Hadron spectroscopy from lattice QCD

Christopher Thomas, University of Cambridge
c.e.thomas@damtp.cam.ac.uk

Cracow School of Theoretical Physics, Zakopane, 20 - 28 June 2015

Partial support from the Science \& Technology Facilities Council (UK)

Outline

- Lecture 1 - Lattice QCD and some applications
- Lecture 2 - Hadron spectroscopy
- Lecture 3 - Resonances, scattering, etc

Lecture 1

- Why lattice quantum chromodynamics?
- Introduction to lattice QCD
- Some applications

General references

- "Lattice Gauge Theories, An Introduction", Heinz Rothe (World Scientific, Lecture Notes in Physics, $4^{\text {th }}$ edn. 2012)
- "Lattice Methods for Quantum Chromodynamics", Thomas Degrand and Carleton DeTar (World Scientific, 2006)
- "Quantum Chromodynamics on the Lattice: An Introductory Presentation", Christof Gattringer and Christian Lang (Springer, Lecture Notes in Physics, 2009, also available as an e-book)
- "Quantum fields on the lattice", I. Monvay and G. Münster (CUP, 1994)
- Reviews from the annual International Symposium on Lattice Field Theory, http://www.bnl.gov/lattice2014/ and proceedings, http://pos.sissa.it/cgi-bin/reader/family.cgi?code=lattice
- INT Summer School on Lattice QCD for Nuclear Physics (2012) http://www.int.washington.edu/PROGRAMS/12-2c/

The strong interaction

- Binds quarks \rightarrow hadrons: mesons and baryons (protons, neutrons, ...)
- Binds protons and neutrons \rightarrow nuclei
- Responsible for most of mass of conventional matter (~99\% of proton mass)

The strong interaction

- Binds quarks \rightarrow hadrons: mesons and baryons (protons, neutrons, ...)
- Binds protons
- Responsible fí

Quantum Chromodynamics

$$
\mathcal{L}=\sum_{q} \bar{\psi}_{q, a}\left(i \delta_{a b} \gamma^{\mu} \partial_{\mu}-g \gamma^{\mu} t_{a b}^{C} A_{\mu}^{C}-m_{q} \delta_{a b}\right) \psi_{q, b}-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}
$$

SU(3) gauge field theory;

 quarks and gluons$$
F_{\mu \nu}^{A}=\partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}-g f_{A B C} A_{\mu}^{B} A_{\nu}^{C}
$$

Quarks spin =1/2		
Flavor	Approx. Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
(U) up	0.002	2/3
d down	0.005	-1/3
C charm	1.3	2/3
(S) strange	0.1	-1/3
(t) top	173	2/3
b bottom	4.2	-1/3

Quantum Chromodynamics

$$
\mathcal{L}=\sum_{q} \bar{\psi}_{q, a}\left(i \delta_{a b} \gamma^{\mu} \partial_{\mu}-g \gamma^{\mu} t_{a, b}^{C} A_{\mu}^{G}-m_{q} \delta_{a b}\right) \psi_{q, b}-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}
$$

SU(3) gauge field theory;

$$
F_{\mu \nu}^{A}=\partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}-g f_{A B C} A_{\mu}^{B} A_{\nu}^{C}
$$ quarks and gluons

Quarks spin =1/2		
Flavor	Approx. Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
(u) up	0.002	2/3
(d) down	0.005	-1/3
C charm	1.3	2/3
(S) strange	0.1	-1/3
(t) top	173	2/3
(b) bottom	4.2	-1/3

Quantum Chromodynamics

$$
\left.\mathcal{L}=\sum_{q} \bar{\psi}_{q, a}\left(i \delta_{a b} \gamma^{\mu} \partial_{\mu}-g \gamma^{\mu} t_{a b}^{C} A_{\mu}^{C}-m_{q} \delta_{a b}\right) \psi_{q, b}-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}\right]
$$

SU(3) gauge field theory;

 quarks and gluons$$
F_{\mu \nu}^{A}=\partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}-g f_{A B C} A_{\mu}^{B} A_{\nu}^{C}
$$

Quarks spin =1/2		
Flavor	Approx. Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
(u) up	0.002	2/3
(d) down	0.005	-1/3
C charm	1.3	2/3
(S) strange	0.1	-1/3
(t) top	173	2/3
(b) bottom	4.2	-1/3

Quantum Chromodynamics

$$
\mathcal{L}=\sum_{q} \bar{\psi}_{q, a}\left(i \delta_{a b} \gamma^{\mu} \partial_{\mu}-g \gamma^{\mu} t_{a b}^{C} A_{\mu}^{C}-m_{q} \delta_{a b}\right) \psi_{q, b}-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}
$$

SU(3) gauge field theory;

 quarks and gluons$$
F_{\mu \nu}^{A}=\partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}-g f_{A B C} A_{\mu}^{B} A_{\nu}^{C}
$$

Quarks spin =1/2		
Flavor	Approx Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
(u) up	0.002	2/3
d) down	0.005	-1/3
C charm	1.3	2/3
(S) strange	0.1	-1/3
(t) top	173	2/3
(b) bottom	4.2	-1/3

Quantum Chromodynamics

Running coupling constant

Large at low energies - can't make perturbative expansion

Asymptotic freedom

Quantum Chromodynamics

Why lattice QCD?

- Non-perturbative regime:
- Confinement of quarks into hadrons
- Masses of hadrons (spectra), widths, transitions, ...
- Nuclei
- ...
- Models, effective field theories (EFTs), ...
- Based on some symmetry properties, (expected) physics of QCD, approximation in some regime.
- In general not derived from QCD
- May be only approach (currently) applicable to some problems
- Can be useful for getting insight into physics (complementary)
- Lattice QCD - numerical non-perturbative calculations in QCD

QCD on a lattice

Discretise theory on a 4d grid (spacing $=a$)

- UV regulator

Finite volume $\left(L^{3} \times T\right) \rightarrow$ finite no. of d.o.f.
Quantised momenta
$\vec{p}=\frac{2 \pi}{L_{s}}\left(n_{x}, n_{y}, n_{z}\right)$ for spatial periodic BCs

QCD on a lattice

Discretise theory on a 4d grid (spacing =a)

- UV regulator

Finite volume $\left(L^{3} \times T\right) \rightarrow$ finite no. of d.o.f.
Quantised momenta
$\vec{p}=\frac{2 \pi}{L_{s}}\left(n_{x}, n_{y}, n_{z}\right)$ for spatial periodic BCs

Gauge fields on links; U is an element of $\mathrm{SU}(3)$

Quark fields on lattice sites

$$
A_{\mu}(x) \rightarrow U_{x, \mu}=e^{-a A_{x, \mu}}
$$

$$
\begin{aligned}
& \psi(x) \rightarrow \psi_{x} \\
& \\
& \frac{\partial}{\partial x} \psi(x) \rightarrow \frac{1}{2 a}\left(\psi_{x+1}-\psi_{x-1}\right)
\end{aligned}
$$

QCD on a lattice

Path integral formulation (continuum)

- Integrate over all field configurations (infinite number)

$$
Z=\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A e^{i \mathcal{S}[\psi, \bar{\psi}, A]} \quad S=\int d^{4} x \mathcal{L}[\psi, \bar{\psi}, A]
$$

Observable:

$$
\langle f[\psi, \bar{\psi}, A]\rangle=Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A f[\psi, \bar{\psi}, A] e^{i \mathcal{S}[\psi, \bar{\psi}, A]}
$$

QCD on a lattice

Path integral formulation (continuum)

- Integrate over all field configurations (infinite number)

$$
Z=\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A e^{i S[\psi, \bar{\psi}, A]} \quad S=\int d^{4} x \mathcal{L}[\psi, \bar{\psi}, A]
$$

Observable:

$$
\langle f[\psi, \bar{\psi}, A]\rangle=Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A f[\psi, \bar{\psi}, A] e^{i \mathcal{S}[\psi, \bar{\psi}, A]}
$$

Finite lattice - finite num. of quark and gluon fields to integrate over
Euclidean time: $t \rightarrow$ - it oscillating phase \rightarrow decaying exponential $\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U e^{-\widetilde{\mathcal{S}}[\psi, \bar{\psi}, U]}$

- amenable to numerical computation
c.f. statistical physics $\operatorname{Tr} \exp (-\beta H)$

QCD on a lattice

Many possible discretisations which all \rightarrow continuum QCD as $a \rightarrow 0$. 'Improved' actions reduce discretisation effects, e.g. O(a).

Generic Euclidean action (gauge invariant):

$$
\widetilde{\mathcal{S}}=\sum_{q, x, y} \bar{\psi}_{q, x} Q_{x, y}[U] \psi_{q, y}+\widetilde{\mathcal{S}}_{g a u g e}[U]
$$

QCD on a lattice

Many possible discretisations which all \rightarrow continuum QCD as $a \rightarrow 0$. 'Improved' actions reduce discretisation effects, e.g. O(a).

Generic Euclidean action (gauge invariant):

$$
\tilde{\mathcal{S}}=\sum_{q, x, y} \bar{\psi}_{q, x} Q_{x, y}[U] \psi_{q, y}+\tilde{\mathcal{S}}_{g a u g e}[U]
$$

Gauge fields, e.g. $\quad \tilde{S}_{\text {gauge }}=\frac{2}{g^{2}} \sum_{x} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr}\left[1-U_{\mu \nu}(x)\right]$

QCD on a lattice

Many possible discretisations which all \rightarrow continuum QCD as $a \rightarrow 0$. 'Improved' actions reduce discretisation effects, e.g. O(a).

Generic Euclidean action (gauge invariant):

$$
\tilde{\mathcal{S}}=\sum_{q, x, y} \bar{\psi}_{q, x} Q_{x, y}[U] \psi_{q, y}+\tilde{\mathcal{S}}_{g a u g e}[U]
$$

Gauge fields, e.g. $\quad \tilde{S}_{\text {gauge }}=\frac{2}{g^{2}} \sum_{x} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr}\left[1-U_{\mu \nu}(x)\right]$
'Naive' fermions:

$$
Q_{x, y}[U]=a^{4} \sum_{\mu} \frac{1}{2 a} \gamma_{\mu}\left(U_{\mu}(x) \delta_{x, y+\hat{\mu}}-U_{\mu}(x-\mu) \delta_{x, y-\bar{\mu}}\right)+m_{q} \delta_{x, y}
$$

Technical problems with this...
Various solutions each with advantages and disadvantages

QCD on a lattice

$\left.<\bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right)\right\rangle=Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right) e^{-\tilde{S}[\psi, \bar{\psi}, U]}$

QCD on a lattice

$$
\left.<\bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right)\right\rangle=Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} D U \bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right) e^{-\tilde{S}[\psi, \bar{\psi}, U]}
$$

Gauge fields (bosons)

- complex matrices

QCD on a lattice

$<\bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right)>=Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} D U \bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right) e^{-\tilde{S}[\psi, \bar{\psi}, U]}$

Gauge fields (bosons)

- complex matrices

Fermion fields - anticommuting 'Grassmann' numbers

$$
\psi \psi=\bar{\psi} \bar{\psi}=0, \bar{\psi} \psi=-\psi \bar{\psi}
$$

QCD on a lattice

$\left\langle\bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right)\right\rangle=Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} D U \bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right) e \bar{S}[\psi, \bar{\psi}, U]$

Fermion fields - anticommuting 'Grassmann' numbers

$$
\psi \psi=\bar{\psi} \bar{\psi}=0, \bar{\psi} \psi=-\psi \bar{\psi}
$$

Bilinear in fermion fields

$$
\tilde{\mathcal{S}}=\sum_{q, x, y} \bar{\psi}_{q, x} Q_{x, y}[U] \psi_{q, y}+\tilde{\mathcal{S}}_{\text {gauge }}[U]
$$

QCD on a lattice

$$
\left\langle\bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right)\right\rangle=Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right) e^{-\tilde{S}[\psi, \bar{\psi}, U]}
$$

$$
=Z^{-1} \int \mathcal{D} U Q_{x_{1} x_{0}}^{-1}[U] \operatorname{det}(Q[U]) e^{-\tilde{S}^{\prime}[U]}
$$

QCD on a lattice

$<\bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right)>=Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right) e^{-\tilde{S}[\psi, \psi,, U]}$

$$
=Z^{-1} \int \mathcal{D} U Q_{x_{1} x_{0}}^{-1}[U] \operatorname{det}(Q[U]) e^{-\tilde{S}^{\prime}[U]}
$$

Q has dim. $\left((L / a)^{3} \times(T / a) \times 4 \times 3\right)^{2}$, e.g. $\left(20^{3} \times 128 \times 4 \times 3\right)^{2} \approx\left(10^{7}\right)^{2}-$ huge!

QCD on a lattice

$\left.<\bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right)\right\rangle=Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \bar{\psi}\left(x_{1}\right) \psi\left(x_{0}\right) e^{-\tilde{S}[\psi, \bar{\psi}, U]}$

$$
=Z^{-1} \int \mathcal{D} U Q_{x_{1} x_{0}}^{-1}[U] \operatorname{det}(Q[U]) e^{-\tilde{S}^{\prime}[U]}
$$

Q has dim. $\left((L / a)^{3} \times(T / a) \times 4 \times 3\right)^{2}$, e.g. $\left(20^{3} \times 128 \times 4 \times 3\right)^{2} \approx\left(10^{7}\right)^{2}-$ huge!

Fermion det. - nonlocal function of U
\rightarrow very computationally expensive
Q^{-1} and $\operatorname{det}(Q)$ more expensive for small m_{π}
Historically, quenched approx: set $\operatorname{det}[Q]=1$

- don't include quark loops

Now most calculations are dynamical ('unquenched')

- include det[Q]

QCD on a lattice

$\int \mathcal{D} U f[U] \operatorname{det}(Q[U]) e^{-\tilde{S}^{\prime}(U]}$

Use Importance Sampling Monte Carlo to evaluate numerically
Dominated by field cfgs of U where this is large
Sample integral with prob.

$$
\sim\left[\operatorname{det}(Q[U]) e^{-\tilde{S}^{\prime}[U]}\right]
$$

$\operatorname{det}(Q[U])$ must be re-calculated for each U - expensive
Sample integral a finite number of times (num. of cfgs.)
\rightarrow mean and statistical uncertainty

QCD on a lattice

Lattice \rightarrow QCD

- Continuum limit: lattice spacing, $a \rightarrow 0$ $L=$ const, so $N=L / a \rightarrow \infty$
- Volume, L >> physical size of problem e.g. $L m_{\pi} \gg 1$
- Pion mass, $m_{\pi} \rightarrow$ physical m_{π}

Lattice \rightarrow QCD

- Continuum limit: lattice spacing, $a \rightarrow 0$ $L=$ const, so $N=L / a \rightarrow \infty$
- Volume, $L \gg$ physical size of problem e.g. $L m_{\pi} \gg 1$
- Pion mass, $m_{\pi} \rightarrow$ physical m_{π}

Setting the scale (determine a in physical units)

- Every dimensional quantity measured in terms of a
- 'Set the scale' by comparing with a physical observable calculated on the lattice to experimental value
- E.g. static quark potential, Ω baryon mass, ...

Set bare quark masses $\left(m_{q}\right)$ in action by comparing lattice computations of hadron masses with experimental masses

Some applications

Static potential from lattice QCD

Potential between two infinitely heavy quarks (static colour sources)

$$
\begin{aligned}
& W\left(\vec{m}, \vec{n}, n_{t}=t / a\right) \\
& \operatorname{Tr}[U U U U] \\
& \vec{m}, 0 \underset{t}{\longleftrightarrow} \underset{t}{\longleftrightarrow} \vec{n}, n_{t} \\
& \langle W\rangle \propto e^{-t V(r)}\left(1+\mathcal{O}\left(e^{-t \Delta_{E}}\right)\right)
\end{aligned}
$$

Static potential from lattice QCD

Potential between two infinitely heavy quarks (static colour sources)

$$
\begin{aligned}
& W\left(\vec{m}, \vec{n}, n_{t}=t / a\right) \\
& \operatorname{Tr}[U U U U] \\
& \vec{m}, \mathrm{O} \underset{t}{\longleftrightarrow} \downarrow \vec{n} \vec{n}, n_{t} \\
& \langle W\rangle \propto e^{-t V(r)}\left(1+\mathcal{O}\left(e^{-t \triangle_{E}}\right)\right)
\end{aligned}
$$

Compare length scale with experimental charmonium and bottomonium spectra

Spectroscopy on the lattice

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of hadron interpolating fields "operators"

$$
\bar{\psi}\left\ulcorner\psi \quad \epsilon^{a b c} \psi_{a} \psi_{b} \psi_{c} \quad+\stackrel{\leftrightarrow}{D}_{i}\right.
$$

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of hadron interpolating fields "operators"

$$
\bar{\psi} \Gamma \psi \quad \epsilon^{a b c} \psi_{a} \psi_{b} \psi_{c} \quad+\stackrel{\rightharpoonup}{D}_{i}
$$

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

- $\bar{\psi}(\vec{x}) \Gamma \psi(\vec{x})$ is local but hadrons are extended objects $\sim 1 \mathrm{fm}$.
- Improve overlap onto states of interest (reduce overlap with UV modes) by spatially smearing quark fields.

$$
\psi(\vec{x}, t)=\sum_{\vec{y}} F(\vec{x}, \vec{y}, U(t)) \psi(\vec{y}, t)
$$

Diagrams

$$
\begin{aligned}
& <\bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right)>= \\
& Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right) e^{-\tilde{\mathcal{S}}[\psi, \bar{\psi}, U]}
\end{aligned}
$$

Diagrams

$$
<\bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right)>=
$$

$$
Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right) e^{-\tilde{\mathcal{S}}[\psi, \bar{\psi}, U]}
$$

Wick's theorem: contract in all possible ways

Diagrams

$$
<\bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right)>=
$$

$$
Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right) e^{-\tilde{\mathcal{S}}[\psi, \bar{\psi}, U]}
$$

Wick's theorem: contract in all possible ways

$$
\rightarrow \quad-Q_{x_{1} x_{0}}^{-1}[U] Q_{x_{0} x_{1}}^{-1}[U]+Q_{x_{1} x_{1}}^{-1}[U] Q_{x_{0} x_{0}}^{-1}[U]
$$

Diagrams

$$
\begin{aligned}
& <\bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right)>= \\
& \quad Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right) e^{-\tilde{\mathcal{S}}[\psi, \bar{\psi}, U]}
\end{aligned}
$$

Wick's theorem: contract in all possible ways

$$
\rightarrow \quad-Q_{x_{1} x_{0}}^{-1}[U] Q_{x_{0} x_{1}}^{-1}[U]+Q_{x_{1} x_{1}}^{-1}[U] Q_{x_{0} x_{0}}^{-1}[U]
$$

Diagrammatically:

'Connected'

Diagrams

$$
\begin{aligned}
& <\bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right)>= \\
& \quad Z^{-1} \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U \bar{\psi}\left(x_{1}\right) \psi\left(x_{1}\right) \bar{\psi}\left(x_{0}\right) \psi\left(x_{0}\right) e^{-\tilde{\mathcal{S}}[\psi, \bar{\psi}, U]}
\end{aligned}
$$

Wick's theorem: contract in all possible ways

$$
\rightarrow \quad-Q_{x_{1} x_{0}}^{-1}[U] Q_{x_{0} x_{1}}^{-1}[U]+Q_{x_{1} x_{1}}^{-1}[U] Q_{x_{0} x_{0}}^{-1}[U]
$$

Diagrammatically:

'Connected'

N.B. these are not perturbation theory diagrams

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of meson interpolating fields "operators"

$$
\bar{\psi}\left\ulcorner\psi \quad \epsilon^{a b c} \psi_{a} \psi_{b} \psi_{c} \quad+\stackrel{\leftrightarrow}{D}_{i}\right.
$$

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of meson interpolating fields "operators"

$$
\bar{\psi}\left\ulcorner\psi \quad \epsilon^{a b c} \psi_{a} \psi_{b} \psi_{c}+\stackrel{\rightharpoonup}{D}_{i}\right.
$$

$$
\begin{aligned}
C_{i j}(t) & =\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle \\
& =\sum_{n} 1 /\left(2 E_{n}\right)\langle 0| O_{i}(t)|n\rangle\langle n| O_{j}^{\dagger}(0)|0\rangle \\
& =\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}\langle 0| O_{i}(0)|n\rangle\langle n| O_{j}^{\dagger}(0)|0\rangle
\end{aligned}
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of meson interpolating fields "operators"

$$
\bar{\psi}\left\ulcorner\psi \quad \epsilon^{a b c} \psi_{a} \psi_{b} \psi_{c} \quad+\stackrel{\leftrightarrow}{D}_{i}\right.
$$

$$
\begin{aligned}
C_{i j}(t) & =\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle \\
& =\sum_{n} 1 /\left(2 E_{n}\right)\langle 0| O_{i}(t)|n\rangle\langle n| O_{j}^{\dagger}(0)|0\rangle \\
& =\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}\langle 0| O_{i}(0)|n\rangle\langle n| O_{j}^{\dagger}(0)|0\rangle \\
& Z_{i}^{(n)} \equiv\langle 0| O_{i}|n\rangle
\end{aligned}
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of meson interpolating fields "operators"

$$
\bar{\psi}\left\ulcorner\psi \quad \epsilon^{a b c} \psi_{a} \psi_{b} \psi_{c}+\stackrel{\rightharpoonup}{D}_{i}\right.
$$

$$
\begin{aligned}
C_{i j}(t) & =\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle \\
& =\sum_{n} 1 /\left(2 E_{n}\right)\langle 0| O_{i}(t)|n\rangle\langle n| O_{j}^{\dagger}(0)|0\rangle \\
& =\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}\langle 0| O_{i}(0)|n\rangle\langle n| O_{j}^{\dagger}(0)|0\rangle \\
& \xrightarrow[t \rightarrow \infty]{\longrightarrow} \frac{Z_{i}^{(0)} Z_{j}^{(0) *}}{2 E_{0}} e^{-E_{0} t} \quad Z_{i}^{(n)} \equiv\langle 0| O_{i}|n\rangle
\end{aligned}
$$

Correlators

$$
\left.C(t)=<0 \mid \bar{\psi}(t) \gamma_{i} \psi(t) \cdot \bar{\psi}(0) \gamma_{i} \psi(0)\right) \mid 0>
$$

$$
C(t) \sim e^{-E_{0} t}+\ldots
$$

Correlators

$\left.C(t)=<0 \mid \bar{\psi}(t) \gamma_{i} \psi(t) \cdot \bar{\psi}(0) \gamma_{i} \psi(0)\right) \mid 0>$

$$
C(t) \sim e^{-E_{0} t}+\ldots
$$

$$
M_{e f f}(t)=E_{0}+\ldots
$$

Low-lying spectrum of hadrons

Use only smeared local operators (e.g. γ_{i}). Set scale using M_{Ξ}
Nucleons \& isovector mesons - only connected diagrams

Low-lying spectrum of hadrons

Low-lying spectrum of hadrons

Light baryons - comparison

Agreement between results from different lattice actions (extrapolated to continuum limit and physical m_{π})

Quarkonia and heavy-light mesons

Quarkonia and heavy-light mesons

More applications

- Hadron form factors, radiative transitions
- Hadron structure, TMDs, etc
- Decay constants
- Weak matrix elements, flavour physics
\rightarrow SM tests and BSM constraints
- Nuclear physics / nuclei
- QCD at finite temperature and density
- Other field theories, BSM physics

Summary of lecture 1

- Why lattice quantum chromodynamics?
- A (very brief) introduction to lattice QCD
- Applications: static potential and some 'simple' hadron spectroscopy

Next time

- Excited hadron spectroscopy

Hadron spectroscopy from lattice QCD

Lecture 2

- Background on hadron spectroscopy
- Excited hadron spectroscopy in lattice QCD
- Mesons
- Baryons
(I won't review all lattice calculations of hadron spectra)

Hadron spectroscopy

Masses and other properties of hadrons probe the non-perturbative regime of QCD.

- Relevant degrees of freedom?
- Confinement?
- Role of gluons?

Hadron spectroscopy

Masses and other properties of hadrons probe the non-perturbative regime of QCD.

- Relevant degrees of freedom?
- Confinement?
- Role of gluons?

Experiments

Hadron spectroscopy - mesons

Hadron spectroscopy - mesons

Quark-antiquark pair: $\quad n^{2 S+1} L_{J}$

Hadron spectroscopy - mesons

Quark-antiquark pair: $\quad n^{2 S+1} L_{J}$
$\begin{array}{ll}\text { Parity: } & P=(-1)^{(L+1)} \\ \text { Charge Conj Sym: } & C=(-1)^{(L+S)}\end{array}$

$\mathrm{J}^{\mathrm{PC}}=0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, \ldots$

Hadron spectroscopy - mesons

Quark-antiquark pair: $\quad n^{2 S+1} L_{J}$

Parity:	$P=(-1)^{(L+1)}$
Charge Conj Sym:	$C=(-1)^{(L+s)}$

$\mathrm{J}^{\mathrm{PC}}=0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, \ldots$

Exotic JPC ($\left.\mathbf{0}^{--}, \mathbf{0}^{+-}, 1^{-+}, 2^{+-}, \ldots\right)$ or flavour quantum numbers - can't just be a $q \bar{q}$ pair
E.g. multiquark systems (tetraquarks, molecular mesons)
Hybrid mesons (gluonic field excited) Glueballs

Hadron spectroscopy - mesons

Flavours of mesons

$$
\begin{aligned}
& m_{u}=m_{d}-\text { isospin sym. } \\
& I_{z}=\binom{+1 / 2}{-1 / 2}\binom{u}{d}\binom{-\bar{d}}{\bar{u}}
\end{aligned}
$$

Light mesons u,d,s (anti)quarks $\gtrsim 135 \mathrm{MeV}$

$$
\begin{array}{ll}
\text { Isovectors (I = 1) e.g. } \pi, \rho, a_{1} & \frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \\
\text { Isoscalars (I = 0) e.g. } \eta, \eta^{\prime}, \omega, \phi & \ell \bar{\ell} \equiv \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \quad s \bar{s} \\
\text { Kaons }(\mathrm{I}=1 / 2) \text { e.g. K, K* } & u \bar{s} \quad d \bar{s}
\end{array}
$$

Hadron spectroscopy - mesons

Flavours of mesons

$$
m_{u}=m_{d}-\text { isospin sym. }
$$

$$
I_{z}=\binom{+1 / 2}{-1 / 2}\binom{u}{d}\binom{-\bar{d}}{\bar{u}}
$$

Light mesons u,d,s (anti)quarks $\gtrsim 135 \mathrm{MeV}$

$$
\begin{array}{ll}
\text { Isovectors (I = 1) e.g. } \pi, \rho, a_{1} & \frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \\
\text { Isoscalars }(\mathrm{I}=0) \text { e.g. } \eta, \eta^{\prime}, \omega, \phi & \ell \bar{\ell} \equiv \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \quad s \bar{s} \\
\text { Kaons }(\mathrm{I}=1 / 2) \text { e.g. K, K* } & u \bar{s} \quad d \bar{s}
\end{array}
$$

Charmonium e.g. J/ $\psi \quad c \bar{c} \quad \gtrsim 3000 \mathrm{MeV}$
Bottomonium e.g. $\Upsilon \quad b \bar{b} \gtrsim 9400 \mathrm{MeV}$
D, D_{s}, B, \ldots

Hadron spectroscopy - mesons

Hadron spectroscopy - mesons

Hadron spectroscopy - mesons

Hadron spectroscopy - baryons

- Missing states?
- 'Freezing' of degrees of freedom?
- Gluonic excitations?
- Flavour structure

Nucleon (Exp): 4*, 3*, some 2*

Delta (Exp): 4*, 3*, some 2*

Hadron spectroscopy - baryons

- Missing states?
- 'Freezing' of degrees of freedom?
- Gluonic excitations?
- Flavour structure

Nucleon (Exp): 4*, 3*, some 2*

Delta (Exp): 4*, 3*, some 2*

Hadron spectroscopy

Can we compute spectra of hadrons (including unconventional hadrons), understand these observations and address puzzles with first-principles calculations in QCD?
\rightarrow lattice QCD

Excited meson spectroscopy in LQCD - our approach

Energy eigenstates from:

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

$$
C_{i j}(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|\mathcal{O}_{i}(0)\right| n><n\left|\mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

Excited meson spectroscopy in LQCD - our approach

Energy eigenstates from:

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

$$
C_{i j}(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|\mathcal{O}_{i}(0)\right| n><n\left|\mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

Interpolating operators

$$
O(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x)[\Gamma \times \overleftrightarrow{D} \times \overleftrightarrow{D} \ldots] \psi(x)
$$

Ops have definite $\mathrm{J}^{\mathrm{P}(\mathrm{C})}$ in continuum (when $\mathrm{p}=\mathbf{0}$) Here $\mathbf{p}=\mathbf{0}$ and up to 3 derivatives included:

- many ops in each channel (up to ~ 26)
- different spin and angular structures, include $\sim\left[D_{i}, D_{j}\right]$

Variational method

Large basis of ops \rightarrow matrix of correlators

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Generalised eigenvalue problem:

$$
\int_{i j}(t) v_{j}^{(n)} \lambda(n)(t) \bigodot_{i j}\left(t_{0}\right) v_{i}(n)
$$

Variational method

Large basis of ops \rightarrow matrix of correlators

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Generalised eigenvalue problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Variational method

Large basis of ops \rightarrow matrix of correlators

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Generalised eigenvalue problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies
$\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)$
$Z^{(n)}$ related to eigenvectors

$$
v_{i}^{(n)} \rightarrow Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n>
$$

Also \rightarrow optimal linear combination of operators to overlap on to a state

Variational method

Large basis of ops \rightarrow matrix of correlators

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Generalised eigenvalue problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies
$\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)$
$Z^{(n)}$ related to eigenvectors

$$
v_{i}^{(n)} \rightarrow Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n>
$$

Also \rightarrow optimal linear combination of operators to overlap on to a state

Var. method uses orthog of eigenvectors; don't just rely on separating energies

Reduced symmetry and spin

Continuum

Infinite number of irreps: J=0, 1, 2, 3, 4, ...

Reduced symmetry and spin

Continuum

Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

Finite cubic lattice

Broken sym: 3D rotation group \rightarrow cubic group
Finite number of irreps $\Lambda: A_{1}, A_{2}, T_{1}, T_{2}, E$ (+others for half-integer spin)

Irrep	A_{1}	A_{2}	T_{1}	T_{2}	E
Dim	1	1	3	3	2
Cont. Spin	0	1	2	3	
Irrep(s)	A_{1}	T_{1}	$T_{2}+E$	$T_{1}+T_{2}+A_{2}$	$A_{1}+T_{1}+T_{2}+E$

'Subduce' operators into lattice irreps $(\mathrm{J} \rightarrow \Lambda)$:

Reduced symmetry and spin

Continuum

Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

Finite cubic lattice

Broken sym: 3D rotation group \rightarrow cubic group

Irrep	A_{1}	for hadrons at non-zero momentum				
Dim	1	1	3	3	2	
Cont. Spin	0	1	2	3	4	\cdots
$\operatorname{Irrep}(s)$	A_{1}	T_{1}	$T_{2}+E$	$T_{1}+T_{2}+A_{2}$	$A_{1}+T_{1}+T_{2}+E$	\cdots

'Subduce' operators into lattice irreps ($\mathrm{J} \rightarrow \Lambda$):

Excited charmonia

Excited charmonia

- Dynamical 'clover' u, d and s quarks, $m_{u}=m_{d}<m_{s}\left[N_{f}=2+1\right]$
- Relativistic c quark
- Anisotropic - finer in temporal $\operatorname{dir}\left(a_{s} / a_{t} \approx 3.5\right)$,
- $m_{\pi} \approx 400 \mathrm{MeV}\left(\right.$ not physical m_{π})
- One lattice spacing, $a_{s} \approx 0.12 \mathrm{fm}$ (no extrap. to contin. limit)
- Two volumes: $16^{3}, 24^{3}\left(L_{s} \approx 1.9,2.9 \mathrm{fm}\right)$
- Only compute connected contributions

Excited charmonia

$$
\lambda(t) \cdot e^{m\left(t-t_{0}\right)}
$$

Excited charmonia

$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}[$ HadSpec, JHEP 07 (2012) 126]

Excited charmonia

$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}$ [HadSpec, JHEP 07 (2012) 126]

Excited charmonia

Excited charmonia

$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}[$ HadSpec, JHEP 07 (2012) 126]

Excited charmonia

$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}[$ HadSpec, JHEP 07 (2012) 126]

Excited charmonia

$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}[$ HadSpec, JHEP 07 (2012) 126]

Excited charmonia

$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}[$ HadSpec, JHEP 07 (2012) 126]

Excited charmonia

Excited charmonia

$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}[$ HadSpec, JHEP 07 (2012) 126]

Excited charmonia

Excited charmonia

Excited charmonia

$q \bar{q}$ in $\mathrm{L}=1$, with gluonic 1^{+-}

Excited charmonia

$q \bar{q}$ in $\mathrm{L}=1$, with gluonic 1^{+-}

Excited charmonia

Excited charmonia

Light mesons

u and d quarks are degenerate - isospin symmetry

$$
I_{z}=\binom{+1 / 2}{-1 / 2} \quad\binom{u}{d} \quad\binom{-\bar{d}}{\bar{u}}
$$

Light mesons

u and d quarks are degenerate - isospin symmetry

$$
I_{z}=\binom{+1 / 2}{-1 / 2} \quad\binom{u}{d} \quad\binom{-\bar{d}}{\bar{u}}
$$

Isovectors ($\mathrm{I}=1$) e.g. π, ρ, a_{1} - only connected contributions

$$
\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})
$$

Isoscalars (I = 0) e.g. $\eta, \eta^{\prime}, \omega, \phi$

Light isoscalar mesons

Isoscalars ($\mathrm{I}=0$) e.g. $\eta, \eta^{\prime}, \omega, \phi$
QCD annihilation dynamics

Light isoscalar mesons

Isoscalars (I = 0) e.g. $\eta, \eta^{\prime}, \omega, \phi$
QCD annihilation dynamics

$$
\begin{aligned}
& m_{s}=m_{u}=m_{d}[S U(3) \text { sym }] \\
& \text { - eigenstates are octet, singlet }
\end{aligned}
$$

$$
\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s}) \frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})
$$

Light isoscalar mesons

Isoscalars (I = 0) e.g. $\eta, \eta^{\prime}, \omega, \phi$

QCD annihilation dynamics

$$
\begin{aligned}
& m_{s}=m_{u}=m_{d}[S U(3) \text { sym }] \\
& \text { - eigenstates are octet, singlet }
\end{aligned}
$$

$$
\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s}) \frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})
$$

$$
m_{s} \neq m_{u}=m_{d} \rightarrow \text { mixing }
$$

'Ideal mixing'

$$
\ell \bar{\ell} \equiv \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d})
$$

Light isoscalar mesons

Isoscalars (I = 0) e.g. $\eta, \eta^{\prime}, \omega, \phi$

QCD annihilation dynamics

$$
\begin{aligned}
& m_{s}=m_{u}=m_{d}[S U(3) \text { sym }] \\
& - \text { eigenstates are octet, singlet }
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s}) \frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s}) \\
\alpha=54.7^{\circ}
\end{gathered}
$$

$$
m_{s} \neq m_{u}=m_{d} \rightarrow \text { mixing }
$$

'Ideal mixing'

$$
l \bar{\ell} \equiv \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \quad s \bar{s} \quad \alpha=0
$$

In general $|a\rangle=\cos \alpha|\ell \bar{\ell}\rangle-\sin \alpha|s \bar{s}\rangle$

$$
|b\rangle=\sin \alpha|\ell \bar{\ell}\rangle+\cos \alpha|s \bar{s}\rangle
$$

Light isoscalar mesons

Isoscalars (I = 0) e.g. $\eta, \eta^{\prime}, \omega, \phi$
QCD annihilation dynamics

$$
m_{s}=m_{u}=m_{d}[S U(3) \text { sym }]
$$

- eigenstates are octet, singlet

$$
\begin{gathered}
\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s})-\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s}) \\
\alpha=54.7^{\circ}
\end{gathered}
$$

$$
m_{s} \neq m_{u}=m_{d} \rightarrow \text { mixing }
$$

'Ideal mixing'

$$
\ell \bar{\ell} \equiv \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \quad s \bar{s} \quad \alpha=0
$$

$$
\text { In general } \begin{aligned}
|a\rangle & =\cos \alpha|\ell \bar{\ell}\rangle-\sin \alpha|s \bar{s}\rangle \\
|b\rangle & =\sin \alpha|\ell \bar{\ell}\rangle+\cos \alpha|s \bar{s}\rangle
\end{aligned}
$$

Experimentally

$$
\omega, \phi\left(1^{--}\right) \text {and } f_{2}(1270), f_{2}^{\prime}(1525)\left(2^{++}\right)-\text {close to 'ideal' }
$$

$\eta, \eta^{\prime}\left(0^{-+}\right)$- closer to octet-singlet

Light isoscalar mesons

Isoscalars (I = 0) e.g. $\eta, \eta^{\prime}, \omega, \phi$
QCD annihilation dynamics

$$
m_{s}=m_{u}=m_{d}[S U(3) \text { sym }]
$$

- eigenstates are octet, singlet

$$
\begin{gathered}
\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s})-\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s}) \\
\alpha=54.7^{\circ}
\end{gathered}
$$

$$
m_{s} \neq m_{u}=m_{d} \rightarrow \text { mixing }
$$

'Ideal mixing'

$$
l \bar{l} \equiv \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \quad s \bar{s} \quad \alpha=0
$$

$$
\text { In general } \begin{aligned}
|a\rangle & =\cos \alpha|\ell \bar{l}\rangle-\sin \alpha|s \bar{s}\rangle \\
|b\rangle & =\sin \alpha|\ell \bar{l}\rangle+\cos \alpha|s \bar{s}\rangle
\end{aligned}
$$

Can also mix with glueballs

Experimentally

$$
\omega, \phi\left(1^{--}\right) \text {and } f_{2}(1270), f_{2}^{\prime}(1525)\left(2^{++}\right)-\text {close to 'ideal' }
$$

$\eta, \eta^{\prime}\left(0^{-+}\right)$- closer to octet-singlet

Light isoscalar mesons

Light isoscalar mesons

Operator basis doubled in size c.f. isovectors:

$$
O^{\ell} \sim \frac{1}{\sqrt{2}}(\bar{u} \Gamma u+\bar{d} \Gamma d)
$$

$O^{s} \sim \bar{s} \Gamma s$

No glueball ops for now

Light isoscalar mesons

Operator basis doubled in size c.f. isovectors:
$O^{\ell} \sim \frac{1}{\sqrt{2}}(\bar{u} \Gamma u+\bar{d} \Gamma d)$
No glueball ops for now

Connected and disconnected contrib. required

$$
C_{A B}^{q^{\prime} q}\left(t^{\prime}, t\right)=\langle 0| \mathcal{O}_{A}^{q^{\prime}}\left(t^{\prime}\right) \mathcal{O}_{B}^{q \dagger}(t)|0\rangle
$$

$$
C=\left(\begin{array}{cc}
-C^{l \ell}+2 \mathcal{D}^{l \ell} & \sqrt{2} \mathcal{D}^{\ell s} \\
\sqrt{2} \mathcal{D}^{s \ell} & -C^{s s}+\mathcal{D}^{s s}
\end{array}\right)
$$

Same lattice setup as before

Light mesons (isospin = 0 and 1)

Light mesons (isospin = 0 and 1)

Dudek, Edwards, Guo, CT (HadSpec), PR D88, 094505 (2013)

Light mesons (isospin = 0 and 1)

Dudek, Edwards, Guo, CT (HadSpec), PR D88, 094505 (2013)

Light mesons (isospin = 0 and 1)

Light mesons (isospin = 0 and 1)

Light mesons (isospin = 0 and 1)

Dudek, Edwards, Guo, CT (HadSpec), PR D88, 094505 (2013)

Light mesons (isospin = 0)

Twisted mass quarks [$N_{f}=2+1+1$]
Extrapolate in a and m_{π} :
$\eta: 551 \pm 8 \pm 6 \mathrm{MeV}$,
$\eta^{\prime}: 1006 \pm 54 \pm 38+61 \mathrm{MeV}$
$\phi: 46 \pm 1 \pm 3^{\circ}$
[c.f. HadSpec $46(1)^{\circ} @ m_{\pi} \approx 400 \mathrm{MeV}$]

Glueballs in pure gauge theory (SU(3) Yang-Mills)

- No fermion fields computationally much less expensive
- Operators are closed loops of links, with different spatial symmetries

Baryons

Excited baryon spectroscopy - our approach

Energy eigenstates from:

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

$$
C_{i j}(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|\mathcal{O}_{i}(0)\right| n><n\left|\mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

Interpolating operators

$$
\left\langle 1, m_{1} ; 1, m_{2} \mid L, m_{l}\right\rangle\left\langle L, m_{l} ; S, m_{s} \mid J, m_{J}\right\rangle \vec{D}_{m_{1}} \vec{D}_{m_{2}}[\psi \psi \psi]_{S, m_{s}}
$$

$$
\text { Up to } 2 \text { derivs: }
$$

$$
1 \otimes 1 \otimes S \rightarrow \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}
$$

- Again, many ops in each channel with different spin and angular structures
- Same lattice setup as before but only one volume $\left(16^{3}, L_{s} \approx 1.9 \mathrm{fm}\right)$

N and \triangle baryons

Counting in lowest bands as expected in non. rel. quark model, $\mathrm{SU}(6) \times \mathrm{O}(3)$ (flavour x spin x space), no 'freezing of d.o.f.'

N and Δ baryons

Counting in lowest bands as expected in non. rel. quark model, $\mathrm{SU}(6) \times \mathrm{O}(3)$ (flavour x spin x space), no 'freezing of d.o.f.'

Flavour structure of excited baryons

$$
m_{s}=m_{u}=m_{d} \mathrm{SU}(3) \text { flavour symmetry, } \mathrm{M}_{\pi} \approx 700 \mathrm{MeV} \text {, qqq } \rightarrow 1_{F} \oplus 8_{F} \oplus 10_{F}
$$

$8_{\mathrm{F}} \operatorname{SU(3)}$ flavor octet

- Again, multiplicities in lowest bands as expected in non. rel. quark model $\mathrm{SU}(6) \times \mathrm{O}(3)$
- No 'freezing' of d.o.f.

Flavour structure of excited baryons

$$
m_{s}=m_{u}=m_{d} \mathrm{SU}(3) \text { flavour symmetry, } \mathrm{M}_{\pi} \approx 700 \mathrm{MeV} \text {, qqq } \rightarrow 1_{F} \oplus 8_{F} \oplus 10_{F}
$$

Flavour structure of excited baryons

[HadSpec, PR D87, 054506 (2013)]
$m_{s}=m_{u}=m_{d} \mathrm{SU}(3)$ flavour symmetry, $\mathrm{M}_{\pi} \approx 700 \mathrm{MeV}$, qqq $\rightarrow 1_{F} \oplus 8_{F} \oplus 10_{F}$

[HadSpec, PR D87, 054506 (2013)]

$$
m_{s}>m_{u}=m_{d}
$$

Broken SU(3)
flav. sym.
$m_{\pi} \approx 400 \mathrm{MeV}$

Excited charm (cc) baryons

- Again, pattern in lowest bands consistent with non. rel. quark model
- Spectra don't support quark-diquark picture
- Also triply-charmed (ccc) baryons

Excited bottom (bbb) baryons

- NRQCD action for b quark
- Dynamical domain-wall u, d and s quarks
- Two different lattice spacings
- A number of m_{π} - extrapolate to physical m_{π}

Excited bottom (bbb) baryons

- NRQCD action for b quark
- Dynamical domain-wall u, d and s quarks
- Two different lattice spacings
- A number of m_{π} - extrapolate to physical m_{π}

Excited bottom (bbb) baryons

- NRQCD action for b quark
- Dynamical domain-wall u, d and s quarks
- Two different lattice spacings
- A number of m_{π} - extrapolate to physical m_{π}

Summary of lecture 2

- Background on hadron spectroscopy
- Excited hadron spectroscopy in lattice QCD
- Mesons
- Baryons

But so far we've neglected the fact that many of these hadrons are above the threshold for strong decay...

Summary of lecture 2

- Background on hadron spectroscopy
- Excited hadron spectroscopy in lattice QCD
- Mesons
- Baryons

But so far we've neglected the fact that many of these hadrons are above the threshold for strong decay...

Next time

- Scattering, resonances, etc

Hadron spectroscopy from lattice QCD

Lecture 3

- Scattering, resonances, etc in lattice QCD
- Some examples:
- The ρ resonance in elastic $\pi \pi$ scattering
- Coupled-channel $\mathrm{K} \pi$, $\mathrm{K} \eta$ scattering
- Some D_{s} mesons and charmonia
(I won't review all lattice calculations)

Hadron Spectroscopy

Hadron Spectroscopy

Based on Klempt \& Zaitsev, Phys Rep 454, 1 (2007)

Scattering in LQCD

Maiani \& Testa (1990): scattering matrix elements cannot be extracted from infinite-volume Euclidean-space correlation functions (except at threshold).

Scattering in LQCD

Two hadrons: non-interacting $\quad E_{A B}=\sqrt{m_{A}^{2}+\vec{k}_{A}^{2}}+\sqrt{m_{B}^{2}+\vec{k}_{B}^{2}}$

Infinite volume
Continuous spectrum

Scattering in LQCD

Two hadrons: non-interacting

$$
E_{A B}=\sqrt{m_{A}^{2}+\vec{k}_{A}^{2}}+\sqrt{m_{B}^{2}+\vec{k}_{B}^{2}}
$$

Infinite volume
Continuous spectrum

Finite volume

Discrete spectrum

Scattering in LQCD

Two hadrons: interacting

Infinite volume
Continuous spectrum

Finite volume

Discrete spectrum

$$
\begin{aligned}
& \vec{k}_{A, B} \neq \frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right) \\
& \text { periodic b.c.s (torus) } \\
& \text { c.f. 1-dim: } k=\frac{2 \pi}{L} n+\frac{2}{L} \delta(k) \\
& \text { scattering phase shift }
\end{aligned}
$$

Scattering in an infinite volume - reminder

Scattering amplitude, f

$$
\begin{aligned}
& \left\langle\overrightarrow{p^{\prime}}\right|(S-1)|\vec{p}\rangle=\frac{i}{2 \pi m} \delta\left(E^{\prime}-E\right) f(E, \theta) \\
& \frac{d \sigma}{d \Omega}=|f(E, \theta)|^{2}
\end{aligned}
$$

Partial-wave expansion: $\quad f(E, \theta)=\sum_{l=0}^{\infty}(2 l+1) P_{l}(\cos \theta) f_{l}(E)$

$$
\sigma_{l}=4 \pi(2 l+1)\left|f_{l}\right|^{2}
$$

Scattering in an infinite volume - reminder

Scattering amplitude, f

$$
\begin{aligned}
& \left\langle\overrightarrow{p^{\prime}}\right|(S-1)|\vec{p}\rangle=\frac{i}{2 \pi m} \delta\left(E^{\prime}-E\right) f(E, \theta) \\
& \frac{d \sigma}{d \Omega}=|f(E, \theta)|^{2}
\end{aligned}
$$

Partial-wave expansion: $\quad f(E, \theta)=\sum_{l=0}^{\infty}(2 l+1) P_{l}(\cos \theta) f_{l}(E)$

$$
\sigma_{l}=4 \pi(2 l+1)\left|f_{l}\right|^{2}
$$

Elastic scattering and the phase shift, $\delta_{\ell}(E)$

$$
\left\langle E^{\prime}, l^{\prime}, m^{\prime}\right| S|E, l, m\rangle=\delta\left(E^{\prime}-E\right) \delta_{l^{\prime} l} \delta_{m^{\prime} m} e^{2 i \delta_{l}(E)}
$$

Scattering - 'Lüscher method'

Lüscher, NP B354, 531 (1991); extended by many others

$$
\operatorname{det}\left[\delta_{i j} \delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t_{i j}^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n^{\prime} ; \ell^{\prime} n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0
$$

Scattering - 'Lüscher method'

Lüscher, NP B354, 531 (1991); extended by many others

$$
\vec{P}=\text { overall mom } \text {. }
$$

$$
\begin{aligned}
& \operatorname{det}\left[\delta_{i j} \delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t_{i j}^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0 \\
& \begin{array}{ll}
\rho_{i}=\frac{2 k_{\mathrm{cm}, i}}{E_{\mathrm{cm}}} \\
\begin{array}{l}
i, j \text { label channels } \\
\text { e.g. } K \pi, K \eta
\end{array} & \vec{k} \mathrm{~cm} L / 2 \pi
\end{array}
\end{aligned}
$$

Scattering - 'Lüscher method'

Lüscher, NP B354, 531 (1991); extended by many others

$$
\begin{aligned}
& \text { Infinite-volume } \\
& \text { scattering } t \text {-matrix }
\end{aligned} s_{i j}^{(\ell)}=\delta_{i j}+2 i \sqrt{\rho_{i} \rho_{k}} t_{i j}^{(\ell)} \quad \begin{gathered}
\text { Here } \\
t^{(\ell)}
\end{gathered} f_{\ell} \quad \vec{P}=\text { overall mom. }
$$

$$
\operatorname{det}\left[\delta_{i j} \delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t_{i j}^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0
$$

i, j label channels

$$
\text { eeg. } K \pi, K \eta
$$

$$
\rho_{i}=\frac{2 k_{\mathrm{cm}, i}}{E_{\mathrm{cm}}}
$$

$$
\vec{q} \equiv \vec{k} \mathrm{~cm} L / 2 \pi
$$

Scattering - 'Lüscher method'

Lüscher, NP B354, 531 (1991); extended by many others

$$
\begin{aligned}
& \text { Infinite-volume } \\
& \text { scattering } t \text {-matrix } s_{i j}^{(\ell)}=\delta_{i j}+2 i \sqrt{\rho_{i} \rho_{k}} t_{i j}^{(\ell)} \quad \begin{array}{c}
\text { Here } \\
t^{(\ell)}
\end{array} f_{\ell} \quad \vec{P}=\text { overall mom. }
\end{aligned}
$$

$$
\operatorname{det}\left[\delta_{i j} \delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t_{i j}^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0
$$

effect of finite vol.

i, j label channels e.g. $K \pi, K \eta$

$$
\rho_{i}=\frac{2 k_{\mathrm{cm}, i}}{E_{\mathrm{cm}}}
$$

$$
\vec{q} \equiv \vec{k}_{\mathrm{cm}} L / 2 \pi
$$

Reduced symmetry $\rightarrow \ell$ mix
[all ℓ that subduce to a given lattice irrep (Λ) mix]

Scattering - 'Lüscher method'

Lüscher, NP B354, 531 (1991); extended by many others

Infinite-volume
$\begin{aligned} & \text { Infinite-volume } \\ & \text { scattering } t \text {-matrix }\end{aligned} s_{i j}^{(\ell)}=\delta_{i j}+2 i \sqrt{\rho_{i} \rho_{k}} t_{i j}^{(\ell)}$

$$
\left.\left.m^{\prime}+i \mathcal{M}_{\ell n^{\prime} ; \ell n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0
$$

effect of finite vol.

Integrals over momenta in loops
\rightarrow sums over momenta
Difference $\sim 1 /$ L 3 effects

Here
$t^{(\ell)} \propto f_{\ell}$

$$
\vec{P}=\text { overall mom. }
$$

Scattering - 'Lüscher method'

Lüscher, NP B354, 531 (1991); extended by many others

$$
\begin{aligned}
& \text { Infinite-volume } \\
& \text { scattering } t \text {-matrix }
\end{aligned} s_{i j}^{(\ell)}=\delta_{i j}+2 i \sqrt{\rho_{i} \rho_{k}} t_{i j}^{(\ell)} \quad \begin{gathered}
\text { Here } \\
t^{(\ell)} \propto f_{\ell} \\
\vec{P}=\text { overall mom. }
\end{gathered}
$$

$$
\operatorname{det}\left[\delta_{i j} \delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t_{i j}^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0
$$

$$
\rho_{i}=\frac{2 k_{\mathrm{cm}, i}}{E_{\mathrm{cm}}}
$$

$$
\vec{q} \equiv \vec{k}_{\mathrm{cm}} L / 2 \pi
$$

Given $t(E):$ solns \rightarrow finite-vol. spec. $\left\{E^{*}\right\}$
We need: spectrum $\rightarrow t$-matrix

Elastic scattering

$$
t^{(\ell)}=\frac{1}{\rho} e^{i \delta_{\ell}} \sin \delta_{\ell}
$$

$$
\left.\operatorname{det}\left[\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0\right]
$$

Elastic scattering

$$
t^{(\ell)}=\frac{1}{\rho} e^{i \delta_{\ell}} \sin \delta_{\ell}
$$

$$
\operatorname{det}\left[\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0
$$

E.g. Relativistic Breit-Wigner param. $\left(m_{R}, g_{R}\right)$ for an isolated resonance

$$
t^{(\ell)}=\frac{1}{\rho(s)} \frac{\sqrt{s} \Gamma_{\ell}(s)}{m_{R}^{2}-s-i \sqrt{s} \Gamma_{\ell}(s)} \quad \Gamma_{\ell}(s)=\frac{g_{R}^{2}}{6 \pi} \frac{k_{\mathrm{cm}}^{2 \ell+1}}{s m_{R}^{2(\ell-1)}} \quad s=E_{\mathrm{Cm}}^{2}
$$

Elastic scattering

$$
t^{(\ell)}=\frac{1}{\rho} e^{i \delta_{\ell}} \sin \delta_{\ell}
$$

$$
\operatorname{det}\left[\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0
$$

E.g. Relativistic Breit-Wigner param. $\left(m_{R}, g_{R}\right)$ for an isolated resonance

$$
t^{(\ell)}=\frac{1}{\rho(s)} \frac{\sqrt{s} \Gamma_{\ell}(s)}{m_{R}^{2}-s-i \sqrt{s} \Gamma_{\ell}(s)} \quad \Gamma_{\ell}(s)=\frac{g_{R}^{2}}{6 \pi} \frac{k_{\mathrm{Cm}}^{2 l+1}}{s m_{R}^{2(l-1)}} \quad s=E_{\mathrm{Cm}}^{2}
$$

$$
\sigma_{l}(E) \propto \sin ^{2} \delta_{l}(E)=\frac{(\Gamma / 2)^{2}}{\left(E-E_{R}\right)^{2}+(\Gamma / 2)^{2}}
$$

Elastic scattering

$$
t^{(e)}=\frac{1}{\rho} e^{i \delta_{l}} \sin \delta_{\ell}
$$

$$
\operatorname{det}\left[\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\prime} n^{\prime}}^{\vec{P}, \wedge}\left(q_{i}^{2}\right)\right)\right]=0
$$

If assume only lowest ℓ relevant [near threshold $t \sim k^{2 \ell}$] \rightarrow can solve equ. for each energy level $\left\{E^{*}\right\} \rightarrow$ phase shift $\delta(E)$

Alternatively parameterise $t(E)$ and fit $\left\{E^{*}{ }_{\text {lat }}\right\}$ to $\left\{E^{*}{ }_{\text {param }}\right\}$

Elastic scattering

$$
t^{(\ell)}=\frac{1}{\rho}{ }_{\rho}^{i \delta^{i} / \sin \delta_{\ell}}
$$

$\operatorname{det}\left[\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \rho_{i} t^{(l)}\left(\delta_{\ell \ell^{\prime}} \delta_{n n^{\prime}}+i \mathcal{M}_{\ell n ; \ell^{\vec{P}}, \hat{n^{\prime}}}\left(q_{i}^{2}\right)\right)\right]=0$

If assume only lowest ℓ relevant [near threshold $t \sim k^{2 \ell}$] \rightarrow can solve equ. for each energy level $\left\{E^{*}\right\} \rightarrow$ phase shift $\delta(E)$

Alternatively parameterise $t(E)$ and fit $\left\{E^{*}{ }_{\text {lat }}\right\}$ to $\left\{E^{*}{ }_{\text {param }}\right\}$

Need many (multi-hadron) energy levels

- Single and multi-hadron ops
- Non-zero $P_{\text {cm, }}$ different box sizes and shapes, twisted b.c.s, ...

Map out phase shift \rightarrow resonance parameters etc

The ρ resonance in $\pi \pi$ scattering $\operatorname{BR}(\rho \rightarrow \pi \pi) \sim 100 \%$

$$
\begin{aligned}
& \text { P-wave } \pi \pi \\
& \left(\mathrm{J}^{\text {PC }}=1^{--}, \mathrm{I}=1\right)
\end{aligned}
$$

The ρ resonance in $\pi \pi$ scattering

$\operatorname{BR}(\rho \rightarrow \pi \pi) \sim 100 \%$

Lang, Mohler, Prelovsek, Vidmar,
[PR D84 054503 (2011)]
$N_{f}=2, m_{\pi} \approx 266 \mathrm{MeV}$

P-wave $\pi \pi$

$$
\left(J^{P C}=1^{--}, I=1\right)
$$

The ρ resonance in $\pi \pi$ scattering

$$
C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

Use many \quad single-meson' ops. $\sim \bar{\psi}\ulcorner D \ldots \psi$
and $\pi \pi$ ops. $\quad \mathcal{O}(\vec{P}) \sim \sum_{\hat{p}_{1}, \widehat{p}_{2}} \mathcal{C}_{\wedge}\left(\vec{P}, \vec{p}_{1}, \vec{p}_{2}\right) \mathcal{O}_{\pi}\left(\vec{p}_{1}\right) \mathcal{O}_{\pi}\left(\vec{p}_{2}\right)$
for various different \mathbf{P} and Λ
$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}$,
3 volumes ($L \approx 2-3 \mathrm{fm}, \quad m_{\pi} L \approx 4-6$),
$a_{s} \approx 0.12 \mathrm{fm}, a_{s} / a_{t} \approx 3.5$

The ρ resonance in $\pi \pi$ scattering

$$
\left.C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{Y}_{j}^{\dagger}(0)\right| 0\right\rangle
$$

Use many 'single-meson' ops. $\sim \bar{\psi}\ulcorner D \ldots \psi$
and $\pi \pi$ ops. $\quad \mathcal{O}(\vec{P}) \sim \sum_{\hat{p}_{1}, \hat{p}_{2}} \mathcal{C}_{\Lambda}\left(\vec{P}, \vec{p}_{1}, \vec{p}_{2}\right) \mathcal{O}_{\pi}\left(\vec{p}_{1}\right) \mathcal{O}_{\pi}\left(\vec{p}_{2}\right)$
for various different \mathbf{P} and Λ
$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}$,
3 volumes ($L \approx 2-3 \mathrm{fm}, \quad m_{\pi} L \approx 4-6$),
$a_{s} \approx 0.12 \mathrm{fm}, a_{s} / a_{t} \approx 3.5$

The $l=1$ partial wave can mix with $l=3$ and higher.
Find no significant signal for $\delta_{l=3}$ and so assume $\delta_{l>3} \approx 0$ in this energy range.

+ similar diagrams

$\pi \pi \mathrm{I}=1$ - spectra

$\pi \pi \mathrm{l}=1-$ spectra

The ρ resonance in $\pi \pi$ scattering

The ρ resonance in $\pi \pi$ scattering

The ρ resonance in $\pi \pi$ scattering

The ρ resonance - other calcs.

> Pelissier, Alexandru, [PR D87 $014503(2013)]$ $N_{f}=2, \mathrm{M}_{\pi} \approx 300 \mathrm{MeV}$

$\pi \mathrm{K}, \eta \mathrm{K}$ (I=1/2) coupled-channel scattering

$$
\begin{array}{l|l}
J^{P}=0^{+} & K, K_{0}^{*}(1430), \ldots \\
\hline J^{P}=1^{-} & K^{*}(892), \ldots \\
\hline J^{P}=2^{+} & K_{2}^{*}(1430), \ldots
\end{array}
$$

Isospin = 1/2

Strangeness = 1

$\pi \mathrm{K}, \eta \mathrm{K}$ (I=1/2) coupled-channel scattering

$$
\begin{array}{l|l}
J^{\mathrm{P}}=0^{+} & K, K_{0}{ }^{*}(1430), \ldots \\
\hline \mathrm{J}^{\mathrm{P}}=1^{-} & \mathrm{K}^{*}(892), \ldots \\
\hline \mathrm{J}^{\mathrm{P}}=2^{+} & \mathrm{K}_{2}^{*}(1430), \ldots
\end{array}
$$

|sospin = 1/2

Strangeness = 1

$$
C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

$$
\begin{aligned}
& \text { 'single-meson' } \sim \bar{\psi}\ulcorner D \ldots \psi \\
& +\pi K+\eta K \text { ops. }
\end{aligned}
$$

$M_{\pi}=391 \mathrm{MeV}, \mathrm{M}_{\mathrm{K}}=549 \mathrm{MeV}, \mathrm{M}_{\mathrm{n}}=589 \mathrm{MeV} ; 3$ volumes as before

$\pi \mathrm{K}, \eta \mathrm{K}(\mathrm{I}=1 / 2)$ - diagrams

$\pi K, \eta K(I=1 / 2)$ spectra

$$
\mathrm{P}=[0,0,0] \mathrm{A}_{1}{ }^{+}
$$

Neglect $\ell \geq 4$: only $\ell=0$ contributes

$\pi \mathrm{K}, \eta \mathrm{K}(\mathrm{l}=1 / 2)$ coupled-channel scattering

Extension of Lüscher method to inelastic scattering:
relate finite vol. energy levels to infinite vol. scattering t-matrix.

Underdetermined problem

\rightarrow parameterize $E_{c m}$ dependence of t-matrix and fit $\left\{E^{*}{ }_{\text {lat }}\right\}$ to $\left\{E^{*}{ }_{\text {param }}\right\}$

$\pi \mathrm{K}, \eta \mathrm{K}(\mathrm{I}=1 / 2)$ coupled-channel scattering

Extension of Lüscher method to inelastic scattering: relate finite vol. energy levels to infinite vol. scattering t-matrix.

Underdetermined problem

\rightarrow parameterize $E_{c m}$ dependence of t-matrix and fit $\left\{E^{*}{ }_{\text {lat }}\right\}$ to $\left\{E^{*}{ }_{\text {param }}\right\}$

K-matrix param. - respects unitarity (conserve prob.) and flexible

$$
t_{i j}^{-1}(s)=\frac{1}{\left(2 k_{i}\right)^{\ell}} K_{i j}^{-1}(s) \frac{1}{\left(2 k_{j}\right)^{\ell}}+I_{i j}(s) \quad \operatorname{Im} I_{i j}=-\delta_{i j} \rho_{i}(s)
$$

Use various different params for K (see the paper for details)

$\pi K, \eta K(I=1 / 2)$ spectra

$$
\mathrm{P}=[0,0,0] \mathrm{A}_{1}{ }^{+}
$$

Neglect $\ell \geq 4$: only $\ell=0$ contributes

$\pi K, \eta K(I=1 / 2)$ spectra

$$
\mathrm{P}=[0,0,0] \mathrm{A}_{1}{ }^{+}
$$

Neglect $l \geq 4$: only $l=0$ contributes

$\pi K, \eta K(I=1 / 2)$ spectra

$\pi \mathrm{K}$ (I=1/2): P-wave near threshold

$\pi \mathrm{K}(\mathrm{I}=1 / 2)$: P-wave near threshold

$\pi K, ~ \eta K ~(I=1 / 2): S ~ \& ~ P-w a v e s$

(73 energy levels)

$\pi K, \eta K(I=1 / 2):$ D-wave

Assume $\ell \geq 3$ negligible Up to $\pi \pi \pi K$ threshold; neglect coupling to $\pi \pi \mathrm{K}$

$\pi \mathrm{K}, \eta \mathrm{K}(\mathrm{l}=1 / 2): \mathrm{t}$-matrix poles

$\pi \mathrm{K}, \eta \mathrm{K}(\mathrm{l}=1 / 2):$ t-matrix poles

$\pi \mathrm{K}, \eta \mathrm{K}(\mathrm{l}=1 / 2):$ t-matrix poles

$\pi \mathrm{K}, \eta \mathrm{K}(\mathrm{l}=1 / 2):$ t-matrix poles

Some other recent lattice calculations

First go at including multi-hadron operators in the open-charm sector:

- Mohler et al [PR D87, 034501 (2012)] - $0^{+} D \pi$ and $1^{+} D^{*} \pi$ resonances
- Mohler et al [PRL 111, 222001 (2013)] - $0^{+} D_{s}(2317)$ below $D K$ threshold
- Lang et al [PRD 90, 034510 (2014)] $-0^{+} D_{s}(2317)$ and $1^{+} D_{s 1}(2460), D_{s 1}(2536)$
... charmonium:
- Ozaki, Sasaki [PR D87, 014506 (2013)] - no sign of Y(4140) in J/ $\psi \varphi$
- Prelovsek \& Leskovec [PRL 111, 192001 (2013)] - 1++ near/below DD* - X(3872)?
- Prelovsek et al [PL B727, 172 ; PR D91, 014504 (2015)] - no sign of Z+(3900) in 1^{+-}
- Chen et al [PR D89, 094506 (2014)] - find 1^{++}I=1 $D \bar{D}^{*}$ is weakly repulsive
... light and strange meson:
- Lang et al [PR D86, 054508 (2012), PR D88, 054508 (2013)]
$-K \pi$ in s-wave $\left(0^{+}\right)$and p-wave (1^{-}) including K^{*} resonances
- Lang et al [JHEP 04 (2014) 162] - channels relevant for $a_{1}(1260) \& b_{1}(1235)$
... baryons:
- Lang \& Verduci [PR D87, 054502 (2013)] - N π with JP=1/2- $\mathrm{I}=1 / 2$
- Alexandrou et al [PR D88, 031501 (2013)] - different approach for $\Delta\left(3 / 2^{+}\right.$I=3/2)
- Also see reviews e.g. from Lattice 2014 or 2013

D_{s} mesons

$\mathrm{J}^{\mathrm{P}}=\mathbf{0}^{+}\left[\right.$relevant for $\left.D_{s 0}(2317)\right]: 4 D_{s}+3 \mathrm{DK}$ ops

(1) Clover $\left[N_{f}=2\right.$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume] (2) Clover $\left[N_{f}=2+1\right]$ (PACS-CS), $m_{\pi}=156 \mathrm{MeV}, M_{\pi} L \approx 2.3, a \approx 0.09 \mathrm{fm}$ [small volume]

D_{s} mesons

$\mathrm{J}^{\mathrm{P}}=0^{+}\left[\right.$relevant for $\left.D_{s 0}(2317)\right]: 4 D_{s}+3 \mathrm{DK}$ ops

(1) Clover $\left[N_{f}=2\right.$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume]
(2) Clover $\left[N_{f}=2+1\right]$ (PACS-CS), $m_{\pi}=156 \mathrm{MeV}, M_{\pi} L \approx 2.3, a \approx 0.09 \mathrm{fm}$ [small volume]

D_{s} mesons

$J^{\mathrm{P}}=1^{+}\left[\right.$relevant for $\left.D_{s 1}(2460), D_{s 1}(2536)\right]: 8 D_{s}+3 D^{*} K$ ops

(1) Clover $\left[N_{f}=2\right.$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume] (2) Clover $\left[N_{f}=2+1\right]$ (PACS-CS), $m_{\pi}=156 \mathrm{MeV}, M_{\pi} L \approx 2.3, a \approx 0.09 \mathrm{fm}$ [small volume]

D_{s} mesons

$\mathrm{J}^{\mathrm{P}}=1^{+}\left[\right.$relevant for $\left.D_{s 1}(2460), D_{s 1}(2536)\right]: 8 D_{s}+3 D^{*} K$ ops

(1) Clover $\left[N_{f}=2\right.$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume]
(2) Clover $\left[N_{f}=2+1\right]$ (PACS-CS), $m_{\pi}=156 \mathrm{MeV}, M_{\pi} L \approx 2.3, a \approx 0.09 \mathrm{fm}$ [small volume]

D_{s} mesons

$\mathrm{JP}^{\mathrm{P}}=1^{+}\left[\right.$relevant for $\left.D_{s 1}(2460), D_{s 1}(2536)\right]: 8 D_{s}+3 D^{*} K$ ops

$$
\begin{aligned}
& \text { (1) } a_{0}=-0.665(25) \\
& r_{0}=-0.106(37) \\
& m-\left(m_{K}+m_{D^{*}}\right) \\
& =-93.2(4.7)(1.0) \mathrm{MeV} \\
& \text { (2) } a_{0}=-1.15(19) \\
& r_{0}=0.13(22) \\
& m-\left(m_{K}+m_{D^{*}}\right) \\
& =-43.2(13.8)(0.6) \mathrm{MeV} \\
& \text { c.f. } D_{\text {si }}(2460) \text { exp. }
\end{aligned}
$$

(1) Clover $\left[N_{f}=2\right.$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume]
(2) Clover $\left[N_{f}=2+1\right]$ (PACS-CS), $m_{\pi}=156 \mathrm{MeV}, M_{\pi} L \approx 2.3, a \approx 0.09 \mathrm{fm}$ [small volume]

Charmonium

$\mathrm{X}(3872)\left[{ }^{\mathrm{PCC}}=1^{++}\right]$near/below D D* threshold

Look in $\mathrm{I}=0$ $\left(\right.$ one vol, one $\boldsymbol{P}_{\text {cm }}$)
$c \bar{c}, D \bar{D}^{*}, J / \psi \omega$ ops

Clover [$N_{f}=2$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume]

Charmonium

X(3872) $\left[\right.$ JPC $\left.=1^{++}\right]$near/below D D* threshold

Look in l=0 (one vol, one $\boldsymbol{P}_{c m}$)
$c \bar{c}, D \bar{D}^{*}, J / \psi \omega$ ops

Clover [$N_{f}=2$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume]

Charmonium

X(3872) $\left[\right.$ JPC $\left.=1^{++}\right]$near/below D D* threshold

$\mathrm{X}-\left(\eta_{\mathrm{c}}+3 \mathrm{~J} / \psi\right) / 4=815(7) \mathrm{MeV}$ exp $=803.1(2) \mathrm{MeV}$
$X-\left(D+D^{*}\right)=-11(7) \mathrm{MeV}$
$\exp =-8.2(3) \mathrm{MeV}\left[\mathrm{D}^{+} \mathrm{D}^{*-}\right]$
$=-0.2(3) \mathrm{MeV}\left[\mathrm{D}^{0} \mathrm{D}^{* 0}\right]$

Clover [$N_{f}=2$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume]

Charmonium

X(3872) $\left[{ }^{\mathrm{PCC}}=1^{++}\right]$near/below D D* threshold

$\mathrm{X}-\left(\eta_{c}+3 \mathrm{~J} / \psi\right) / 4=815(7) \mathrm{MeV}$ exp $=803.1(2) \mathrm{MeV}$

X $-\left(D+D^{*}\right)=-11(7) \mathrm{MeV}$
$\exp =-8.2(3) \mathrm{MeV}\left[\mathrm{D}^{+} \mathrm{D}^{*-}\right]$
$=-0.2(3) \mathrm{MeV}\left[\mathrm{D}^{0} \mathrm{D}^{* 0}\right]$

Clover $\left[N_{f}=2\right]$ (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume]

Charmonium

Various $Z_{c}{ }^{+}$structures in exp. e.g. $Z_{c}^{+}(3900), Z_{c}^{+}(4020), Z_{c}^{+}(4200)$, JPC $=$? ?-

Look in JPC $=1^{+-} \mathrm{I}=1$. Many twomeson and some '4-quark' ops
$D \bar{D}^{*}, J / \psi \pi, \eta_{c} \rho, D^{*} \bar{D}^{*}, \psi^{\prime} \pi$
$\mathcal{O}_{1}^{4 q} \propto \epsilon_{a b c} \epsilon_{a b^{\prime} c^{\prime}}\left(\bar{c}_{b} C \gamma_{5} \bar{d}_{c} c_{b^{\prime}} \gamma_{i} C u_{c^{\prime}}-\bar{c}_{b} C \gamma_{i} \bar{d}_{c} c_{b^{\prime}} \gamma_{5} C u_{c^{\prime}}\right)$
$\mathcal{O}_{2}^{4 q} \propto \epsilon_{a b c} \epsilon_{a b^{\prime} c^{\prime}}\left(\bar{c}_{b} C \bar{d}_{c} c_{b^{\prime}} \gamma_{i} \gamma_{5} C u_{c^{\prime}}-\bar{c}_{b} C \gamma_{i} \gamma_{5} \bar{d}_{c} c_{b^{\prime}} C u_{c^{\prime}}\right)$

Clover $\left[N_{f}=2\right.$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume]

Charmonium

Various $Z_{\mathrm{c}}{ }^{+}$structures in exp. e.g. $Z_{c}{ }^{+}(3900), Z_{c}{ }^{+}(4020), Z_{c}{ }^{+}(4200)$, $\mathrm{JPC}=$? ? -

Look in JPC $=1^{+-} \mathrm{I}=1$. Many twomeson and some '4-quark' ops
$D \bar{D}^{*}, J / \psi \pi, \eta_{c} \rho, D^{*} \bar{D}^{*}, \psi^{\prime} \pi$
$\mathcal{O}_{1}^{4 q} \propto \epsilon_{a b c} \epsilon_{a b^{\prime} c^{\prime}}\left(\bar{c}_{b} C \gamma_{5} \bar{d}_{c} c_{b^{\prime}} \gamma_{i} C u_{c^{\prime}}-\bar{c}_{b} C \gamma_{i} \bar{d}_{c} c_{b^{\prime}} \gamma_{5} C u_{c^{\prime}}\right)$
$\mathcal{O}_{2}^{4 q} \propto \epsilon_{a b c} \epsilon_{a b^{\prime} c^{\prime}}\left(\bar{c}_{b} C \bar{d}_{c} c_{b^{\prime}} \gamma_{i} \gamma_{5} C u_{c^{\prime}}-\bar{c}_{b} C \gamma_{i} \gamma_{5} \bar{d}_{c} c b_{b^{\prime}} C u_{c^{\prime}}\right)$

No sign of any $Z_{c}{ }^{+}$up to $\sim 4.2 \mathrm{GeV}$ Only see non-interacting energies.

Clover [$N_{f}=2$] (Hasenfratz et al), $m_{\pi}=266 \mathrm{MeV}, m_{\pi} L \approx 2.7, a \approx 0.12 \mathrm{fm}$ [small volume]

Scattering channels with 3 or more hadrons?

- Much more complicated than 2-hadron scattering.
- No straightforward analogue of the determinant equation.
- Theoretical work is ongoing, e.g.
- Polejaeva, Rusetsky [EPJA 48, 67 (2012)]
- Kreuzer, Griesshammer [EPJA 48, 93 (2012)]
- Roca, Oset [PR D85, 054507 (2012)]
- Briceno, Davoudi [PR D87, 094507 (2013)]
- Hansen, Sharpe [PR D90, 116003 (2014)]
- Meissner, Rios, Rusetsky [PRL 114, 091602 (2015)]
- Hansen, Sharpe [1504.04248]
- No real applications yet.
- Another reason why calculating at physical m_{π} is challenging (particularly for light mesons): more >2 hadron channels open

Summary of lecture 3

- Scattering, resonances, etc in lattice QCD
- Some examples:
- The ρ resonance in elastic $\pi \pi$ scattering
- Coupled-channel $K \pi$, $\mathrm{K} \eta$ scattering
- Some D_{s} mesons and charmonia

Conclusions

- Significant progress in computing spectra of (excited) hadrons using lattice QCD in last few years
- improved algorithms, clever techniques, more powerful computers and novel use of technology (e.g. GPUs)
- I've aimed to give some idea of what goes into these lattice calculations, some highlights of results and some interpretation.
- Calculating properties of unstable hadrons is currently a very active area - only recently have we been able to do this in practice. There is still a lot to do here.
- Masses only get you so far. We can also compute other properties of hadrons that probe their structure using lattice QCD:
e.g. form factors, transition amplitudes. Again, there is interesting work going on, but that's another set of lectures...

