The Ternacular
 of
 the

Jacob L. Bourjaily
Cracow School of Theoretical Physics
LVI Course, 2016
A Panorama of Holography

The Ternacular
 of
 the

Jacob L. Bourjaily
Cracow School of Theoretical Physics
LVI Course, 2016
A Panorama of Holography

Wednesday, $25^{\text {th }}$ May Cracow School of Theoretical Physics, Zakopane
Part I: The Vernacular of the S-Matrix

Organization and Outline

(1) Spiritus Movens: a moral parable

- A Simple, Practical Problem in Quantum Chromodynamics
- The Shocking Simplicity of Scattering Amplitudes
(2) The Vernacular of the S-Matrix
- Physically Observable Data Describing Asymptotic States
- Massless Momenta and Spinor-Helicity Variables
- (Grassmannian) Geometry of Momentum Conservation
(3) The All-Orders S-Matrix for Three Massless Particles
- Three Particle Kinematics and Helicity Amplitudes
- Non-Dynamical Dependence: Coupling Constants \& Spin/Statistics

4. Consequences of Quantum Mechanical Consistency Conditions

- Factorization and Long-Range Physics: Weinberg's Theorem
- Uniqueness of Yang-Mills Theory and the Equivalence Principle
- The Simplest Quantum Field Theory: $\mathcal{N}=4$ super Yang-Mills

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

Supercollider physics

E. Eichten

Fermi National Aceclerator Laborators, P.O. Box S00, Batavia, Illinois 60510

1. Hinchliffe

Lawvence Berkeley Laboratory, Berkeley, Callfornia 94720
K. Lane

The Ohio State University, Columbus, Ohio 43210
C. Quigg

Fermi National Accelerator Laboratory, P.O. Box 500, Ratauiz, Illinods 60570
Eichten et al. summarize the motivation for exploring the $1-\mathrm{TeV}\left(=10^{12} \mathrm{eV}\right)$ energy scale in elementary particle interactioas and explore the capabilities of proton-(Ianti)proton colliders with beam energies between 1 and 50 TeV . The authors calkulate the production rates and characteristics for a number of conventional processes, and discuss their intrinsic physics interst as well as their role as backgrounds to more exotic
phenomena. The authors review the theoretical motivation and expected signatures for several new phe phenomena. The authors review the theoretical motivation and expected signatures for several new phe-
nomena which may pocur on the $1-\mathrm{TeV}$ scale. Their results provide a reference point for the choice of machine parameters and for experiment design-

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

Supercollider physics

E. Eichten

Fermi National Aceelerator Laborators, P.O. Box S00, Batavia, Illinois 60510
I. Hinchliffe

Lawence Berkeley Laboratory, Berkeley, Callfornia 94720
K. Lane

The Ohio State University, Columbus, Ohio 43210
C. Quigg

Fermi National Accelerator Laboratory, P.O. Box 500 , Batauis, Illinods 60570
Eichten et al. summarize the motivation for exploring the $1-\mathrm{TeV}\left(=10^{12} \mathrm{eV}\right)$ energy scale in elementary 1 and 50 TeV . The authors calculate the production rates and characteristics for a number of conventiona processes, and discuss their intrinsic physics interest as well as their role as backgrounds to more exotic phenomena. The authors review the theoretical motivation and expected signatures for several new phe nomena which may occur on the $1-\mathrm{TeV}$ scale. Their results provide a reference point for the choice of machine parameters and for experiment design-

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

Supercollider physics

E. Eichten

Fermi National Aceclerator Laborators, P.O. Box S00, Batavia, Illinois 60510
I. Hinchliffe

Lawrence Berkeley Laboratory, Berkeley, Callfornia 94720
K. Lane

The Ohio State University, Columbus, Ohio 43210
C. Quigg

Rermi National Accelerator Laboratory, P.O. Box 500 , Batauia, Illinois 60570
Eichten et ol. summarize the motivation for exploring the $1-\mathrm{TeV}\left(=10^{12} \mathrm{eV}\right)$ energy scale in elementary particle interactions and explore the capabilities of proton-(anti)proton collididers with beam energies betweei 1 and 50 TeV . The authors calculate the production rates and characteristics for a number of conventional pheremses, and The The authors review the theoretical motivation and expected signatures for several new phe nomena which may occur on the $1-\mathrm{TeV}$ scale. Their results provide a reference point for the choice of machine parameters and for experiment design.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

For multijet events containing more than three jets, the theoretical situation is considerably more primitive. A specific question of interest concerns the QCD four-jet background to the detection of $W^{+} W^{-}$pairs in their nonleptonic decays. The cross sections for the elementary two \rightarrow four processes have not been calculated, and their complexity is such that they may not be evaluated in the foreseeable future. It is worthwhile to seek estimates of the four-jet cross sections, even if these are only reliable in restricted regions of phase space.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

For multijet events containing more than three jets, the theoretical situation is considerably more primitive. A specific question of interest concerns the QCD four-jet background to the detection of $W^{+} W^{-}$pairs in their nonleptonic decays. The cross sections for the elementary two \rightarrow four processes have not been calculated, and their complexity is such that they may not be evaluated in the foreseeable future. It is worthwhile to seek estimates of the four-jet cross sections, even if these are only reliable in restricted regions of phase space.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION
Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION
Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
$D_{6}^{5}(7)=\frac{1}{s_{32} s_{4} t_{123}}\left[s_{16}-s_{48}+s_{36}\right]\left[s_{12}-s_{13}-s_{23}\right]$.
$D_{0}^{z}(8)=\frac{1}{s_{4} s_{23} s_{14}}\left[s_{13}+s_{13}-s_{24}\right]\left[s_{14}-s_{44}+s_{54}\right]$.
$D_{0}^{5}(9)=\frac{1}{s_{23} s_{54} t_{134}}\left[s_{14}+s_{54}-s_{13}\right]\left[s_{56}-s_{59}+s_{33}\right]$,
$D_{0}^{s}(10)-\frac{1}{s_{21} s_{s}}\left(p_{2}-p_{s}\right)\left(p_{1}-p_{s}\right)$.
$D_{6}^{5}(11)=\frac{1}{s_{1} s_{5} s_{6}}\left(p_{1}-p_{4}\right)\left(p_{s}-p_{v}\right)$,
$D_{0}^{s}(12)=\frac{1}{s_{4} s_{3 y}}\left(p_{t}-p_{1}\right)\left(p_{2}-p_{3}\right)$,
$D_{0}^{5}(13)=\frac{1}{s_{1}, s_{34}}\left(p_{3}-p_{1}\right)\left(p_{1}-p_{4}\right)$.
$D_{\delta}^{\Sigma}(14)=\frac{1}{s_{4} s_{4} s_{4}}\left(p_{2}-p_{y}\right)\left(p_{3}-p_{4}\right)$,
$D_{0}^{8}(15)=\frac{1}{s_{4} s_{3} s_{3}}\left\{\left[\left(p_{2}+p_{9}\right)\left(p_{3}-p_{0}\right)\right]\left[\left(p_{1}-p_{4}\right)\left(p_{2}-p_{3}\right)\right]\right.$
$+\left[\left(p_{2}-p_{9}\right)\left(p_{3}-p_{4}\right)\right]\left[\left(p_{1}-p_{4}\right)\left(p_{3}+p_{4}\right)\right]$
$\left.+\left[\left(p_{1}+p_{2}\right)\left(p_{2}-p_{3}\right)\right]\left[\left(p_{1}-p_{1}\right)\left(p_{3}-p_{1}\right)\right]\right\}$.
$D_{0}^{5}(16)-\frac{2}{s_{4} s_{4} 5_{3}}\left[\left\{\left(p_{2}-p_{j}\right)\left(p_{y},+p_{4}\right)\right\}\left(p_{1}-p_{b}\right)\left(p_{3}-p_{4}\right)\right]$
$+\left[\left(p_{1}+p_{p}\right)\left(p_{3}-p_{c}\right)\right]\left[\left(p_{1}-p_{0}\right)\left(p_{2}-p_{s}\right)\right]$
$\left.+\left[\left(p_{1}-p_{0}\right)\left(p_{2}+p_{3}\right)\right]\left[\left(p_{1}-p_{1}\right)\left(p_{2}-p_{3}\right)\right]\right)$.
The preceding list completes the result. Let us recapitualate now the numerical procedure of calculating the full cross section. First the diagrams D are calculated by using eqs. (111)-(13). The result is substituted to eq. (8) to obtain the vectors S_{0} permutations of momentas, eq. (6) is used to obtain the functions A_{0} and A_{2}. Finaily, the total cross section is calculated by using eq. (5). The FORTRAN 5 program based on such a scheme generates ten Monte Carlo points in less than a second on the heterotic CDC CYBER $175 / 875$.
Given the complexity of the final result, it is very important to have some reliable testing procedures available for numerical calculations. Usually in QCD, the multisloon amplitudes are tested by checking the gauge invariance. Due to the specifics

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

${ }^{20}$
of our calculation, the most powerfil test does not rely on the gauge symmetry, but on the appropriate permutation symmetries. The function $A_{0}\left(p_{1}, p_{2}, p_{4}, p_{1}, p_{3}, p_{0}\right)$
must be symmetric under arbitrary permutations of the momenta $\left(p_{1}, p_{2}, p_{1}\right)$ and separately, (p_{4}, p_{s}, p_{4}), whereas the function $A_{2}\left(p_{1}, p_{3}, p_{3}, p_{4}, p_{s}, p_{0}\right)$ must be symmetric under the permutations of ($\left.p_{1}, p_{2}, p_{3}, p_{4}\right)$ and separately, $\left(p_{3}, p_{3}\right)$. This test is extremely powerful, because the required permutation symmetries are hidden in our supersymmetry relations, eqs. (1) and (3), and in the structure of amplitudes involving different species of particles. Another, very important test relies on the absence of the double poles of the form $\left(g_{0}\right)^{-2}$ in the cross section, as required by general arguments based on the helicity conservation. Further, in the leading $\left(s_{y}\right)^{-1}$ $[3,4]$, convoluted with the appropriate Altarelli-Parisi probabilities [5]. Our result has saccesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's deligh
We thank Keith Ellis, Chris Quigs and especially, Estia Eichten for many usefal discussions and encouragement during the course of this work. We acknowledge the hospitality of Aspen Center for Physics, where this work was being completed in a pleasant, strung-out atmosphere.

References

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages
form for the answer, making our result not only an experimeatalist's, but also a theorist's deligh:

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages
[3, 4], convoluted with the appropriate Altarelli-Parisi probabilities [5]. Our result
has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our result not only an experimentalist's, but also a
theorist's delight.
We thank Keith Ellis, Chris Quigg and especially, Estia Eichten for many useful
discussions and encouragement during the course of this work. We acknowledge
the hospitality of Aspen Center for Physics, where this work was being completed

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages
[3, 4], convoluted with the appropriate Altarelli-Parisi probabilities [5]. Our result
has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our result not only an experimentalist's, but also a
theorist's delight.
We thank Keith Ellis, Chris Quigg and especially, Estia Eichten for many useful
discussions and encouragement during the course of this work. We acknowledge
the hospitality of Aspen Center for Physics, where this work was being completed

Supercomputer Computations in Quantum Chromodynamics

Consider the amplitude for two gluons to collide and produce four: $g g \rightarrow g g g g$. Before modern computers, this would have been computationally intractable

- 220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challenge

- using every theoretical tool available
- and the world's best supercomputers
- final formula fit into 8 pages
[3, 4], convoluted with the appropriate Altarelli-Parisi probabilities [5]. Our result
has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our result not only an experimentalist's, but also a
theorist's delight.
We thank Keith Ellis, Chris Quigg and especially, Estia Eichten for many useful
discussions and encouragement during the course of this work. We acknowledge
the hospitality of Aspen Center for Physics, where this work was being completed

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude (checked numerically):

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude (checked numerically):

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude (checked numerically):

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude (checked numerically):

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude (checked numerically):

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude (checked numerically): -which naturally suggested the amplitude for all multiplicity!

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude (checked numerically): -which naturally suggested the amplitude for all multiplicity!

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude (checked numerically): -which naturally suggested the amplitude for all multiplicity!

The Discovery of Incredible, Unanticipated Simplicity

They soon guessed a simplified form of the amplitude (checked numerically): -which naturally suggested the amplitude for all multiplicity!

Physically Observable Data Describing Asymptotic States

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physically Observable Data Describing Asymptotic States

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum
- m_{a} mass

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- m_{a} mass

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a} \in\left\{\sigma_{a}, \ldots,-\sigma_{a}\right\}$

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a} \in\left\{\sigma_{a}, \ldots,-\sigma_{a}\right\}$

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

Although a Lagrangian formalism requires that we use polarization tensors,

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

Although a Lagrangian formalism requires that we use polarization tensors, it is impossible to continuously define polarizations for each helicity state without introducing unobservable (gauge) redundancy

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

Although a Lagrangian formalism requires that we use polarization tensors, it is impossible to continuously define polarizations for each helicity state without introducing unobservable (gauge) redundancy-e.g. for $\sigma_{a}=1$:

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

Although a Lagrangian formalism requires that we use polarization tensors, it is impossible to continuously define polarizations for each helicity state without introducing unobservable (gauge) redundancy-e.g. for $\sigma_{a}=1$:

$$
\epsilon_{a}^{\mu} \sim \epsilon_{a}^{\mu}+\alpha\left(p_{a}\right) p_{a}^{\mu}
$$

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

Although a Lagrangian formalism requires that we use polarization tensors, it is impossible to continuously define polarizations for each helicity state without introducing unobservable (gauge) redundancy-e.g. for $\sigma_{a}=1$:

$$
\epsilon_{a}^{\mu} \sim \epsilon_{a}^{\mu}+\alpha\left(p_{a}\right) p_{a}^{\mu}
$$

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

$\mathcal{A}_{n} \equiv$

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

Although a Lagrangian formalism requires that we use polarization tensors, it is impossible to continuously define polarizations for each helicity state without introducing unobservable (gauge) redundancy-e.g. for $\sigma_{a}=1$:

$$
\epsilon_{a}^{\mu} \sim \epsilon_{a}^{\mu}+\alpha\left(p_{a}\right) p_{a}^{\mu}
$$

Such unphysical baggage is almost certainly responsible for the incredible obfuscation of simplicity in the traditional approach to quantum field theory.

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

$\mathcal{A}_{n} \equiv$

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

Although a Lagrangian formalism requires that we use polarization tensors, it is impossible to continuously define polarizations for each helicity state without introducing unobservable (gauge) redundancy-e.g. for $\sigma_{a}=1$:

$$
\epsilon_{a}^{\mu} \sim \epsilon_{a}^{\mu}+\alpha\left(p_{a}\right) p_{a}^{\mu}
$$

Such unphysical baggage is almost certainly responsible for the incredible obfuscation of simplicity in the traditional approach to quantum field theory.

On What Data Does a Scattering Amplitude Depend?

A scattering amplitude, \mathcal{A}_{n}, can be a generally complicated(?) function of all the physically observable data describing each of the particles involved.

$\mathcal{A}_{n} \equiv$

Physical data for the $a^{\text {th }}$ particle: $|a\rangle$

- p_{a}^{μ} momentum, on-shell: $p_{a}^{2}-m_{a}^{2}=0$
- σ_{a} spin, helicity $h_{a}= \pm \sigma_{a} \quad\left(m_{a}=0\right)$
- q_{a} all the non-kinematical quantum numbers of a (color, flavor, ...)

Although a Lagrangian formalism requires that we use polarization tensors, it is impossible to continuously define polarizations for each helicity state without introducing unobservable (gauge) redundancy-e.g. for $\sigma_{a}=1$:

$$
\epsilon_{a}^{\mu} \sim \epsilon_{a}^{\mu}+\alpha\left(p_{a}\right) p_{a}^{\mu}
$$

Such unphysical baggage is almost certainly responsible for the incredible obfuscation of simplicity in the traditional approach to quantum field theory.

Physically Observable Data Describing Asymptotic States

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu}
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}}
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

- Notice that $\operatorname{det}\left(p_{a}^{\alpha \dot{\alpha}}\right)=\left(p_{a}^{0}\right)^{2}-\left(p_{a}^{1}\right)^{2}-\left(p_{a}^{2}\right)^{2}-\left(p_{a}^{3}\right)^{2}=m_{a}^{2}$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

- Notice that $\operatorname{det}\left(p_{a}^{\alpha \dot{\alpha}}\right)=\left(p_{a}^{0}\right)^{2}-\left(p_{a}^{1}\right)^{2}-\left(p_{a}^{2}\right)^{2}-\left(p_{a}^{3}\right)^{2}=0$, for massless particles.

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

- Notice that $\operatorname{det}\left(p_{a}^{\alpha \dot{\alpha}}\right)=\left(p_{a}^{0}\right)^{2}-\left(p_{a}^{1}\right)^{2}-\left(p_{a}^{2}\right)^{2}-\left(p_{a}^{3}\right)^{2}=0$, for massless particles. This can be made manifest by writing $p_{a}^{\alpha \dot{\alpha}}$ as an outer product of 2 -vectors.

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- Notice that $\operatorname{det}\left(p_{a}^{\alpha \dot{\alpha}}\right)=\left(p_{a}^{0}\right)^{2}-\left(p_{a}^{1}\right)^{2}-\left(p_{a}^{2}\right)^{2}-\left(p_{a}^{3}\right)^{2}=0$, for massless particles. This can be made manifest by writing $p_{a}^{\alpha \dot{\alpha}}$ as an outer product of 2 -vectors.

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- Notice that $\operatorname{det}\left(p_{a}^{\alpha \dot{\alpha}}\right)=\left(p_{a}^{0}\right)^{2}-\left(p_{a}^{1}\right)^{2}-\left(p_{a}^{2}\right)^{2}-\left(p_{a}^{3}\right)^{2}=0$, for massless particles. This can be made manifest by writing $p_{a}^{\alpha \dot{\alpha}}$ as an outer product of 2 -vectors.
- When p_{a} is real $\left(p_{a} \in \mathbb{R}^{3,1}\right), p_{a}^{\alpha \dot{\alpha}}=\left(p_{a}^{\alpha \dot{\alpha}}\right)^{\dagger}$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- Notice that $\operatorname{det}\left(p_{a}^{\alpha \dot{\alpha}}\right)=\left(p_{a}^{0}\right)^{2}-\left(p_{a}^{1}\right)^{2}-\left(p_{a}^{2}\right)^{2}-\left(p_{a}^{3}\right)^{2}=0$, for massless particles. This can be made manifest by writing $p_{a}^{\alpha \dot{\alpha}}$ as an outer product of 2 -vectors.
- When p_{a} is real $\left(p_{a} \in \mathbb{R}^{3,1}\right), p_{a}^{\alpha \dot{\alpha}}=\left(p_{a}^{\alpha \dot{\alpha}}\right)^{\dagger}$, which implies that $\left(\lambda_{a}^{\alpha}\right)^{*}= \pm \widetilde{\lambda}_{a}^{\dot{\alpha}}$.

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- Notice that $\operatorname{det}\left(p_{a}^{\alpha \dot{\alpha}}\right)=\left(p_{a}^{0}\right)^{2}-\left(p_{a}^{1}\right)^{2}-\left(p_{a}^{2}\right)^{2}-\left(p_{a}^{3}\right)^{2}=0$, for massless particles. This can be made manifest by writing $p_{a}^{\alpha \dot{\alpha}}$ as an outer product of 2 -vectors.
- When p_{a} is real $\left(p_{a} \in \mathbb{R}^{3,1}\right), p_{a}^{\alpha \dot{\alpha}}=\left(p_{a}^{\alpha \dot{\alpha}}\right)^{\dagger}$, which implies that $\left(\lambda_{a}^{\alpha}\right)^{*}= \pm \widetilde{\lambda}_{a}^{\dot{\alpha}}$. (but allowing for complex momenta, λ_{a} and $\widetilde{\lambda}_{a}$ become independent.)

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- Notice that $\operatorname{det}\left(p_{a}^{\alpha \dot{\alpha}}\right)=\left(p_{a}^{0}\right)^{2}-\left(p_{a}^{1}\right)^{2}-\left(p_{a}^{2}\right)^{2}-\left(p_{a}^{3}\right)^{2}=0$, for massless particles. This can be made manifest by writing $p_{a}^{\alpha \dot{\alpha}}$ as an outer product of 2 -vectors.
- When p_{a} is real $\left(p_{a} \in \mathbb{R}^{3,1}\right), p_{a}^{\alpha \dot{\alpha}}=\left(p_{a}^{\alpha \dot{\alpha}}\right)^{\dagger}$, which implies that $\left(\lambda_{a}^{\alpha}\right)^{*}= \pm \widetilde{\lambda}_{a}^{\dot{\alpha}}$. (but allowing for complex momenta, λ_{a} and $\widetilde{\lambda}_{a}$ become independent.)

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$
- When p_{a} is real $\left(p_{a} \in \mathbb{R}^{3,1}\right), p_{a}^{\alpha \dot{\alpha}}=\left(p_{a}^{\alpha \dot{\alpha}}\right)^{\dagger}$, which implies that $\left(\lambda_{a}^{\alpha}\right)^{*}= \pm \widetilde{\lambda}_{a}^{\dot{\alpha}}$. (but allowing for complex momenta, λ_{a} and $\widetilde{\lambda}_{a}$ become independent.)

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.
- When p_{a} is real $\left(p_{a} \in \mathbb{R}^{3,1}\right), p_{a}^{\alpha \dot{\alpha}}=\left(p_{a}^{\alpha \dot{\alpha}}\right)^{\dagger}$, which implies that $\left(\lambda_{a}^{\alpha}\right)^{*}= \pm \widetilde{\lambda}_{a}^{\dot{\alpha}}$. (but allowing for complex momenta, λ_{a} and $\widetilde{\lambda}_{a}$ become independent.)

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group. Under little group transformations, wave functions transform according to:
- When p_{a} is real $\left(p_{a} \in \mathbb{R}^{3,1}\right), p_{a}^{\alpha \dot{\alpha}}=\left(p_{a}^{\alpha \dot{\alpha}}\right)^{\dagger}$, which implies that $\left(\lambda_{a}^{\alpha}\right)^{*}= \pm \widetilde{\lambda}_{a}^{\dot{\alpha}}$. (but allowing for complex momenta, λ_{a} and $\widetilde{\lambda}_{a}$ become independent.)

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- When p_{a} is real $\left(p_{a} \in \mathbb{R}^{3,1}\right), p_{a}^{\alpha \dot{\alpha}}=\left(p_{a}^{\alpha \dot{\alpha}}\right)^{\dagger}$, which implies that $\left(\lambda_{a}^{\alpha}\right)^{*}= \pm \widetilde{\lambda}_{a}^{\dot{\alpha}}$. (but allowing for complex momenta, λ_{a} and $\widetilde{\lambda}_{a}$ become independent.)

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- The (local) Lorentz group, $S L(2)_{L} \times S L(2)_{R}$, acts on λ_{a} and $\widetilde{\lambda}_{a}$, respectively.

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- The (local) Lorentz group, $S L(2)_{L} \times S L(2)_{R}$, acts on λ_{a} and $\widetilde{\lambda}_{a}$, respectively.

Therefore, Lorentz-invariants must be constructed using the determinants:

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- The (local) Lorentz group, $S L(2)_{L} \times S L(2)_{R}$, acts on λ_{a} and $\widetilde{\lambda}_{a}$, respectively.

Therefore, Lorentz-invariants must be constructed using the determinants:

$$
\operatorname{det}\left(\lambda_{a}, \lambda_{b}\right) \quad \operatorname{det}\left(\tilde{\lambda}_{a}, \tilde{\lambda}_{b}\right)
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow " a\right\rangle[a "
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- The (local) Lorentz group, $S L(2)_{L} \times S L(2)_{R}$, acts on λ_{a} and $\widetilde{\lambda}_{a}$, respectively.

Therefore, Lorentz-invariants must be constructed using the determinants:

$$
\operatorname{det}\left(\lambda_{a}, \lambda_{b}\right) \quad \operatorname{det}\left(\tilde{\lambda}_{a}, \tilde{\lambda}_{b}\right)
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow " a\right\rangle[a "
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- The (local) Lorentz group, $S L(2)_{L} \times S L(2)_{R}$, acts on λ_{a} and $\widetilde{\lambda}_{a}$, respectively.

Therefore, Lorentz-invariants must be constructed using the determinants:

$$
\operatorname{det}\left(\lambda_{a}, \lambda_{b}\right) \equiv\langle a b\rangle \quad \operatorname{det}\left(\widetilde{\lambda}_{a}, \widetilde{\lambda}_{b}\right) \equiv[a b]
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow " a\right\rangle[a "
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- The (local) Lorentz group, $S L(2)_{L} \times S L(2)_{R}$, acts on λ_{a} and $\widetilde{\lambda}_{a}$, respectively.

Therefore, Lorentz-invariants must be constructed using the determinants:

$$
\epsilon_{\alpha \beta} \lambda_{a}^{\alpha} \lambda_{b}^{\beta} \equiv\langle a b\rangle \quad \epsilon_{\dot{\alpha} \dot{\beta}} \widetilde{\lambda}_{a}^{\dot{\alpha}} \widetilde{\lambda}_{b}^{\dot{\beta}} \equiv[a b]
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow " a\right\rangle[a "
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- The (local) Lorentz group, $S L(2)_{L} \times S L(2)_{R}$, acts on λ_{a} and $\widetilde{\lambda}_{a}$, respectively.

Therefore, Lorentz-invariants must be constructed using the determinants:

$$
\operatorname{det}\left(\lambda_{a}, \lambda_{b}\right) \equiv\langle a b\rangle \quad \operatorname{det}\left(\widetilde{\lambda}_{a}, \widetilde{\lambda}_{b}\right) \equiv[a b]
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow " a\right\rangle[a "
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- The (local) Lorentz group, $S L(2)_{L} \times S L(2)_{R}$, acts on λ_{a} and $\widetilde{\lambda}_{a}$, respectively.

Therefore, Lorentz-invariants must be constructed using the determinants:

$$
\operatorname{det}\left(\lambda_{a}, \lambda_{b}\right) \equiv\langle a b\rangle \quad \operatorname{det}\left(\widetilde{\lambda}_{a}, \widetilde{\lambda}_{b}\right) \equiv[a b]
$$

Making Masslessness Manifest: Spinor-Helicity Variables

To avoid constraining each particle's momentum to be null, van der Waerden introduced (in 1929!) spinor-helicity variables to make this always trivial.

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow " a\right\rangle[a "
$$

- $p_{a}^{\alpha \dot{\alpha}}$ is unchanged by $\left(\lambda_{a}, \widetilde{\lambda}_{a}\right) \mapsto\left(t_{a} \lambda_{a}, t_{a}^{-1} \widetilde{\lambda}_{a}\right)$-the action of the little group.

Under little group transformations, wave functions transform according to:

$$
|a\rangle^{h_{a}} \mapsto t_{a}^{-2 h_{a}}|a\rangle^{h_{a}}
$$

- The (local) Lorentz group, $S L(2)_{L} \times S L(2)_{R}$, acts on λ_{a} and $\widetilde{\lambda}_{a}$, respectively.

Therefore, Lorentz-invariants must be constructed using the determinants:

$$
\operatorname{det}\left(\lambda_{a}, \lambda_{b}\right) \equiv\langle a b\rangle \quad \operatorname{det}\left(\widetilde{\lambda}_{a}, \widetilde{\lambda}_{b}\right) \equiv[a b]
$$

Physically Observable Data Describing Asymptotic States

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

Physically Observable Data Describing Asymptotic States

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\left(\begin{array}{llll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots
\end{array} \lambda_{n}^{1}\right)
$$

Physically Observable Data Describing Asymptotic States

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{\mathrm{i}} & \cdots
\end{array} \widetilde{\lambda}_{n}^{\mathrm{i}}\right)
$$

Physically Observable Data Describing Asymptotic States

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{\mathrm{i}} & \cdots
\end{array} \widetilde{\lambda}_{n}^{\mathrm{i}}\right)
$$

Physically Observable Data Describing Asymptotic States

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{ccccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{\mathrm{i}} & \cdots & \widetilde{\lambda}_{n}^{\mathrm{i}} \\
\widetilde{\lambda}_{1}^{\dot{2}} & \widetilde{\lambda}_{2}^{\dot{2}} & \widetilde{\lambda}_{3}^{\dot{i}} & \cdots & \widetilde{\lambda}_{n}^{2}
\end{array}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

Physically Observable Data Describing Asymptotic States

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\tilde{\lambda}_{1} & \tilde{\lambda}_{2} & \tilde{\lambda}_{3} & \cdots
\end{array} \tilde{\lambda}_{n}\right) \equiv\binom{\tilde{\lambda}^{i}}{\widetilde{\lambda}^{2}}
$$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\tilde{\lambda}_{1} & \tilde{\lambda}_{2} & \tilde{\lambda}_{3} & \cdots
\end{array} \tilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{i}}{\widetilde{\lambda}^{2}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$,

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The "two-plane" λ :

the span of 2 vectors $\lambda^{\alpha} \in \mathbb{C}^{n}$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The "two-plane" λ :

the span of 2 vectors $\lambda^{\alpha} \in \mathbb{C}^{n}$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The "two-plane" λ :

the span of 2 vectors $\lambda^{\alpha} \in \mathbb{C}^{n}$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The "two-plane" λ :

 the span of 2 vectors $\lambda^{\alpha} \in \mathbb{C}^{n}$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The "two-plane" λ :

 the span of 2 vectors $\lambda^{\alpha} \in \mathbb{C}^{n}$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The "two-plane" λ :

 the span of 2 vectors $\lambda^{\alpha} \in \mathbb{C}^{n}$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation:

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation:
(taking all the momenta to be incoming)

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation:
(taking all the momenta to be incoming)
 $\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation:
(taking all the momenta to be incoming)

$$
\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)=\delta^{2 \times 2}\left(\sum_{a} p_{a}^{\alpha \dot{\alpha}}\right)
$$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation:
(taking all the momenta to be incoming)

$$
\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)=\delta^{2 \times 2}\left(\sum_{a} \lambda_{a}^{\alpha} \widetilde{\lambda_{a}^{\dot{\alpha}}}\right)
$$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation:
(taking all the momenta to be incoming)

$$
\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)=\delta^{2 \times 2}\left(\sum_{a} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \equiv \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation: $\widetilde{\lambda} \subset \lambda^{\perp}$ and $\lambda \subset \widetilde{\lambda}^{\perp}$ (taking all the momenta to be incoming)

$$
\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)=\delta^{2 \times 2}\left(\sum_{a} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \equiv \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \tilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\tilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation: $\widetilde{\lambda} \subset \lambda^{\perp}$ and $\lambda \subset \widetilde{\lambda}^{\perp}$ (taking all the momenta to be incoming)

$$
\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)=\delta^{2 \times 2}\left(\sum_{a} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \equiv \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation: $\widetilde{\lambda} \subset \lambda^{\perp}$ and $\lambda \subset \widetilde{\lambda}^{\perp}$ (taking all the momenta to be incoming)

$$
\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)=\delta^{2 \times 2}\left(\sum_{a} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \equiv \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation: $\widetilde{\lambda} \subset \lambda^{\perp}$ and $\lambda \subset \widetilde{\lambda}^{\perp}$ (taking all the momenta to be incoming)

$$
\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)=\delta^{2 \times 2}\left(\sum_{a} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \equiv \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation: $\widetilde{\lambda} \subset \lambda^{\perp}$ and $\lambda \subset \widetilde{\lambda}^{\perp}$ (taking all the momenta to be incoming)

$$
\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)=\delta^{2 \times 2}\left(\sum_{a} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \equiv \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

The Grassmannian Geometry of Kinematical Constraints

Thus, all the kinematical data can be described by a pair of $(2 \times n)$ matrices:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \cdots & \lambda_{n}
\end{array}\right) \equiv\binom{\lambda^{1}}{\lambda^{2}} \quad \widetilde{\lambda} \equiv\left(\begin{array}{llll}
\widetilde{\lambda}_{1} & \widetilde{\lambda}_{2} & \widetilde{\lambda}_{3} & \cdots
\end{array} \widetilde{\lambda}_{n}\right) \equiv\binom{\widetilde{\lambda}^{\mathrm{i}}}{\widetilde{\lambda}^{\dot{2}}}
$$

writing $\lambda_{a} \in \mathbb{C}^{2}$ for a column, $\lambda^{\alpha} \in \mathbb{C}^{n}$ for a row.

- Because Lorentz transformations mix the rows of each matrix, $\lambda^{\alpha}, \widetilde{\lambda}^{\dot{\alpha}}$, and the little group allows for rescaling, the invariant content of the data is:

The Grassmanian $G(k, n)$:

 the span of k vectors in \mathbb{C}^{n}- Momentum conservation: $\widetilde{\lambda} \subset \lambda^{\perp}$ and $\lambda \subset \widetilde{\lambda}^{\perp}$ (taking all the momenta to be incoming)

$$
\delta^{4}\left(\sum_{a} p_{a}^{\mu}\right)=\delta^{2 \times 2}\left(\sum_{a} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \equiv \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

$$
\widetilde{\lambda} \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{\dot{i}}
\end{array}\right)
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

$$
\widetilde{\lambda} \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{\mathrm{i}} & \widetilde{\lambda}_{2}^{\mathrm{i}} & \widetilde{\lambda}_{3}^{\mathrm{i}} \\
\widetilde{\lambda}_{1}^{\dot{2}} & \widetilde{\lambda}_{2}^{\dot{2}} & \widetilde{\lambda}_{3}^{\dot{i}}
\end{array}\right)
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\begin{aligned}
& \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle) \supset \widetilde{\lambda} \\
& \lambda \equiv\left(\begin{array}{ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
& \text { or } \\
& \widetilde{\lambda} \equiv\left(\begin{array}{lll}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{\dot{i}}
\end{array}\right) \\
& \widetilde{\lambda}^{\perp} \equiv\left(\left[\begin{array}{lll}
23] & {[31]} & [12]) \supset \lambda
\end{array}\right.\right.
\end{aligned}
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\begin{aligned}
& \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle) \supset \widetilde{\lambda} \\
& \lambda \equiv\left(\begin{array}{ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
& \text { or } \\
& \widetilde{\lambda} \equiv\left(\begin{array}{lll}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{\dot{i}}
\end{array}\right) \\
& \widetilde{\lambda}^{\perp} \equiv\left(\left[\begin{array}{lll}
23] & {[31]} & [12]) \supset \lambda
\end{array}\right.\right.
\end{aligned}
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\begin{aligned}
& \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle) \supset \widetilde{\lambda} \\
& \lambda \equiv\left(\begin{array}{ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
& \text { or } \\
& \widetilde{\lambda} \equiv\left(\begin{array}{lll}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{\dot{i}}
\end{array}\right) \\
& \widetilde{\lambda}^{\perp} \equiv\left(\left[\begin{array}{lll}
23] & {[31]} & [12]) \supset \lambda
\end{array}\right.\right.
\end{aligned}
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\begin{aligned}
& h_{1} \\
& \stackrel{\langle 12\rangle^{h_{3}-h_{1}-h_{2}}\langle 23\rangle^{h_{1}-h_{2}-h_{3}}\langle 31\rangle^{h_{2}-h_{3}-h_{1}}}{\longrightarrow} \mathcal{O}\left(\epsilon^{-\left(h_{1}+h_{2}+h_{3}\right)}\right) \quad \lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
& \begin{aligned}
{[12]^{h_{1}+h_{2}-h_{3}}[23]^{h_{2}+h_{3}-h_{1}}[31]^{h_{3}+h_{1}-h_{2}} } & \widetilde{\lambda} \equiv\left(\begin{array}{lll}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
{[a b] \rightarrow \mathcal{O}(\epsilon) } & \mathcal{O}\left(\epsilon^{\left(h_{1}+h_{2}+h_{3}\right)}\right)
\end{aligned} \widetilde{\lambda}^{\perp} \equiv([23][31][12]) \supset \lambda, ~\left[\begin{array}{ll}
{[3]}
\end{array}\right.
\end{aligned}
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\begin{aligned}
& h_{1} \\
& \stackrel{\langle 12\rangle^{h_{3}-h_{1}-h_{2}}\langle 23\rangle^{h_{1}-h_{2}-h_{3}}\langle 31\rangle^{h_{2}-h_{3}-h_{1}}}{\longrightarrow} \mathcal{O}\left(\epsilon^{-\left(h_{1}+h_{2}+h_{3}\right)}\right) \quad \lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
& \begin{aligned}
{[12]^{h_{1}+h_{2}-h_{3}}[23]^{h_{2}+h_{3}-h_{1}}[31]^{h_{3}+h_{1}-h_{2}} } & \widetilde{\lambda} \equiv\left(\begin{array}{lll}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
{[a b] \rightarrow \mathcal{O}(\epsilon) } & \mathcal{O}\left(\epsilon^{\left(h_{1}+h_{2}+h_{3}\right)}\right)
\end{aligned} \widetilde{\lambda}^{\perp} \equiv([23][31][12]) \supset \lambda, ~\left[\begin{array}{ll}
{[3]}
\end{array}\right.
\end{aligned}
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\left.\begin{array}{rlrl}
\langle 12\rangle^{h_{3}-h_{1}-h_{2}}\langle 23\rangle^{h_{1}-h_{2}-h_{3}}\langle 31\rangle^{h_{2}-h_{3}-h_{1}} & \lambda & \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle) \supset \widetilde{\lambda} \\
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right), ~ l
$$

$$
h_{1}+h_{2}+h_{3} \leq 0
$$

or

$$
\begin{array}{cl}
{[12]^{h_{1}+h_{2}-h_{3}}[23]^{h_{2}+h_{3}-h_{1}}[31]^{h_{3}+h_{1}-h_{2}}} & \widetilde{\lambda} \equiv\left(\begin{array}{lll}
\widetilde{\lambda}_{1}^{\mathrm{i}} & \widetilde{\lambda}_{2}^{\mathrm{i}} & \widetilde{\lambda}_{3}^{\mathrm{i}} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{\dot{2}} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
h_{1}+h_{2}+h_{3} \geq 0 & \widetilde{\lambda}^{\perp} \equiv\left(\left[\begin{array}{lll}
23] & {[31]} & [12]) \supset \lambda
\end{array}\right.\right.
\end{array}
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\left.\begin{array}{rlrl}
\langle 12\rangle^{h_{3}-h_{1}-h_{2}}\langle 23\rangle^{h_{1}-h_{2}-h_{3}}\langle 31\rangle^{h_{2}-h_{3}-h_{1}} & \lambda & \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle) \supset \widetilde{\lambda} \\
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right), ~ l
$$

$$
h_{1}+h_{2}+h_{3} \leq 0
$$

or

$$
\begin{array}{cl}
{[12]^{h_{1}+h_{2}-h_{3}}[23]^{h_{2}+h_{3}-h_{1}}[31]^{h_{3}+h_{1}-h_{2}}} & \widetilde{\lambda} \equiv\left(\begin{array}{lll}
\widetilde{\lambda}_{1}^{\mathrm{i}} & \widetilde{\lambda}_{2}^{\mathrm{i}} & \widetilde{\lambda}_{3}^{\mathrm{i}} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{\dot{2}} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
h_{1}+h_{2}+h_{3} \geq 0 & \widetilde{\lambda}^{\perp} \equiv\left(\left[\begin{array}{lll}
23] & {[31]} & [12]) \supset \lambda
\end{array}\right.\right.
\end{array}
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

$$
\left.\begin{array}{rlrl}
\langle 12\rangle^{h_{3}-h_{1}-h_{2}}\langle 23\rangle^{h_{1}-h_{2}-h_{3}}\langle 31\rangle^{h_{2}-h_{3}-h_{1}} & \lambda & \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle) \supset \widetilde{\lambda} \\
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right), ~ l
$$

$$
h_{1}+h_{2}+h_{3} \leq 0
$$

or

$$
\begin{array}{cl}
{[12]^{h_{1}+h_{2}-h_{3}}[23]^{h_{2}+h_{3}-h_{1}}[31]^{h_{3}+h_{1}-h_{2}}} & \widetilde{\lambda} \equiv\left(\begin{array}{lll}
\widetilde{\lambda}_{1}^{\mathrm{i}} & \widetilde{\lambda}_{2}^{\mathrm{i}} & \widetilde{\lambda}_{3}^{\mathrm{i}} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{\dot{2}} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
h_{1}+h_{2}+h_{3} \geq 0 & \widetilde{\lambda}^{\perp} \equiv\left(\left[\begin{array}{lll}
23] & {[31]} & [12]) \supset \lambda
\end{array}\right.\right.
\end{array}
$$

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

3

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

3

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

3

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Building Blocks: the S-Matrix for Three Massless Particles

Momentum conservation and Poincaré-invariance uniquely fix the kinematical dependence of the amplitude for three massless particles (to all loop orders!).

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory.

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

$$
\left[f^{q_{1}, q_{2}, q_{3}}\right]=[\text { mass }]^{1-\left|h_{1}+h_{2}+h_{3}\right|}
$$

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

$$
\left[f^{q_{1}, q_{2}, q_{3}}\right]=[\text { mass }]^{1-\left|h_{1}+h_{2}+h_{3}\right|}
$$

- Consider a theory involving only particles with integer spin $\sigma \in \mathbb{Z}$:

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

$$
\left[f^{q_{1}, q_{2}, q_{3}}\right]=[\text { mass }]^{1-\left|h_{1}+h_{2}+h_{3}\right|}
$$

- Consider a theory involving only particles with integer spin $\sigma \in \mathbb{Z}$:

$$
\mathcal{A}\left(1_{q_{1}}^{+\sigma}, 2_{q_{2}}^{-\sigma}, 3_{q_{3}}^{-\sigma}\right)
$$

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

$$
\left[f^{q_{1}, q_{2}, q_{3}}\right]=[\text { mass }]^{1-\left|h_{1}+h_{2}+h_{3}\right|}
$$

- Consider a theory involving only particles with integer spin $\sigma \in \mathbb{Z}$:

$$
\mathcal{A}\left(1_{q_{1}}^{+\sigma}, 2_{q_{2}}^{-\sigma}, 3_{q_{3}}^{-\sigma}\right)=f^{q_{1}, q_{2}, q_{3}}\left(\frac{\langle 23\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}\right)^{\sigma} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

$$
\left[f^{q_{1}, q_{2}, q_{3}}\right]=[\text { mass }]^{1-\left|h_{1}+h_{2}+h_{3}\right|}
$$

- Consider a theory involving only particles with integer spin $\sigma \in \mathbb{Z}$:

$$
\mathcal{A}\left(1_{q_{1}}^{+\sigma}, 2_{q_{2}}^{-\sigma}, 3_{q_{3}}^{-\sigma}\right)=f^{q_{1}, q_{2}, q_{3}}\left(\frac{\langle 23\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}\right)^{\sigma} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Bose statistics requires that \mathcal{A} be symmetric under the exchange $2 \leftrightarrow 3$;

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

$$
\left[f^{q_{1}, q_{2}, q_{3}}\right]=[\text { mass }]^{1-\left|h_{1}+h_{2}+h_{3}\right|}
$$

- Consider a theory involving only particles with integer spin $\sigma \in \mathbb{Z}$:

$$
\mathcal{A}\left(1_{q_{1}}^{+\sigma}, 2_{q_{2}}^{-\sigma}, 3_{q_{3}}^{-\sigma}\right)=f^{q_{1}, q_{2}, q_{3}}\left(\frac{\langle 23\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}\right)^{\sigma} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Bose statistics requires that \mathcal{A} be symmetric under the exchange $2 \leftrightarrow 3$;

- even-spin: $f^{q_{1}, q_{2}, q_{3}}$ must be totally symmetric

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

$$
\left[f^{q_{1}, q_{2}, q_{3}}\right]=[\text { mass }]^{1-\left|h_{1}+h_{2}+h_{3}\right|}
$$

- Consider a theory involving only particles with integer spin $\sigma \in \mathbb{Z}$:

$$
\mathcal{A}\left(1_{q_{1}}^{+\sigma}, 2_{q_{2}}^{-\sigma}, 3_{q_{3}}^{-\sigma}\right)=f^{q_{1}, q_{2}, q_{3}}\left(\frac{\langle 23\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}\right)^{\sigma} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Bose statistics requires that \mathcal{A} be symmetric under the exchange $2 \leftrightarrow 3$;

- even-spin: $f^{q_{1}, q_{2}, q_{3}}$ must be totally symmetric
- odd spin: $f^{q_{1}, q_{2}, q_{3}}$ must be totally antisymmetric

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

$$
\left[f^{q_{1}, q_{2}, q_{3}}\right]=[\text { mass }]^{1-\left|h_{1}+h_{2}+h_{3}\right|}
$$

- Consider a theory involving only particles with integer spin $\sigma \in \mathbb{Z}$:

$$
\mathcal{A}\left(1_{q_{1}}^{+\sigma}, 2_{q_{2}}^{-\sigma}, 3_{q_{3}}^{-\sigma}\right)=f^{q_{1}, q_{2}, q_{3}}\left(\frac{\langle 23\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}\right)^{\sigma} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Bose statistics requires that \mathcal{A} be symmetric under the exchange $2 \leftrightarrow 3$;

- even-spin: $f^{q_{1}, q_{2}, q_{3}}$ must be totally symmetric
- odd spin: $f^{q_{1}, q_{2}, q_{3}}$ must be totally antisymmetric

Coupling Constant Constraints: Scaling and Spin/Statistics

The coupling constants $f^{q_{1}, q_{2}, q_{3}}$ are quantum-number-dependent constants which define the theory. Because all the kinematical dependence is fixed, these couplings cannot 'run'.

- Dimensional analysis shows that the mass-dimension of the coupling is:

$$
\left[f^{q_{1}, q_{2}, q_{3}}\right]=[\text { mass }]^{1-\left|h_{1}+h_{2}+h_{3}\right|}
$$

- Consider a theory involving only particles with integer spin $\sigma \in \mathbb{Z}$:

$$
\mathcal{A}\left(1_{q_{1}}^{+\sigma}, 2_{q_{2}}^{-\sigma}, 3_{q_{3}}^{-\sigma}\right)=f^{q_{1}, q_{2}, q_{3}}\left(\frac{\langle 23\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}\right)^{\sigma} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Bose statistics requires that \mathcal{A} be symmetric under the exchange $2 \leftrightarrow 3$;

- even-spin: $f^{q_{1}, q_{2}, q_{3}}$ must be totally symmetric
- odd spin: $f^{q_{1}, q_{2}, q_{3}}$ must be totally antisymmetric

Factorization and Long-Range Physics: Weinberg's Theorem Uniqueness of Yang-Mills Theory and the Equivalence Principle The Simplest Quantum Field Theory: $\mathcal{N}=4$ super Yang-Mills

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

- Homework:

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

- Homework: use the result, together with the analogous u - and t-channels to determine the form of \mathcal{A}_{4}

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

- Homework: use the result, together with the analogous u - and t-channels to determine the form of \mathcal{A}_{4} and show that if $\sigma>2$ all factorizations vanish.

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

- Homework: use the result, together with the analogous u - and t-channels to determine the form of \mathcal{A}_{4} and show that if $\sigma>2$ all factorizations vanish. This is Wienberg's theorem

Channeling Some Consequences of Factorization

In [arXiv:0705.4305], Benincasa and Cachazo described how elementary considerations of locality and unitarity strongly restricts the choice of coupling constants, and hence possible quantum field theories.
Consider the behavior of any local, unitarity theory in a factorization limit:

- Homework: use the result, together with the analogous u - and t-channels to determine the form of \mathcal{A}_{4} and show that if $\sigma>2$ all factorizations vanish. This is Wienberg's theorem-proving that long-range physics requires $\sigma \leq 2$.

The Vernacular of the S-Matrix
The All-Orders S-Matrix for Three Massless Particles Consequences of Quantum Mechanical Consistency Conditions

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

- $\sigma=1$: the coupling constants satisfy a Jacobi identity!

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

- $\sigma=1$: the coupling constants satisfy a Jacobi identity!

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

- $\sigma=1$: the coupling constants satisfy a Jacobi identity!

$$
f^{q_{1}, q_{2}, \boldsymbol{\iota}_{f}} \boldsymbol{\iota}, q_{3}, q_{4}+f^{q_{2}, q_{3}, \boldsymbol{\iota}^{\boldsymbol{c}} f^{\boldsymbol{b}}, q_{1}, q_{4}}+f^{q_{3}, q_{1}, \boldsymbol{\iota}} f^{\boldsymbol{\iota}}, q_{2}, q_{4}=0 .
$$

- whatever quantum numbers distinguish mutually interacting spin-1 particles, they form the adjoint representation of a Lie algebra!

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

- $\sigma=1$: the coupling constants satisfy a Jacobi identity!
- whatever quantum numbers distinguish mutually interacting spin-1 particles, they form the adjoint representation of a Lie algebra!
- $\sigma=2$: multiple spin-2 particles can always be decomposed into mutually non-interacting sectors

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

- $\sigma=1$: the coupling constants satisfy a Jacobi identity!
- whatever quantum numbers distinguish mutually interacting spin-1 particles, they form the adjoint representation of a Lie algebra!
- $\sigma=2$: multiple spin-2 particles can always be decomposed into mutually non-interacting sectors-there is at most one graviton!

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

- $\sigma=1$: the coupling constants satisfy a Jacobi identity!

$$
f^{q_{1}, q_{2}, \boldsymbol{\iota}_{f} \boldsymbol{\iota}, q_{3}, q_{4}}+f^{q_{2}, q_{3}, \boldsymbol{\iota}_{6}} f_{, q_{1}, q_{4}}+f^{q_{3}, q_{1}, \boldsymbol{\iota}_{f} \boldsymbol{\iota}, q_{2}, q_{4}}=0 .
$$

- whatever quantum numbers distinguish mutually interacting spin-1 particles, they form the adjoint representation of a Lie algebra!
- $\sigma=2$: multiple spin-2 particles can always be decomposed into mutually non-interacting sectors-there is at most one graviton!
- the coupling strength of any spin-2 particle to itself must be the same as its coupling to any other field

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

- $\sigma=1$: the coupling constants satisfy a Jacobi identity!

$$
f^{q_{1}, q_{2}, \boldsymbol{\iota}_{f} \boldsymbol{\iota}, q_{3}, q_{4}}+f^{q_{2}, q_{3}, \boldsymbol{\iota}_{6}} f_{, q_{1}, q_{4}}+f^{q_{3}, q_{1}, \boldsymbol{\iota}_{f} \boldsymbol{\iota}, q_{2}, q_{4}}=0 .
$$

- whatever quantum numbers distinguish mutually interacting spin-1 particles, they form the adjoint representation of a Lie algebra!
- $\sigma=2$: multiple spin- 2 particles can always be decomposed into mutually non-interacting sectors-there is at most one graviton!
- the coupling strength of any spin-2 particle to itself must be the same as its coupling to any other field-the equivalence principle!

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

- $\sigma=1$: the coupling constants satisfy a Jacobi identity!

$$
f^{q_{1}, q_{2}, \boldsymbol{\iota}_{f} \boldsymbol{\iota}, q_{3}, q_{4}}+f^{q_{2}, q_{3}, \boldsymbol{\iota}_{6}} f_{, q_{1}, q_{4}}+f^{q_{3}, q_{1}, \boldsymbol{\iota}_{f} \boldsymbol{\iota}, q_{2}, q_{4}}=0 .
$$

- whatever quantum numbers distinguish mutually interacting spin-1 particles, they form the adjoint representation of a Lie algebra!
- $\sigma=2$: multiple spin- 2 particles can always be decomposed into mutually non-interacting sectors-there is at most one graviton!
- the coupling strength of any spin-2 particle to itself must be the same as its coupling to any other field-the equivalence principle!

Quantum Consistency Conditions from Cauchy's Theorem

Using Cauchy's theorem to relate the three factorization channels to each other, Benincasa and Cachazo prove in [arXiv:0705.4305] following:

- $\sigma=1$: the coupling constants satisfy a Jacobi identity!

$$
f^{q_{1}, q_{2}, \boldsymbol{\iota}_{f} \boldsymbol{\iota}, q_{3}, q_{4}}+f^{q_{2}, q_{3}, \boldsymbol{\iota}_{6}} f_{, q_{1}, q_{4}}+f^{q_{3}, q_{1}, \boldsymbol{\iota}_{f} \boldsymbol{\iota}, q_{2}, q_{4}}=0 .
$$

- whatever quantum numbers distinguish mutually interacting spin-1 particles, they form the adjoint representation of a Lie algebra!
- $\sigma=2$: multiple spin- 2 particles can always be decomposed into mutually non-interacting sectors-there is at most one graviton!
- the coupling strength of any spin-2 particle to itself must be the same as its coupling to any other field-the equivalence principle!

The Vernacular of the S-Matrix
The All-Orders S-Matrix for Three Massless Particles Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg's Theorem Uniqueness of Yang-Mills Theory and the Equivalence Principle The Simplest Quantum Field Theory: $\mathcal{N}=4$ super Yang-Mills

The Vernacular of the S-Matrix
The All-Orders S-Matrix for Three Massless Particles Consequences of Quantum Mechanical Consistency Conditions

Factorization and Long-Range Physics: Weinberg's Theorem Uniqueness of Yang-Mills Theory and the Equivalence Principle The Simplest Quantum Field Theory: $\mathcal{N}=4$ super Yang-Mills

