
Baryons, nuclei and neutron stars as solitons
in chiral fluid

A. Wereszczynski

based on collaboration with

C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez (Santiago de Compostela)

M. Speight (Leeds)
M. Habrichter (Cambridge/Kent)

T. Klähn (Wroclaw)



rediscovering skyrmions
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fundamental result
there is a limit of Skyrme type actions in which the model has two properties

BPS
classically zero binding energies
physical (small) binding energies: semiclassical quantization

Coulomb interaction
isospin breaking

perfect fluid field theory
Tµν in a perfect fluid form
SDiff symmetry
Euler fluid formulation

FT (micro) d.o.f. = thermodynamical (macro) functions

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

solvablity
exact solutions
exact, analytical EoS and thermodynamics

a way beyond MF limit in nuclear matter



motivation

the Skyrme framework Skyrme (61)

pionic EFT of

baryons and nuclei→ emergent objects: solitons
extended, non-perturbative

nuclear matter
with applications to neutron stars
→ complementary to lattice

support form Nc →∞ limit t’Hooft (83), Witten (84)

chiral effective meson/baryon theory
primary d.o.f. are mesons
baryons (nuclei) are realized as solitons

simplest case (two flavors): U(x) = ei~π~σ ∈ SU(2)
~π - pions
topological charge = baryon number

U : R3 ∪ {∞} ∼= S3 3 ~x → U(~x) ∈ SU(2) ∼= S3

π3(S3) = Z

what is the proper action?



motivation

"Derivation" of the effective chiral soliton theory
chiral perturbation theory Gasser,Leutwyler (84)

derivative expansion at NC →∞ Simic (85), Aitchinson (86)

L = L2 + L4︸ ︷︷ ︸+L0 + higher order terms

Lskyrme Skyrme (61), Adkins, Nappi, Witten (85)

L2 = −λ2 Tr (LµLµ), L4 = λ4 Tr ([Lµ, Lν ]2), Lµ = U†∂µU

infinitely many terms: no hierarchy
destabilizing terms→ false vacuum expansion?
higher time derivative terms
solitons→ need a non-perturbative expansion

complicated theoretically and computationally



motivation
Skyrme (minimal) model

Lorentz inv.
standard Hamiltonian
max. first time derivative squared

L = L0 + λ2L2 + λ4L4︸ ︷︷ ︸+λ6L6

massless Lskyrme︸ ︷︷ ︸
massive Lskyrme

L6 = −BµBµ, Bµ =
1

24π2
Tr (εµνρσLνLρLσ)

success
baryon physics Adkins, Nappi, Witten (84)....Praszalowicz, Nowak, Rho...

deuteron, light nuclei→ iso-rotational spectra→ SCQ correct
Braaten, Carson, Manton, Rho....
12C and Hoyle states Manton, Liu (14)

difficulties
unphysical binding energies Sutcliffe et. al. (97), (02), (05), (06), (10)

crystal state of matterKlebanov (85), Battye, Sutcliffe et. al. (06)

problematic for (heavy) nuclei and nuclear matter→ neutron stars



Is it at all possible to describe
baryons, atomic nuclei and nuclear matter (neutron stars)

by one universal chiral solitonic theory?



motivation
the near BPS Skyrme model
a usual Skyrme theory with a particular relation between the coupling constants

L = ε
(
L̃0 + λ2L2 + λ4L4

)
+ λ6L6 + L0︸ ︷︷ ︸ ︸ ︷︷ ︸

massive Lskyrme LBPS

ε is a small parameter
why important and interesting?

the BPS Skyrme model: ε→ 0 limit

LBPS = λ6L6 + L0

BPS
perfect fluid field theory for any B
- not a gas of weakly interacting skyrmions Kalbermann (97), Jaikumar et al.(07)

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

solvablity
very simple solvable model which covers the main features of
nuclear matter→ hard core of Skyrme-type EFT



motivation

the near BPS Skyrme model
Skyrme theory in a new perspective

separation of d.o.f.

L = ε
(
L̃0 + λ2L2 + λ4L4

)
+ LBPS

︸ ︷︷ ︸ ︸ ︷︷ ︸
perturbative non-perturbative

explicit pions coherent d.o.f.
kinetic + two body int. topological term

hidden (emergent) ω and σ

surface bulk
shape SDiff symmetry

perfect fluid
far attractive int. BPS: exact ω − σ balance

some (not all!) properties/observable of the near BPS action are
dominated by the BPS part

⇓
let’s do the BPS model to learn about nuclear matter



BPS property - binding energies



BPS property - binding energies

topological bound Adam, Sanchez, Wereszczynski (10), Speight (10)

E06 =

∫
d3x

(
λ2π4B2

0 + µ2U
)

=

∫
d3x

(
λπ2B0 ± µ

√
U
)2
∓
∫

d3xλµπ2
√
UB0

≥
∫

d3xλµπ2
√
UB0 = 2π2λµ <

√
U >S3 |B|

- the bound is saturated⇒ BPS equation

λπ2B0 ± µ
√
U = 0

- zero binding energy E = λµC|B|

symmetries
-∞ many target space symmetries: subgroup of SDiff(S3)
-∞ many conservation laws⇒ generalized integrability

- static energy: ∞ many base space symmetries SDiff(R3)
⇒ symmetries of incompressible fluid
⇒∞ many BPS solutions



BPS property - binding energies

semiclassical quantization
- collective coordinate quantization of spin and isospin

U(t , ~x) = A(t)U0(RB(t)~x)A†(t), A,B ∈ SU(2), RB ∈ SO(3)

- promote A(t),B(t) to quantum mechanical variables
- Finkelstein-Rubinstain constrains

Erot =
105

512
√

2π

~2

λ2
( µ
λn

)1/3

( j(j + 1)

n2
+

4|i3|(|i3|+ 1)

3n2 + 1

)
Coulomb energies

EC =
1

2ε0

∫
d3xd3x ′

ρ(~r)ρ(~r ′)
4π|~r −~r ′|

- ρ(~r) expectation value of charge density operator

EC =
1√

2πε0

(
µ

λn

)1/3(
128

315π2
n2 +

245
1536

n i3 +
805

5148
i23 +

7
429

i23
(1 + 3n2)2

)

isospin breaking

EI = aIi3 where aI < 0 ⇔ Mn > Mp



binding energy of nucleus X = A
Z X , N = A− Z

EB,X = ZEp + NEn − EX

EX = Esol + Erot + EC + EI

3 free parameters λ, µ, aI: fit to 3 nuclear masses

Mp = 938.272 MeV

Mn −Mp = 1.29333 MeV

M(138
56Ba) = 137.905 u where u = 931.494 MeV

EB,X (A,Z , j) = a1A + a2Z − a3A5/3 − a4A2/3Z − a5A−1/3Z 2

−a6
A1/3

1 + 3A2
(A− 2Z )− a7

A1/3

1 + 3A2
(A− 2Z )2

−a8
A−1/3

(1 + 3A2)2
(A− 2Z )2 − a9A−5/3j(j + 1)

where a constants.



Binding energy per nucleon: BPS model (blue), Weizsäcker’s formula (red), experimental values (solid line)

axially symmetric solutions⇒ exact result
weakly depend on the potential

Heavy atomic nuclei (binding energies) can be described by a
solitonic model Adam, Naya, Ssanchez, Wereszczynski (2013) PRL



Perfect fluid



perfect fluid

SDiff symmetries
energy-momentum tensor of a perfect fluid

T 00 = λ2π2B2
0 + ν2U ≡ ε

T ij = δij
(
λ2π2B2

0 − ν2U
)
≡ δij P

local thermodynamical quantities

BPS eq. = zero pressure condition
e-m. conservation: ∂µTµν = 0
static: ∂i T ij = 0⇒ ∂j P = 0 ⇒ P = const .

constant pressure equation is a first integral of static EL eq.

λ2π4B2
0 − ν2U = P > 0

λπ2B0 = ±ν
√
U + P̃, P̃ ≡ (P/ν2)

static non-BPS solutions with P > 0



perfect fluid - exact thermodynamics

energy density EoS
ε− P = 2ν2U

non-barotropic chiral fluid ε 6= ε(P)

the step-function potential ε = P + 2ν2

no potential ε = P

high pressure limit - potential independent

ε = P

on-shell EoS
ε = ε(P, ~x)

beyond mean-field thermodynamics:
P = const . but ε 6= const .



perfect fluid - exact thermodynamics

particle (baryon) density EoS
ρB = B0

generically non-constant (beyond MF)

ρB =
ν

λπ2

√
U +

P
ν2

on-shell
ρB = ρB(P, ~x)

no universal ε = ε(P), ρB = ρB(P)

universal relation - off-shell and non-MF

ε+ P = 2λ2π4ρ2
B

baryon chemical potential

definition: ε+ P = ρµ ⇒ µB = 2λ2π4ρB

off-shell
universal, potential independent
non-MF (local)



perfect fluid - exact thermodynamics

generically exact (non-mean field) thermodynamics
ε, ρB non-constant generically non-constant
non-barotropic fluid
no universal EoS

mean-field limit
MF averages ε̄, ρ̄B

ε̄ =
E06

V
, ρ̄ =

B
V

universal (geometrical) EoS
E06, V , ε̄, ρ̄B
- known as functions of P FT pressure
- no need for solutions!
- only U matters

ε̄ = ε̄(P), ρ̄ = ρ̄(P)

FT pressure is the pressure

P = −dE06

dV

micro (FT) thermodynamics = macro themrodynamics



example: the step-function potential U = Θ (Tr (1− U))

MF = non-MF
baryon chemical potential

µ = 2π4λ2ρ̄B

pressure

P =
1

4π4λ2
µ2 − ν2

energy density

ε =
1

4π4λ2
µ2 + ν2

EoS
ε = 2ν2 + P
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perfect fluid
the BPS action is equivalent to the action of a field theoretical description of
perfect fluid in an Eulerian formulation

- particle trajectories ~Xn(t)→ fluid element trajectories (cont. limit) ~X(t , ~y)
~y comoving fluid coordinates
- the Eulerian formulation: dynamical variables

ρ(t , ~x) = ρ0

∫
d3y δ(3)

(
~X(t , ~y)− ~x

)
~v(t , ~x) = ρ−1~j, ~j = ρ0

∫
d3y ~̇X δ(3)

(
~X(t , ~y)− ~x

)
formulated on phys. space but constrained (N = const . etc.)

FT realisation Brown (93), Dubovski et. al. (03), (13), Jackiw (04) de Boer et. al. (15)

- ya promoted to the dynamical fields
x i = X i (t , ya)→ ya = φa(t , x i )

- density ρ(t , ~x) = ρ0D, D = Ω(φa)det
(
∂φa

∂x i

)
particle number

Nµ = Ωεµνρσεabc∂νφ
a∂ρφ

b∂σφc

- four velocity

uµ =
Nµ√
N νNν

=
1√
6D

Ωεµνρσεabc∂νφ
a∂ρφ

b∂σφc

Nµ = ρuµ ⇒ ρ =
√

6D



perfect fluid

a perfect fluid action = chose a Lagrange density F = F (φa, ∂µφa)

F = F (ρ, g(φa))

S =

∫
d4xF (ρ, g) ⇒ Tµν = (p + ε)uµuν − pηµν

where
ε = −F (ρ, g), p = ρ

∂ε

∂ρ
− ε

simplest F = F (ρ)⇒ barotropic fluid ε = ε(p)
general non-barotropic
- interpretation: g = s(φa) entropy and Sµ = sN is entropy current

BPS Skyrme model
Bµ = Nµ i.e., the baryon current
fluid Lagrangian

F = −λ2π4ρ2 − ν2U(φa)

genuine non-barotropic fluid
→ thermodynamical interpretation of U?

Complete thermodynamics (at T = 0) in a solvable solitonic model



Two (hidden) mesons fluid



two mesons fluid

the BPS Skyrme and the Walecka model

LW = LN + Lσ,ω + Lint , LN = ψ̄
(

iγµ∂µ −mN + µγ0
)
ψ

Lσ,ω =
1
2

(∂µσ)2−1
2

m2
σσ

2−1
4
ωµνω

µν+
1
2

m2
ωωµω

µ

Lint = gσψ̄σψ + gωψ̄γµωµψ + ...

→ non perfect fluid form
mean-field→ perfect fluid

- compute the partition function the thermodynamical limit
Z =

∫
e
∫
LW

- bosonic fields take their vacuum expectation values σ̄, ω̄0
- all derivative dependent terms disappear and the interactions are
simplified to a mesonic background field seen by nucleons

LW = ψ̄
(

iγµ∂µ −m∗N + µ∗γ0
)
ψ − 1

2
m2
σσ̄

2 +
1
2

m2
ωω̄

2
0

where
m∗N = mN − gσσ̄, µ∗ = µ− gωω̄0

- the baryon chemical potential (which enters in all thermodynamical
relations) is still µ
- the effective chemical potential µ∗ sets the Fermi energy of the
"effective" free fermions

E∗F = µ∗ =
√

k2
F + (m∗N )2



two mesons fluid
- condensates

σ̄ =
gσ
m2
σ

ρσ , ω̄0 =
gω
m2
ω

ρB

- densities (T=0)

ρ̄B = 〈ψ†ψ〉 =
2k3

F
3π2

ρσ = 〈ψ̄ψ〉 =
m∗N
π2

[
kF E∗F − (m∗N )2 ln

kF + E∗F
m∗N

]
EoS

ε̄ =
1
2

g2
ω

m2
ω

ρ̄2
B +

1
2

g2
σ

m2
σ

ρ̄2
σ + ε̄N

P =
1
2

g2
ω

m2
ω

ρ̄2
B −

1
2

g2
σ

m2
σ

ρ̄2
σ + PN

large density / pressure limit: µ,P →∞

ε̄ =
1
2

g2
ω

m2
ω

ρ2
B , ε̄ = P ⇒ π4λ2 =

1
2

g2
ω

m2
ω

large density / pressure limit again:
kF →∞ ⇒ µ∗ = kF and µ∗ ∼ ρ1/3

B

µ = µ∗ + gωω̄0 = µ∗ +
g2
ω

m2
ω

ρB =
g2
ω

m2
ω

ρB

- in BPS µ̄ = 2π4λ2ρ̄B ⇒ π4λ2 = 1
2

g2
ω

m2
ω



two mesons fluid

high density / pressure
the BPS Skyrme and the Walecka model coincide

the same thermodynamics
relation between parameters

π4λ2 =
1
2

g2
ω

m2
ω

mω = 738 MeV, g2
ω/(4π) = 10− 12⇒ λ = 9− 11 MeV fm3

BPS: emergent (hidden) ω meson
reason
- Walecka: ω meson (baryon current) dominating at high µ,P
- BPS: based on the baryon current although in a different form
the local chemical potential

µ = 2λ2π4ρB

"ω meson always hidden in the (derivative part of the) BPS action"

agreement is generic for any EFT with ω: → NJL
Klähn, Fisher (15)→ MIT + vector int.

low (saturation) density / pressure
- sigma meson dominates but "polluted" by the fermion contribution
work in progress



Two mesons fluid: ω, σ in the BPS Skyrme

hidden d.o.f.

LBPS = −π4λ2BµBµ − ν2U
= Lω(U) + Lσ(U)

= −π4λ2ρ2
B − ν2G(ρσ)

emergent objects (as baryons) in a mesonic fluid

two mesonic fluids
- strongly interacting!
- coupled via pions

exact balance in the BPS Skyrme
- attractive σ channel cancels completely repulsive ω channel
- in Walecka (and others) by a suitable choice of parameters

near BPS model ε 6= 0
- no exact cancelation→ non-zero binding energies



Neutron stars



the BPS Skyrme model with gravity Adam, Naya, Sanchez, Vazquez, Wereszczynski (15)

S06 =

∫
d4x |g| 12

(
−λ2π4|g|−1gρσBρBσ − µ2U

)
energy-momentum tensor

Tρσ = −2|g|− 1
2

δ

δgρσ
S06

= 2λ2π4|g|−1BρBσ −
(
λ2π4|g|−1gπωBπBω − µ2U

)
gρσ

the energy-momentum tensor of a perfect fluid

Tρσ = (p + ρ)uρuσ − pgρσ

where the four-velocity uρ = Bρ/
√

gσπBσBπ and

ρ = λ2π4|g|−1gρσBρBσ + µ2U
p = λ2π4|g|−1gρσBρBσ − µ2U

for a static case with diagonal metric uρ = (
√

g00, 0, 0, 0)

T 00 = ρg00 , T ij = −pg ij .

flat space case⇒ pressure must be constant (zero for BPS
solutions, nonzero for non-BPS static solutions

DρTρσ → ∂i T ij = δij∂i p = 0

In general, ρ and p arbitrary functions of the space-time coordinates,
⇒ no universal equation of state p = p(ρ) valid for all solutions



Einstein equations

static, spherically symmetric metric (Schwarzschild coordinates)

ds2 = A(r)dt2 − B(r)dr2 − r2(dθ2 + sin2 θdφ2)

axially symmetric ansatz for the Skyrme field with baryon number B

U = eiξ~n·~τ

ξ = ξ(r), ~n = (sin θ cos Bφ, sin θ sin Bφ, cos θ)

are compatible with the Einstein equations

Gρσ =
κ2

2
Tρσ

FT + GR with full backreaction ↔ TOV: fix EoS



Einstein equations

1
r

B′

B
= − 1

r2
(B− 1) +

κ2

2
Bρ

r (Bp)′ =
1
2

(1− B)B(ρ+ 3p) +
κ2

2
µ2r2B2U(h)p

A′

A
=

1
r

(B− 1) +
κ2

2
rBp

A, B and ξ are functions of r ⇒ p and ρ are functions of r

ρ =
4B2λ2

Br4
h(1− h)h2

r + µ2U(h), p = ρ− 2µ2U(h)

eliminate r ⇒ on-shell EoS p = p(ρ)
except the step-function potential⇒ off-shell EoS ρ = p + 2µ2

axially symmetric ansatz is the correct one because gravity
straightens out all deviations from spherical symmetry



parameters fitting B = 1 sector
two parameters in the model λ and µ

m ≡ λµ has the dimensions of mass (energy)
fitting to the mass of helium (to avoid contributions from (iso)spin
excitations)

E06 = Bm̄N, m̄N = mHe/4 = 931.75 MeV

l ≡ (λ/µ)1/3 has the dimensions of length
typical potentials⇒ compacton⇒ finite geom. volume V = 4π

3 R3

⇒ radius of skyrmion R = r0B1/3

fitting the radius to the nucleon radius

r0 = rN = 1.25fm

particular potentials Uπ ,U2
π , where

Uπ = 1− cos ξ

Uπ : E06 =
64
√

2π
15

Bλµ, R =
√

2
(
λB
µ

) 1
3
⇒ m = 49, 15 MeV, l = 0, 884 fm

U2
π : E06 = 2π2Bλµ, R =

(
3πB

2

) 1
3
(
λ

µ

) 1
3
⇒ m = 47.20 MeV, l = 0.746 fm



results: maximal mass and radius

Uπ : nmax = 5.005, Mmax = 3.734M�, Rmax = 18.458 km,

U2
π : nmax = 3.271, Mmax = 2.4388M�, Rmax = 16.801 km.

where n ≡ (B/B�) = (Bm̄N/M�)

U2
π - very good agreement with the data

M ∼ 2M� are firmly established
indications for masses up to about 2.5M�

the expected range of about R ∼ 10-20 km
→ less precise (near BPS; proper radius, radiation radius)

extrapolation form B = 1 to B ∼ 1057

with only 2 parameters of the model



results: mass-radius relation
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results: mass-baryon number relation - binding energies
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results: EoS
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numerical fit to a power law p = aρb

a=a(M) and b=b(M)⇒ no universal EoS
M dependence governed by the potential U



each neutron star has its own EoS

non-barotropic nuclear matter
strongly coupled 2-component meson fluid

⇓

non-universal M(R) relation

⇓

reverse TOV problematic

Gρσ =
κ2

2
Tρσ ⇒ p = p(ρ) for nuclear matter



Neutron stars: mean-field (TV) vs. full GR+FT



results: EoS - full GR+FT vs. mean-field
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results: EoS - full GR+FT vs. mean-field
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future

BPS
T > 0
- computation of the partition function
- integration over the moduli SDiff
- geodesic approximation Manton (93) but beyond Bradlow limit Bradlow

(90)→ dense matter limit
- dim(SDiff ) =∞! but finite volume

SU(3)
- Callan-Klebanov

in-medium skyrmions

near-BPS
valley of stability
- right classical shape

structure of neutron stars

B = 1 and B = 1057 sectors related: U

QCD reason for BPS/solvability/intgrability



summary = fundamental result
there is a limit of Skyrme type actions in which the model has two properties

BPS
classically zero binding energies
physical (small) binding energies: semiclassical quantization

Coulomb interaction
isospin breaking

perfect fluid field theory
Tµν in a perfect fluid form
SDiff symmetry
Euler fluid formulation

FT (micro) d.o.f. = thermodynamical (macro) functions

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

solvablity
exact solutions
exact, analytical EoS and thermodynamics

a way beyond MF limit in nuclear matter


