6 & & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & & \\
3 & 5 & 6 & \mathbf{1} & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths’. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
3 & 5 & 6 & \mathbf{1} & \mathbf{2} &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 5 & 6 & \mathbf{1} & \mathbf{2} & \mathbf{4}
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

$$
\begin{aligned}
& \text { left-right permutation } \sigma \\
& \sigma:\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 5 & 6 & \mathbf{1} & \mathbf{2} & \mathbf{4}
\end{array}\right)
\end{aligned}
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 5 & 6 & 1 & 2 & 4
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

$$
\begin{gathered}
\text { left-right permutation } \sigma \\
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 5 & 6 & 7 & 8 & 10
\end{array}\right)
\end{gathered}
$$

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant.

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'

A Combinatorial Classification of On-Shell Functions

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':
Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':
Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':
Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':
Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':
Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':
Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Such factors of $d \alpha / \alpha$ arising from bubble deletion encode loop integrands!

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams.

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations: it merely transposes the images of σ !

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations: it merely transposes the images of σ !

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams. Read the other way,

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges’ can lead to very rich on-shell diagrams. Read the other way,

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Read the other way, we can 'peel-off' bridges and thereby decompose a permutation into transpositions according to $\sigma=(a b) \circ \sigma^{\prime}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions

'Bridge'
1

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} f_{1}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} f_{1}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} f_{2}
$$

$\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array}$
\{llllll $\begin{aligned} & 3 \\ & 5\end{aligned} 677810$
$\left(\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} f_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} f_{3}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} f_{3}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} f_{4}
$$

'Bridge' Decomposition
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}\right\}$
$\begin{array}{llllll}5 & 3 & 6 & 7 & 8\end{array}$
$\left.\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$\left.\begin{array}{llllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}$
$\begin{array}{lllll}6 & 7 & 3 & 5\end{array}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} f_{4}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} f_{5}
$$

ge' Decomp
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & \end{array}$
$f_{1}\left\{\begin{array}{llllll}5 & 3 & 6 & 7 & 8\end{array}\right.$
$f_{2}\left\{\begin{array}{llllll}5 & 6 & 3 & 7 & 8\end{array}\right.$
$f_{3}\left\{\begin{array}{llllll}6 & 5 & 3 & 7 & 8\end{array}\right.$
$\left\{\begin{array}{llllll}6 & 7 & 3 & 5 & 8\end{array}\right.$
635

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} f_{5}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} f_{6}
$$

Bridge' Decomposition
$\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \end{array} \quad \tau$
$f_{0}\left\{\begin{array}{lllll}3 & 5 & 6 & 7 & 8\end{array}\right.$
$\left\{\begin{array}{llllll}5 & 3 & 6 & 7 & 8\end{array}\right.$
$\begin{array}{llllll}5 & 6 & 3 & 7 & 8\end{array}$
$\left\{\begin{array}{llllll}6 & 5 & 3 & 7 & 8\end{array}\right.$
$\left\{\begin{array}{llllll}6 & 7 & 3 & 5 & 8\end{array}\right.$
$\begin{array}{llll}6 & 3 & 5 & 8\end{array}$
6385

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} f_{6}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} f_{7}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} f_{7}
$$

'Bridge' Decomposition
$\begin{array}{ccccc}2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array}$
$f_{0}\left\{\begin{array}{llllll}3 & 5 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{1}\left\{\begin{array}{llllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{llllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{4}\left\{\begin{array}{llllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}$
$f_{5}\left\{\begin{array}{llllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}$
$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{1}\left\{\begin{array}{llllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\{5$
$\{$ 6

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \\
\\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau
\end{array}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

 $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
& \tau
\end{array}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
& \tau
\end{array}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
& \tau
\end{array}
$$

$$
f_{8}\left\{\begin{array}{llllll}
7 & 8 & 3 & 10 & 5 & 6
\end{array}\right\}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{8}=\prod_{a=\sigma(a)+n}\left(\delta^{4}\left(\widetilde{\eta}_{a}\right) \delta^{2}\left(\widetilde{\lambda}_{a}\right)\right) \prod_{b=\sigma(b)}\left(\delta^{2}\left(\lambda_{b}\right)\right)
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:
$f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}$

'Bridge' Decomposition

$f_{8}=\prod_{a=\sigma(a)+n}\left(\delta^{4}\left(\widetilde{\eta}_{a}\right) \delta^{2}\left(\widetilde{\lambda}_{a}\right)\right) \prod_{b=\sigma(b)}\left(\delta^{2}\left(\lambda_{b}\right)\right)$

$$
f_{8}\left\{\begin{array}{llllll}
7 & 8 & 3 & 10 & 5 & 6
\end{array}\right\}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$f_{8}=\delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

$$
f_{8}\left\{\begin{array}{llllll}
7 & 8 & 3 & 10 & 5 & 6
\end{array}\right\}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$f_{8}=\delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

$$
f_{8}\left\{\begin{array}{llllll}
7 & 8 & 3 & 10 & 5 & 6
\end{array}\right\}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$f_{7}=\frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

$$
(46): c_{6} \mapsto c_{6}+\alpha_{8} c_{4}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$f_{6}=\frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$f_{5}=\frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

$$
(45): \quad c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

(12): $c_{2} \mapsto c_{2}+\alpha_{5} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 0 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(24): $c_{4} \mapsto c_{4}+\alpha_{4} c_{2}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$f_{2}=\frac{d \alpha_{3}}{\alpha_{3}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
\begin{align*}
& f_{1}=\frac{d \alpha_{2}}{\alpha_{2}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right) f_{1}\left\{\begin{array}{llllll}
5 & 3 & 6 & 7 & 8 & 10
\end{array}\right\}(\tag{23}\\
& C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right) \tag{12}\\
& \text { (23): } c_{3} \mapsto c_{3}+\alpha_{2} c_{2}
\end{align*}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
(61): \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}\right.$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(24)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}{ }_{(24)}^{(24)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
(61): \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}\right.$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(24)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}{ }_{(24)}^{(24)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
\text { (61): } \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}\right.$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(24)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}{ }_{(24)}^{(24)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
\text { (61): } \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
\text { (61): } \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
\text { (61): } \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
\alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

ridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array} \tau$
$\left\{\begin{array}{llll}3 & 5 & 6 & 7\end{array}\right.$
$\begin{array}{llll}5 & 3 & 6 & 7\end{array}$
$\begin{array}{llll}6 & 3 & 7\end{array}$
537
735
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right.$
$f_{7} \begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}$
$7 \quad 8 \quad 310$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1}\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1}\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
'Bridge' Decomposition

	$\begin{array}{cccc}2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow\end{array}$
	$f_{0}\left\{\begin{array}{lllll}3 & 5 & 6 & 7 & 8\end{array}\right.$
	$f_{1}\left\{\begin{array}{llllll}5 & 3 & 6 & 7 & 8\end{array}\right.$
	$\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
	$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right.$
	$\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}$
	$\begin{array}{lllll}6 & 3 & 5 & 8 & 10\end{array}$
	$\begin{array}{llll}6 & 3 & 8 & 510\end{array}$
	36510
	$\begin{array}{llllll}7 & 8 & 3 & 10 & 5\end{array}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \alpha_{8}\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(46): \quad c_{6} \mapsto c_{6}+\alpha_{8} c_{4}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(46): c_{6} \mapsto c_{6}+\alpha_{8} c_{4}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(46): c_{6} \mapsto c_{6}+\alpha_{8} c_{4}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(46): \quad c_{6} \mapsto c_{6}+\alpha_{8} c_{4}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(46): c_{6} \mapsto c_{6}+\alpha_{8} c_{4}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(46): c_{6} \mapsto c_{6}+\alpha_{8} c_{4}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{7} c_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{7} c_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{7} c_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{7} c_{2}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(12)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{7} c_{2}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(12)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{7} c_{2}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(12)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(45): c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(12)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(45): c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(12)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(45): c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

'Bridge' Decomposition
$\begin{array}{cccccc}2 & 3 & 4 & 5 & 6 & \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{0} \begin{array}{llllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{llllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}(24)$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(45): c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(12)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(45): c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(12)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(45): c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(12)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(45): c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(12)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(45): c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

'Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & \tau & 7 & & \end{array}$
$f_{0} \begin{array}{llllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\} \begin{aligned} & (12) \\ & (24)\end{aligned}$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{lll}(24)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

(12): $c_{2} \mapsto c_{2}+\alpha_{5} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

(12): $c_{2} \mapsto c_{2}+\alpha_{5} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

(12): $c_{2} \mapsto c_{2}+\alpha_{5} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

(12): $c_{2} \mapsto c_{2}+\alpha_{5} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

(12): $c_{2} \mapsto c_{2}+\alpha_{5} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

(12): $c_{2} \mapsto c_{2}+\alpha_{5} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

(12): $c_{2} \mapsto c_{2}+\alpha_{5} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{4} c_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{4} c_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{4} c_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \alpha_{5} & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 0 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
(24): c_{4} \mapsto c_{4}+\alpha_{4} c_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
(24): c_{4} \mapsto c_{4}+\alpha_{4} c_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

$$
\text { (12): } c_{2} \mapsto c_{2}+\alpha_{3} c_{1}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

$$
\text { (12): } c_{2} \mapsto c_{2}+\alpha_{3} c_{1}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

$$
\text { (12): } c_{2} \mapsto c_{2}+\alpha_{3} c_{1}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

$$
\text { (12): } c_{2} \mapsto c_{2}+\alpha_{3} c_{1}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

$$
\text { (12): } c_{2} \mapsto c_{2}+\alpha_{3} c_{1}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

$$
\text { (12): } c_{2} \mapsto c_{2}+\alpha_{3} c_{1}
$$

'Bridge' Decomposition
1 2 3 4 5 6 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{llllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{lll}(23)\end{array}\right.$
$f_{3}\left\{\begin{array}{llllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(24)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{ll}(4)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}\left(\begin{array}{l}(24)\end{array}\right.$
$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(23): $c_{3} \mapsto c_{3}+\alpha_{2} c_{2}$

'Bridge' Decomposition
1 2 3 4 5 6 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow 5 6 7
$\left.f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{1}\left\{\begin{array}{llllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(24)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(45)\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(23): $c_{3} \mapsto c_{3}+\alpha_{2} c_{2}$

	23456
	$f_{0}\left\{\begin{array}{llllll}3 & 5 & 6 & 7 & 8 & 10\end{array}\right\}$
	$\left\{\begin{array}{llllll}5 & 3 & 6 & 7 & 8\end{array}\right.$
	$\left\{\begin{array}{llllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right.$
	$\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}$
	$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right.$
	$\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right.$
	$\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}$
	36510
	$f_{8} \begin{array}{lllllll}7 & 8 & 3 & 10 & 5\end{array}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(23): $c_{3} \mapsto c_{3}+\alpha_{2} c_{2}$

'Bridge' Decomposition
$\begin{array}{cccccc}2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\ & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{llllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{llllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}(24)$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\binom{(12)}{4}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{l}(24) \\ (46)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1} & 2 & 3 & 4 & 5 & 6 \\ 0 & \left(\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(23): $c_{3} \mapsto c_{3}+\alpha_{2} c_{2}$

'Bridge' Decomposition
$\begin{array}{cccccc}2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\ & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{llllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{llllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}(24)$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\binom{(12)}{4}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{l}(24) \\ (46)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(12): $c_{2} \mapsto c_{2}+\alpha_{1} c_{1}$

'Bridge' Decomposition
$\begin{array}{cccccc}2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\ & & \end{array}$
$f_{0} \begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{llllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{llllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}(24)$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\binom{(12)}{4}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}_{(24)}^{(25)}$
$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}\left(\begin{array}{l}(24) \\ (46)\end{array}\right.$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(12): $c_{2} \mapsto c_{2}+\alpha_{1} c_{1}$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}\right.$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(24)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}{ }_{(24)}^{(24)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(12): $c_{2} \mapsto c_{2}+\alpha_{1} c_{1}$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & \end{array}$
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}\right.$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\} \begin{aligned} & (24)\end{aligned}$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{llllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(12): $c_{2} \mapsto c_{2}+\alpha_{1} c_{1}$

'Bridge' Decomposition
$\begin{array}{cccc}2 & 3 & 4 & 5 \\ \downarrow & \downarrow \\ \downarrow & \downarrow\end{array}$
$\begin{array}{lllll}3 & 5 & 6 & 7 & 8\end{array}$
$\begin{array}{lllll}5 & 3 & 6 & 7 & 8\end{array}$
$\begin{array}{llll}5 & 6 & 3\end{array}$
6537
735
635
638
$\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}$
10

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(12): $c_{2} \mapsto c_{2}+\alpha_{1} c_{1}$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & \end{array}$
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}\right.$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\} \begin{aligned} & (24)\end{aligned}$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{llllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(12): $c_{2} \mapsto c_{2}+\alpha_{1} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(12): $c_{2} \mapsto c_{2}+\alpha_{1} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
(12): $c_{2} \mapsto c_{2}+\alpha_{1} c_{1}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
\alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

ridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array} \tau$
$\left\{\begin{array}{llll}3 & 5 & 6 & 7\end{array}\right.$
$\begin{array}{llll}5 & 3 & 6 & 7\end{array}$
$\begin{array}{llll}6 & 3 & 7\end{array}$
537
735
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right.$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right.$
$f_{7} \begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}$
$7 \quad 8 \quad 310$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
\text { (61): } \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
\text { (61): } \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
\text { (61): } \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
\text { (61): } \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}\right.$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(24)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}{ }_{(24)}^{(24)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
(61): \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}\right.$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(24)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}{ }_{(24)}^{(24)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
(61): \quad c_{1} \mapsto c_{1}+\alpha_{0} c_{6}
$$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{0}\left\{\begin{array}{lllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}\right.$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}(12)$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(24)\end{array}\right.$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}(12)$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}{ }_{(24)}^{(24)}$
$f_{7}\left\{\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}(46)$
$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}^{(46)}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\ & & & \end{array}$
$f_{0} \begin{array}{llllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}(24)$
$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

'Bridge' Decomposition
$\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\ & & & \end{array}$
$f_{0} \begin{array}{llllllll}3 & 5 & 6 & 7 & 8 & 10\end{array}{ }_{(12)}$
$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}(23)\end{array}\right.$
$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}$
$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}$
$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}_{(45)}^{(12)}$
$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}(24)$
$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}$
$f_{8}\left\{\begin{array}{lllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

$C \equiv\left(\begin{array}{cccccc}\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Canonical Coordinates for Computing On-Shell Functions

$$
\begin{aligned}
& \mathcal{L}_{6,3} \equiv \frac{d \alpha_{0}}{\alpha_{0}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \\
& C \equiv\left(\begin{array}{ccccc}
\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} \\
\alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6}
\end{array}\right)
\end{aligned}
$$

Canonical Coordinates for Computing On-Shell Functions

$$
\begin{aligned}
& \mathcal{L}_{6,3} \equiv \frac{d \alpha_{0}}{\alpha_{0}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \\
& C \equiv\left(\begin{array}{ccccc}
\frac{1}{1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right)} \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} \\
\alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6}
\end{array}\right)
\end{aligned}
$$

Canonical Coordinates for Computing On-Shell Functions

$$
\mathcal{L}_{6,3} \equiv \frac{d \alpha_{0}}{\alpha_{0}} \cdots \frac{d \alpha_{8}}{\alpha_{8}}=\frac{d^{3 \times 6} C}{\operatorname{vol}(G L(3))} \frac{1}{(123)(234)(345)(456)(561)(612)}
$$

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ \alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$
'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

$$
\mathcal{L}_{n, k} \equiv \frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{k(n-k)}}{\alpha_{k(n-k)}}=\frac{d^{k \times n} C}{\operatorname{vol}(G L(k))} \frac{1}{(1 \cdots k)(2 \cdots k+1) \cdots(n \cdots k-1)}
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
\alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array} \tau$
$f_{0}\left\{\begin{array}{lllll}3 & 5 & 6 & 7 & 8\end{array}\right.$
$\begin{array}{lllll}5 & 3 & 6 & 7 & 8\end{array}$
$\begin{array}{llllll}6 & 3 & 7 & 8 & 1\end{array}$
78
$\begin{array}{llll}3 & 5 & 810\end{array}$
$\begin{array}{llll}6 & 3 & 5 & 8\end{array}$
$\begin{array}{llllll}6 & 3 & 8 & 5 & 10\end{array}$
$\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}$
10

Canonical Coordinates for Computing On-Shell Functions

$$
\mathcal{L}_{n, k} \equiv \frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{k(n-k)}}{\alpha_{k(n-k)}}=\frac{d^{k \times n} C}{\operatorname{vol}(G L(k))} \frac{1}{(1 \cdots k)(2 \cdots k+1) \cdots(n \cdots k-1)}
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
\alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array} \tau$
$f_{0}\left\{\begin{array}{lllll}3 & 5 & 6 & 7 & 8\end{array}\right.$
$\begin{array}{lllll}5 & 3 & 6 & 7 & 8\end{array}$
$\begin{array}{llllll}6 & 3 & 7 & 8 & 1\end{array}$
78
$\begin{array}{llll}3 & 5 & 810\end{array}$
$\begin{array}{llll}6 & 3 & 5 & 8\end{array}$
$\begin{array}{llllll}6 & 3 & 8 & 5 & 10\end{array}$
$\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}$
10

Canonical Coordinates for Computing On-Shell Functions

$$
\mathcal{L}_{n, k} \equiv \frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{k(n-k)}}{\alpha_{k(n-k)}}=\frac{d^{k \times n} C}{\operatorname{vol}(G L(k))} \frac{1}{(1 \cdots k)(2 \cdots k+1) \cdots(n \cdots k-1)}
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
\alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array} \tau$
$f_{0}\left\{\begin{array}{lllll}3 & 5 & 6 & 7 & 8\end{array}\right.$
$\begin{array}{lllll}5 & 3 & 6 & 7 & 8\end{array}$
$\begin{array}{llllll}6 & 3 & 7 & 8 & 1\end{array}$
78
$\begin{array}{llll}3 & 5 & 810\end{array}$
$\begin{array}{llll}6 & 3 & 5 & 8\end{array}$
$\begin{array}{llllll}6 & 3 & 8 & 5 & 10\end{array}$
$\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}$
10

Canonical Coordinates for Computing On-Shell Functions

$$
\mathcal{L}_{n, k} \equiv \frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{k(n-k)}}{\alpha_{k(n-k)}}=\frac{d^{k \times n} C}{\operatorname{vol}(G L(k))} \frac{1}{(1 \cdots k)(2 \cdots k+1) \cdots(n \cdots k-1)}
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
\alpha_{0} \alpha_{8} & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

Bridge' Decomposition
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array} \tau$
$f_{0}\left\{\begin{array}{lllll}3 & 5 & 6 & 7 & 8\end{array}\right.$
$\begin{array}{lllll}5 & 3 & 6 & 7 & 8\end{array}$
$\begin{array}{llllll}6 & 3 & 7 & 8 & 1\end{array}$
78
$\begin{array}{llll}3 & 5 & 810\end{array}$
$\begin{array}{llll}6 & 3 & 5 & 8\end{array}$
$\begin{array}{llllll}6 & 3 & 8 & 5 & 10\end{array}$
$\begin{array}{llllll}7 & 8 & 3 & 6 & 5 & 10\end{array}$
10

On-Shell Diagrams: Amalgamations of Scattering Amplitudes

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

A Combinatorial Classification of On-Shell Functions

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

A Combinatorial Classification of On-Shell Functions

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

Measure-preserving diffeomorphisms leave the function invariant

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

Measure-preserving diffeomorphisms leave the function invariant, butvia the δ-functions-can be recast variations of the kinematical data.

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

Measure-preserving diffeomorphisms leave the function invariant, butvia the δ-functions-can be recast variations of the kinematical data.
The Yangian corresponds to those diffeomorphisms that simultaneously preserve the measures of all on-shell diagrams.

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

Measure-preserving diffeomorphisms leave the function invariant, butvia the δ-functions-can be recast variations of the kinematical data.
The Yangian corresponds to those diffeomorphisms that simultaneously preserve the measures of all on-shell diagrams.

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.
For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.
For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

$$
\int_{\ell \in \mathbb{R}^{3,1}} d^{4} \ell
$$

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.
For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

$$
\int_{\ell \in \mathbb{R}^{3,1}} d^{4} \ell \Leftrightarrow
$$

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.
For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

$$
\int_{\ell \in \mathbb{R}^{3,1}} d^{4} \ell \quad \Leftrightarrow \quad \int_{\ell \equiv\left(\lambda_{1} \widetilde{\lambda}_{I}+\alpha \lambda_{1} \widetilde{\lambda}_{4}\right) \in \mathbb{R}^{3,1}} \frac{d^{2} \lambda_{1} d^{2} \lambda_{\mathrm{I}}}{\operatorname{vol}\left(G L_{1}\right.} d \alpha\langle\mathrm{I} 1\rangle[n I]
$$

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.
For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

$$
\int_{\ell \in \mathbb{R}^{3,1}} d^{4} \ell \quad \Leftrightarrow \quad \int_{\ell \equiv\left(\lambda_{1} \widetilde{\lambda}_{I}+\alpha \lambda_{1} \widetilde{\lambda}_{4}\right) \in \mathbb{R}^{3,1}} \frac{d^{2} \lambda_{I} d^{2} \lambda_{I}}{\operatorname{vol}\left(G L_{1}\right.} d \alpha\langle\mathrm{I} 1\rangle[n I]
$$

$$
\mathcal{A}_{4}^{(2), 0} \times \int_{\ell \in \mathbb{R}^{3,1}} d \log \left(\frac{\ell^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell+p_{1}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell+p_{1}+p_{2}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell-p_{4}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right)
$$

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_{4}^{(2), 1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3), 0}$:

$$
\int_{\ell \in \mathbb{R}^{3,1}} d^{4} \ell \quad \Leftrightarrow \quad \int_{\ell \equiv\left(\lambda_{1} \widetilde{\lambda}_{I}+\alpha \lambda_{1} \widetilde{\lambda}_{4}\right) \in \mathbb{R}^{3,1}} \frac{d^{2} \lambda_{I} d^{2} \tilde{\lambda}_{I}}{\operatorname{vol}\left(G L_{1}\right)} d \alpha\langle I 1\rangle[n I]
$$

$$
\mathcal{A}_{4}^{(2), 0} \times \int_{\ell \in \mathbb{R}^{3}, 1} d \log \left(\frac{\ell^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell+p_{1}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell+p_{1}+p_{2}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell-p_{4}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right)
$$

$$
=\mathcal{A}_{4}^{(2), 0} \times \int_{\ell \in \mathbb{R}^{3,1}} d^{4} \ell \frac{\left(p_{1}+p_{2}\right)^{2}\left(p_{3}+p_{4}\right)^{2}}{\ell^{2}\left(\ell+p_{1}\right)^{2}\left(\ell+p_{1}+p_{2}\right)^{2}\left(\ell-p_{4}\right)^{2}}
$$

[^0]: Thursday, $26^{\text {th }}$ May Cracow School of Theoretical Physics, Zakopane Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

