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fundamental result
there is a limit of Skyrme type actions in which the model has two properties

@ BPS
classically zero binding energies
physical (small) binding energies: semiclassical quantization
Coulomb interaction
isospin breaking

@ perfect fluid field theory

Ty in a perfect fluid form
SDiff symmetry
Euler fluid formulation
FT (micro) d.o.f. = thermodynamical (macro) functions

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

@ solvablity

exact solutions
exact, analytical EoS and thermodynamics
a way beyond MF limit in nuclear matter



motivation

@ the Skyrme framework skyrme (61)

pionic EFT of
@ baryons and nuclei — emergent objects: solitons
extended, non-perturbative

@ nuclear matter
@ with applications to neutron stars
— complementary to lattice

@ support form Ng — oo limit tHooft (83), Witten (84)

@ chiral effective meson/baryon theory
@ primary d.o.f. are mesons
@ baryons (nuclei) are realized as solitons

@ simplest case (two flavors): U(x) = €77 € SU(2)
@ 7 -pions
@ topological charge = baryon number
U:RPU{oo} =S¥ 35X = UX) e SUR) =s?
m3(S%) = Z

@ what is the proper action?



motivation

@ "Derivation" of the effective chiral soliton theory

@ chiral perturbation theory Gasser,Leutwyler (84)
@ derivative expansion at Ng — oo Simic (85), Aitchinson (86)

L =Lo+ L4+Ly + higher order terms
N —

‘Cskyrme Skyrme (61), Adkins, Nappi, Witten (85)

Lo ==X Tt (LuLH), L4 =Xy Tr ([Ly, L]?), L= UTo,U J

infinitely many terms: no hierarchy
destabilizing terms — false vacuum expansion?
higher time derivative terms

°
°
°
@ solitons — need a non-perturbative expansion

complicated theoretically and computationally



motivation

@ Skyrme (minimal) model
@ Lorentz inv.
@ standard Hamiltonian
@ max. first time derivative squared

L =L+ NoLo+ MLy +NsLg
—_————

massless Lskyrme
| ——

massive Lskyrme

1 vpo
Lo=—BuBY, BH = = Tt (7L, L,L,) J

@ success
baryon phySiCS Adkins, Nappi, Witten (84)....Praszalowicz, Nowak, Rho.
deuteron, light nuclei — iso-rotational spectra — SCQ correct
Braaten, Carson, Manton, Rho....
12 and Hoyle states Manton, Liu (14)

@ difficulties
unphysical binding energies sutcliffe et. al. (97), (02), (05), (06), (10)
crystal state of matter«iebanov (85), Battye, Sutcliffe et. al. (06)

problematic for (heavy) nuclei and nuclear matter — neutron stars



Is it at all possible to describe
baryons, atomic nuclei and nuclear matter (neutron stars)
by one universal chiral solitonic theory?




motivation
@ the near BPS Skyrme model
a usual Skyrme theory with a particular relation between the coupling constants

L =c¢€ (EO —+ )\2[:2 + )\4[:4) —+ )‘6[:6 —+ [:()
N—— N——
massive Lskyrme Lpps

e is a small parameter
why important and interesting?

@ the BPS Skyrme model: ¢ — 0 limit

Lgps = AeLs + Lo J

@ BPS
@ perfect fluid field theory for any B
- not a gas of weakly interacting skyrmions Kalbermann (97), Jaikumar et al.(07)

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

@ solvablity
very simple solvable model which covers the main features of
nuclear matter — hard core of Skyrme-type EFT,



motivation

@ the near BPS Skyrme model
Skyrme theory in a new perspective

@ separation of d.o.f.

L=¢ (io +ALo + )\454) +  Lsps J

— —— N——

perturbative non-perturbative
explicit pions coherent d.o.f.
kinetic + two body int. topological term

hidden (emergent) w and o

surface bulk
shape SDiff symmetry
perfect fluid
far attractive int. BPS: exact w — o balance

@ some (not alll) properties/observable of the near BPS action are
dominated by the BPS part
U

let’s do the BPS model to learn about nuclear matter



BPS property - binding energies




BPS property - binding energies
] topological bound Adam, Sanchez, Wereszczynski (10), Speight (10)
Eos = / ox (X2m*BE + 12Ul )

2
/ ox (M2Bo = uvid)” / AP x )2y,

Y

/d3x)\u772\/171530 =272\ < VU > |B|
- the bound is saturated = BPS equation
Am2By + uvU = 0
- zero binding energy £ = \uC|B|
@ symmetries
- oo many target space symmetries: subgroup of SDiff(S?)
- oo many conservation laws = generalized integrability
- static energy: co many base space symmetries SDiff(R3)

= symmetries of incompressible fluid
= oo many BPS solutions



BPS property - binding energies
@ semiclassical quantization
- collective coordinate quantization of spin and isospin
U(t, %) = A() Up(Re (1)X)AT (1), A,B € SU(2), Rs € SO(3)

- promote A(t), B(t) to quantum mechanical variables
- Finkelstein-Rubinstain constrains

rot =

105 h? (j(j+1)+4|i3|(|i3|+1))
512v2r ,\2(%)‘/3 n? 32 +1

@ Coulomb energles
/d3 d3 / p(_)p
2¢g

Ax|r -7/ |

- p(r) expectation value of charge density operator

1/3 2

i

E. 1 o 128 72 245 A 805 g 7 3
V2reg \ An 31572 1536 5148 429 (1 +3n?2)2

@ isospin breaking

Er=aiz where aa<0 & M>M J




@ binding energy of nucleus X =4X,N=A—-Z

Es x = ZE, + NE, — Ex
Ex = Eo| + Erot + Ec + E1

@ 3 free parameters A, u, ar: fit to 3 nuclear masses

M, = 938.272 MeV
M, —M, = 1.29333 MeV
M 135%Ba) = 137.905u where u = 931.494 MeV

Esx(AZ,))= aA+aZ — agA® — gy A23Z — asA=1/322

Al/3 Al/3 2
e (A—2Z)—a- L (A-2Z
%1 ) ma )
A71/3

—ag————— (A—22)% — agA=%/3j(j + 1
as(1+3A2)2( )" — a9 JG+1)

where a constants.
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Binding energy per nucleon: BPS model (blue), Weizsécker’s formula (red), experimental values (solid line)

@ axially symmetric solutions = exact result
@ weakly depend on the potential

Heavy atomic nuclei (binding energies) can be described by a
solitonic model Adam, Naya, Ssanchez, Wereszczynski (2013) PRL




Perfect fluid




perfect fluid

@ SDiff symmetries
@ energy-momentum tensor of a perfect fluid

TO = \272B3 + 12U = ¢
Ti = o (X2x®B — v2u) = 51P
@ Jocal thermodynamical quantities
@ BPS eq. = zero pressure condition
@ e-m. conservation: 9, TH” =0
static: 9;T =0 = ;P =0 = P = const.
@ constant pressure equation is a first integral of static EL eq.
NrtB2 12U =P >0

AeBy = tJU+ P, P=(P/1?)

static non-BPS solutions with P > 0



perfect fluid - exact thermodynamics

@ energy density EoS
e— P=22U

@ non-barotropic chiral fluid £ # (P)

the step-function potential e=P+2,°
no potential e=P

high pressure limit - potential independent
e=P

@ on-shell EoS
e =¢(P,X)

beyond mean-field thermodynamics:
P = const. but ¢ # const.




perfect fluid - exact thermodynamics

@ particle (baryon) density EoS
ps = Bo

@ generically non-constant (beyond MF)

v P
= Z JJu+ =
re A2 + V2

@ on-shell
PB = PB(P: )_(‘)

no universal ¢ = ¢(P), pg = pa(P)
universal relation - off-shell and non-MF
e+ P =2)\27%p3
@ baryon chemical potential

definition: e + P = pu = ug = 2X°71pp
@ off-shell
@ universal, potential independent
@ non-MF (local)



perfect fluid - exact thermodynamics

@ generically exact (non-mean field) thermodynamics
@ ¢, pg non-constant generically non-constant

@ non-barotropic fluid
@ no universal EoS

@ mean-field limit
@ MF averages ¢, pg
__ Eos __ B
TV Ty
@ universal (geometrical) EoS

® Eps, V. E P8
- known as functions of P FT pressure

- no need for solutions!

- only U matters
e=¢/P), p=pP)

@ FT pressure is the pressure
_ 9Fos
av

micro (FT) thermodynamics = macro themrodynamics

P=



example: the step-function potential U=0((Tr(1-U))

@ MF = non-MF
@ baryon chemical potential
p=2r*\ppg
@ pressure
1 2 2
- 47r4)\2H v
@ energy density
1 2 2
442 Wty
@ EoS
e=202+P

00 05 10 15 20 00 05 10 15 20

gas-liquid phase transition




perfect fluid
@ the BPS action is equivalent to the action of a field theoretical description of
perfect fluid in an Eulerian formulation

- particle trajectories )?n(t) — fluid element trajectories (cont. limit) )?(t, ¥)
y comoving fluid coordinates
- the Eulerian formulation: dynamical variables

o(t.3) = po [ oy 5O (X(t.7) - )

Wt =p N T=p [ dyX o9 (X(t.5) - %)
formulated on phys. space but constrained (N = const. etc.)

@ FT realisation Brown (93), Dubovski et. al. (03), (13), Jackiw (04) de Boer et. al. (15)
- y@ promoted to the dynamical fields
X' = XI(t,y®) — y& = ¢4(t, x)
- density p(t, ¥) = poD, D = Q(¢?)det (gﬁf’)
particle number

NP = QetVPT ¢ 1,08, ¢20,¢P Do ¢°
- four velocity

;
= = —fGDQeﬂup%abcamaapwaaqsc

NE=pu* = p=+6D

ut



perfect fluid
@ a perfect fluid action = chose a Lagrange density F = F(¢?, 8,,¢%)

® F=F(p,g(¢%)
s= / FxF(pg) = T =(p+utu” — pp

where s
€
6:_F(p7g)7 p:pai_e
o
@ simplest F = F(p) = barotropic fluid € = ¢(p)
@ general non-barotropic
- interpretation: g = s(¢?) entropy and S* = s\ is entropy current

@ BPS Skyrme model

@ BH = N*i.e., the baryon current
@ fluid Lagrangian
F— —)\27r4p2 _ l/2u(¢a)
genuine non-barotropic fluid
— thermodynamical interpretation of 2/?

Complete thermodynamics (at 7 = 0) in a solvable solitonic model



Two (hidden) mesons fluid




two mesons fluid

@ the BPS Skyrme and the Walecka model

Lw = LN+ Low + Lints Ly =1 (iwaM —mn+ M") "

1 1 1 1
Low= 3 i 3 mio?— Zwuuw’“’+§ m2wywh
Lint = gaw0'¢ + guﬂﬁ'Y“”;ﬂb + ...
— non perfect fluid form

@ mean-field — perfect fluid

- compute the partition function the thermodynamical limit

7 = f el Lw

- bosonic fields take their vacuum expectation values &, &g

- all derivative dependent terms disappear and the interactions are

simplified to a mesonic background field seen by nucleons

_ /. 1 _ 1 -
Ly =1 (:wau —my+ u*'y()) P — §m(2,02 + Emiwg
where
my =my— 9o, u' =p— guio
- the baryon chemical potential (which enters in all thermodynamical
relations) is still u

- the effective chemical potential 1.* sets the Fermi energy of the
"effective" free fermions

Ef = 1 = \JkE + (2



two mesons fluid
- condensates

5= 97 0 g 92,
mg_ o 0 mg) B
- densities (T=0)
_ + 2k3
pe= (¥'y) = 32
- m . . k/: + Ef
po = () = 3 |keEp — (my)?In ——F

@ EoS ) )
195 2,19 o -
2me "B 2 mg e T EN

165 o 165
= _Zwz2 _Jo P
2m§,p3 2m§p"+ N

@ large density / pressure limit: p, P — oo

g =

@ large density / pressure limit again:
ke — 00 = p* =kr and p* ~p:3/3
2 2
— o= 4 Jo o Yo
H=p 4 guwo = " + mg)ps— mg)ps
2

-inBPS fi=2r%)\2pg = 42 =19

— 2m2
2 m2



two mesons fluid

@ high density / pressure
the BPS Skyrme and the Walecka model coincide
@ the same thermodynamics
@ relation between parameters

1 2
4 2:7972
2 m?

m, =738 MeV, g2 /(47) =10 — 12 = X =9 — 11 MeV fm®
@ BPS: emergent (hidden) w meson
@ reason

- Walecka: w meson (baryon current) dominating at high u, P

- BPS: based on the baryon current although in a different form
@ the local chemical potential

n=2)r*pg
"w meson always hidden in the (derivative part of the) BPS action"
agreement is generic for any EFT with w: — NJL

Klahn, Fisher (15) — MIT + vector int.

@ low (saturation) density / pressure
- sigma meson dominates but "polluted" by the fermion contribution
work in progress



Two mesons fluid: w, o in the BPS Skyrme

@ hidden d.o.f.
Lgps = —7m*X\2B,B* —v2U
= Luo(U) + £Lo(U)
= -5 — V2G(po)

emergent objects (as baryons) in a mesonic fluid

@ two mesonic fluids
- strongly interacting!
- coupled via pions

@ exact balance in the BPS Skyrme

- attractive o channel cancels completely repulsive w channel
- in Walecka (and others) by a suitable choice of parameters

@ near BPS model € # 0
- no exact cancelation — non-zero binding energies



Neutron stars




@ the BPS Skyrme model with gravity Adam, Naya, Sanchez, Vazquez, Wereszczynski (15)

Soe = [ o*xlgl? (~\°nlgl " g0 BB — U J
@ energy-momentum tensor
TPo = —2g|"2 Soe

0900
= 2X2r%lg| 7 B B7 — (N2r*lg| ™ gru BTBY — pPU ) g7

@ the energy-momentum tensor of a perfect fluid
777 = (p+ p)u”u” — pg™®

where the four-velocity u? = B /+/go~B° B~ and

p = Nr*19| ™" 9po BP BT + 1PU

p = Xer*|g| 7" g0 BP BT — piPU

@ for a static case with diagonal metric u? = (1/g%°, 0,0, 0)

7% =pg®, TV=-pg'.

flat space case = pressure must be constant (zero for BPS
solutions, nonzero for non-BPS static solutions

D, TP — §;TI =slgp=0

@ In general, p and p arbitrary functions of the space-time coordinates,
= no universal equation of state p = p(p) valid for all solutions



@ Einstein equations

@ static, spherically symmetric metric (Schwarzschild coordinates)
ds® = A(r)dt? — B(r)dr? — r?(d6? + sin® 6d¢?)
@ axially symmetric ansatz for the Skyrme field with baryon number B
U= P 7

& =¢(r), = (sinfcos Bg,sinfsinBp,cosb)

are compatible with the Einstein equations

2
K
Gpo = > Too

FT + GR with full backreaction <+ TOV: fix EoS




Einstein equations

1B’ 1 K2

2 = —_B-1)+%B

rB r2( )+ 2

1 K2
r@p) = (- B)B(p+3p)+ - u2rBU(h)p

A’ 1 K2
A _ Iip_ B
A r(B 1)+ 5 rBp

@ A, B and ¢ are functions of r = p and p are functions of r

_4B2)?
P~ "B

h(1 = h)h? + 2U(h),  p = p— 2p2U(h)

eliminate r = on-shell EoS p = p(p)
except the step-function potential = off-shell EoS p = p + 242

@ axially symmetric ansatz is the correct one because gravity
straightens out all deviations from spherical symmetry



@ parameters fitting B = 1 sector
two parameters in the model X and p

@ m = \u has the dimensions of mass (energy)
fitting to the mass of helium (to avoid contributions from (iso)spin

excitations)
Eos = BMn, M = Myue/4 = 931.75 MeV

@ 1= ()\/p)'/? has the dimensions of length
typical potentials = compacton =- finite geom. volume V = %"Ra

= radius of skyrmion R = ryB'/3
fitting the radius to the nucleon radius

rp =ry = 1.25fm

@ particular potentials U, 142, where

Ur =1—cos¢

1
Us E06:641\g§7TB)\,u, /?:\/é(&):s = m=49,15MeV, |=0,884fm
m

1 1
U2 Eps=27°Biu, R= (?)3 (5)3 — m=47.20 MeV, | = 0.746 fm
o



@ results: maximal mass and radius
Ur :  Nmpax =5.005, Mpyax = 3.734M5,  Rmax = 18.458 km,
U2 © Npax = 3.271, Mgy = 2.4388Mg,  Rumax = 16.801 km.
where n = (B/Bg) = (B /M)
U2 - very good agreement with the data

M ~ 2M are firmly established
indications for masses up to about 2.5M

the expected range of about R ~ 10-20 km
— less precise (near BPS; proper radius, radiation radius)

extrapolation form B = 1 to B ~ 10%7
with only 2 parameters of the model




@ results: mass-radius relation

M/Msolar

v b e v e L e L 1o
13 14 15 16 17 18 19
r (km)

Red potential ¢/, blue potential L{,Zr. Maximum values are indicated by circles.



@ results: mass-baryon number relation - binding energies

M/Mso\al

w
LI TTTT TTTT L TTTT 1T
\ \ \ \ \

Moarionic/Msolar

Red potential U, blue potential ufr. Maximum values are indicated by circles.



@ results: EoS
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potential Z/{fr. Dotted lines: corresponding fit functions.

numerical fit to a power law p = ap?

a=a(M) and b=b(M) =- no universal EoS
@ M dependence governed by the potential 4



each neutron star has its own EoS

non-barotropic nuclear matter
strongly coupled 2-component meson fluid

U

non-universal M(R) relation

I

reverse TOV problematic

2

K
Gpo = —
s 2

Too = p=p(p) fornuclear matter




Neutron stars: mean-field (TV) vs. full GR+FT




@ results: EoS - full GR+FT vs. mean-field

9 T T T T
Mean EoS U = ©(h)
Mean EoS U = 2h +
g | Mean EoS U = 4h? * ]
BPS U = 2h
BPS U = 4h?
7l TOV p— constant 1
M x R?
Schwarzschild
6 1
o 5r d
=
=
= 4t 1
3r 1
2 1
1 l
0




@ results: EoS - full GR+FT vs. mean-field

10000 T T
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Mean-EoS U = 2h, M =
Mean-EoS U = (—)(hg,]\l =3.
Mean-EoS U = 4h*, M = 2.55
P=p

0.0001 : : :
1 10 100 1000 10000

p (MeV/fm?)

0.001




future

@ BPS

@ T7T>0
- computation of the partition function
- integration over the moduli SDiff
- geodesic approximation Manton (93) but beyond Bradlow limit Bradiow
(90) — dense matter limit
- dim(SDiff) = oo! but finite volume

@ SU(3)

- Callan-Klebanov

@ in-medium skyrmions

@ near-BPS

@ valley of stability
- right classical shape

@ structure of neutron stars
@ B =1and B = 10% sectors related: &/

@ QCD reason for BPS/solvability/intgrability



summary = fundamental result
there is a limit of Skyrme type actions in which the model has two properties

@ BPS
classically zero binding energies
physical (small) binding energies: semiclassical quantization
Coulomb interaction
isospin breaking

@ perfect fluid field theory

Ty in a perfect fluid form
SDiff symmetry
Euler fluid formulation
FT (micro) d.o.f. = thermodynamical (macro) functions

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

@ solvablity

exact solutions
exact, analytical EoS and thermodynamics
a way beyond MF limit in nuclear matter



