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Outline 

• Lecture 1 – Lattice QCD and some applications 
 

• Lecture 2 – Hadron spectroscopy 
 

• Lecture 3 – Resonances, scattering, etc 



2 

Lecture 1 

• Why lattice quantum chromodynamics? 
 

• Introduction to lattice QCD 
 

• Some applications 
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General references 

• “Lattice Gauge Theories, An Introduction”, Heinz Rothe (World 
Scientific, Lecture Notes in Physics, 4th edn. 2012) 
 

• “Lattice Methods for Quantum Chromodynamics”, Thomas 
Degrand and Carleton DeTar (World Scientific, 2006) 
 

• “Quantum Chromodynamics on the Lattice: An Introductory 
Presentation”, Christof Gattringer and Christian Lang (Springer, 
Lecture Notes in Physics, 2009, also available as an e-book) 
 

• “Quantum fields on the lattice”, I. Monvay and G. Münster (CUP, 
1994)  
 

• Reviews from the annual International Symposium on Lattice Field 
Theory, http://www.bnl.gov/lattice2014/  and proceedings, 
http://pos.sissa.it/cgi-bin/reader/family.cgi?code=lattice 
 

• INT Summer School on Lattice QCD for Nuclear Physics (2012) 
http://www.int.washington.edu/PROGRAMS/12-2c/ 
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The strong interaction 

• Binds quarks  hadrons: mesons and baryons (protons, neutrons, ...) 
 

• Binds protons and neutrons  nuclei 
 

• Responsible for most of mass of conventional matter  
(99% of proton mass) 

www.nndc.bnl.gov 

Z 

N 
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Quantum Chromodynamics 

SU(3) gauge field theory; 
quarks and gluons 
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Quantum Chromodynamics 

[PDG 2014] 

Large at low energies – can’t 
make perturbative expansion Asymptotic freedom 

Running coupling constant 
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• Non-perturbative regime: 

• Confinement of quarks into hadrons 

• Masses of hadrons (spectra), widths, transitions, ... 

• Nuclei 

• ... 
 

• Models, effective field theories (EFTs), ... 

• Based on some symmetry properties, (expected) physics of QCD, 
approximation in some regime. 

• In general not derived from QCD 

• May be only approach (currently) applicable to some problems 

• Can be useful for getting insight into physics (complementary) 
 

• Lattice QCD – numerical non-perturbative calculations in QCD 

Why lattice QCD? 



8 

Discretise theory on a 4d grid (spacing = a) 
 – UV regulator 
 
Finite volume (L3 x T)  finite no. of d.o.f. 
 
Quantised momenta  
 
      for spatial periodic BCs 
 

a 

L QCD on a lattice 
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Discretise theory on a 4d grid (spacing = a) 
 – UV regulator 
 
Finite volume (L3 x T)  finite no. of d.o.f. 
 
Quantised momenta  
 
      for spatial periodic BCs 
 

a 

L QCD on a lattice 

Quark fields on lattice sites 

Gauge fields on links; 
U is an element of SU(3) 



Path integral formulation (continuum) 
  – Integrate over all field configurations (infinite number) 
 
 
 
Observable: 
 
 

QCD on a lattice 
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Finite lattice – finite num. of quark and gluon fields to integrate over 
 

Euclidean time: t  - i t 
oscillating phase  decaying exponential  
–  amenable to numerical computation 
 

c.f. statistical physics 
 

Path integral formulation (continuum) 
  – Integrate over all field configurations (infinite number) 
 
 
 
Observable: 
 
 

QCD on a lattice 
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Many possible discretisations which all  continuum QCD as a  0. 
‘Improved’ actions reduce discretisation effects, e.g. O(a).  

Generic Euclidean action (gauge invariant): 
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Many possible discretisations which all  continuum QCD as a  0. 
‘Improved’ actions reduce discretisation effects, e.g. O(a).  

Generic Euclidean action (gauge invariant): 
 

 
 

Gauge fields, e.g. 
 

(Suppressed spin and colour labels) 

QCD on a lattice 
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Many possible discretisations which all  continuum QCD as a  0. 
‘Improved’ actions reduce discretisation effects, e.g. O(a).  

Generic Euclidean action (gauge invariant): 
 

 
 

‘Naive’ fermions: 
 
 
 

Technical problems with this... 
Various solutions each with advantages and disadvantages 

 

Gauge fields, e.g. 
 

QCD on a lattice 
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QCD on a lattice 
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QCD on a lattice 
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Gauge fields (bosons) 
– complex matrices 



QCD on a lattice 
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Fermion fields – anticommuting 
‘Grassmann’ numbers 

Gauge fields (bosons) 
– complex matrices 



Bilinear in fermion fields 

QCD on a lattice 
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Fermion fields – anticommuting 
‘Grassmann’ numbers 

Gauge fields (bosons) 
– complex matrices 
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QCD on a lattice 



12 

QCD on a lattice 

Q has dim. ( (L/a)3 x (T/a) x 4 x 3)2 , e.g. (203 x 128 x 4 x 3)2  (107) 2   –  huge! 



Fermion det. – nonlocal function of U 
  very computationally expensive 
 

Q-1 and det(Q) more expensive for small m  
 

Historically, quenched approx: set det[Q] = 1 
 – don’t include quark loops 
 

Now most calculations are dynamical (‘unquenched’) 
 – include det[Q] 
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QCD on a lattice 

Q has dim. ( (L/a)3 x (T/a) x 4 x 3)2 , e.g. (203 x 128 x 4 x 3)2  (107) 2   –  huge! 



Use Importance Sampling Monte Carlo to evaluate numerically 
 

Dominated by field cfgs of U where this is large 
 

Sample integral with prob. 
 
 
 
 
 

det(Q[U]) must be re-calculated for each U – expensive 
 

Sample integral a finite number of times (num. of cfgs.)  
 mean and statistical uncertainty 
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QCD on a lattice 
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QCD on a lattice 

JLab 

Oak Ridge National Lab, US 

www.hpc.cam.ac.uk 

NVIDIA 



• Continuum limit: lattice spacing, a   0 
L = const, so N = L/a   
 

• Volume, L  >> physical size of problem 
e.g. L m >> 1 
 

• Pion mass, m  physical m 

a 

L 

Lattice  QCD 
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• Continuum limit: lattice spacing, a   0 
L = const, so N = L/a   
 

• Volume, L  >> physical size of problem 
e.g. L m >> 1 
 

• Pion mass, m  physical m 

Setting the scale (determine a in physical units) 
 

• Every dimensional quantity measured in terms of a 
 

• ‘Set the scale’ by comparing with a physical observable calculated on 
the lattice to experimental value 

 

• E.g. static quark potential,  baryon mass, ... 
 
Set bare quark masses (mq) in action by comparing lattice computations 
of hadron masses with experimental masses 

a 

L 

Lattice  QCD 

15 
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Some applications 



Potential between two infinitely heavy quarks  (static colour sources) 

Static potential from lattice QCD 
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Potential between two infinitely heavy quarks  (static colour sources) 

Compare length scale with experimental 
charmonium and bottomonium spectra 

PR D79, 034502 (2009) 

Static potential from lattice QCD 

17 
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Spectroscopy on the lattice 
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Spectroscopy on the lattice 

Calculate  energies  and  matrix elements (“overlaps”, Z)  from 2-point 
correlation functions of hadron interpolating fields “operators” 
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Spectroscopy on the lattice 

Calculate  energies  and  matrix elements (“overlaps”, Z)  from 2-point 
correlation functions of hadron interpolating fields “operators” 

 

•                  is local but hadrons  
are extended objects  1 fm. 

• Improve overlap onto states of interest  
(reduce overlap with UV modes)  
by spatially smearing quark fields.  

  
 
 

q 

 fm 

q 
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Diagrams 



Wick’s theorem: contract in all possible ways 
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Wick’s theorem: contract in all possible ways 

Diagrammatically: q 

q 

q 

q 
x0 x1 x0 x1 

‘Connected’ ‘Disconnected’ 
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Diagrams 



q 

q 

Wick’s theorem: contract in all possible ways 

Diagrammatically: 

N.B. these are not perturbation theory diagrams 

q 

q 

q 

q 
x0 x1 x0 x1 

‘Connected’ ‘Disconnected’ 
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Diagrams 
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Spectroscopy on the lattice 

Calculate  energies  and  matrix elements (“overlaps”, Z)  from 2-point 
correlation functions of meson interpolating fields “operators” 
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Spectroscopy on the lattice 

Calculate  energies  and  matrix elements (“overlaps”, Z)  from 2-point 
correlation functions of meson interpolating fields “operators” 



t/a 

C(t) 
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Correlators 



t/a t/a 

C(t) Meff 

0.216 

21 

Correlators 



Use only smeared local operators (e.g. i ).    Set scale using M  
Nucleons & isovector mesons – only connected diagrams 

BMW Collaboration, Durr et al,  
Science 322, 1224 (2008) 

22 

Low-lying spectrum of hadrons 
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Low-lying spectrum of hadrons BMW Collaboration, Durr et al,  
Science 322, 1224 (2008) 
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Low-lying spectrum of hadrons BMW Collaboration, Durr et al,  
Science 322, 1224 (2008) 
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Light baryons – comparison 

Agreement between results from different lattice actions 
(extrapolated to continuum limit and physical m) 

Alexandrou et al, PR D90, 074501 (2014) 
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Dowdall et al (HPQCD)  
[PR D86, 094510 (2012)] Quarkonia and heavy-light mesons 
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Dowdall et al (HPQCD)  
[PR D86, 094510 (2012)] Quarkonia and heavy-light mesons 

Bs 

Bc 



• Hadron form factors, radiative transitions 

• Hadron structure, TMDs, etc 

• Decay constants 

• Weak matrix elements, flavour physics 

  SM tests and BSM constraints 

• Nuclear physics / nuclei 

• QCD at finite temperature and density 

• Other field theories, BSM physics 

• ... 

26 

More applications 
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Summary of lecture 1 

Next time 

• Why lattice quantum chromodynamics? 
 

• A (very brief) introduction to lattice QCD 
 

• Applications: static potential and  some 
‘simple’ hadron spectroscopy 

• Excited hadron spectroscopy 



28 



29 

Lecture 2 

• Background on hadron spectroscopy 
 

• Excited hadron spectroscopy in lattice QCD 
 

• Mesons 
 

• Baryons 
 

(I won’t review all lattice calculations of hadron spectra) 

Hadron spectroscopy from lattice QCD 
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Hadron spectroscopy  

Masses and other properties of hadrons probe the 
non-perturbative regime of QCD. 
 

• Relevant degrees of freedom? 
 

• Confinement? 
 

• Role of gluons? 
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Hadron spectroscopy  

Masses and other properties of hadrons probe the 
non-perturbative regime of QCD. 
 

• Relevant degrees of freedom? 
 

• Confinement? 
 

• Role of gluons? 

KLOE2 CLAS12 

Experiments 

LHCb 

ATLAS CMS 

BESIII 

ELSA        MAMI        J-PARC        Spring-8  

+ others at 12 GeV JLab 

+ others at GSI 
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Hadron spectroscopy – mesons  
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Hadron spectroscopy – mesons  

Quark-antiquark pair: n 2S+1LJ 

L 

L 
½ 

½ 

J = L  S 
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Hadron spectroscopy – mesons  

Quark-antiquark pair: n 2S+1LJ 

L 

L 
½ 

½ 

J = L  S 

Parity:     P = (-1)(L+1) 

Charge Conj Sym:   C = (-1)(L+S) 

JPC = 0- + , 0+ + , 1- - , 1+ + , 1+ - , 2- - , 2+ + , 2- +, … 
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Hadron spectroscopy – mesons  

Quark-antiquark pair: n 2S+1LJ 

L 

L 
½ 

½ 

J = L  S 

Exotic JPC (0- -, 0+ -, 1 
- +, 2 

+ -, ...)  
or flavour quantum numbers  
– can’t just be a       pair 

Parity:     P = (-1)(L+1) 

Charge Conj Sym:   C = (-1)(L+S) 

JPC = 0- + , 0+ + , 1- - , 1+ + , 1+ - , 2- - , 2+ + , 2- +, … 

E.g. multiquark systems  
(tetraquarks, molecular mesons) 
 

Hybrid mesons (gluonic field excited) 
 

Glueballs 
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Isoscalars (I = 0) e.g. , ’, ,  

Isovectors (I = 1) e.g. , , a1  

Flavours of mesons 

Light mesons u, d, s (anti)quarks 

Hadron spectroscopy – mesons  

Kaons (I = 1/2) e.g. K, K* 

mu = md – isospin sym. 
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Isoscalars (I = 0) e.g. , ’, ,  

Isovectors (I = 1) e.g. , , a1  

Flavours of mesons 

Light mesons 

Charmonium e.g. J/ 

Bottomonium e.g. ϒ 

D, Ds, B, ... 

u, d, s (anti)quarks 

Hadron spectroscopy – mesons  

Kaons (I = 1/2) e.g. K, K* 

mu = md – isospin sym. 
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Charmonium 

PDG 2013 

Quark Model (G&I) 

M
 /

 M
eV

 

Y(4260) 

X(3872) 

Z+(4430) 

c 

J/ 

χc0 

χc1 
χc2 hc 

Z+(3900) 

Hadron spectroscopy – mesons  
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Charmonium 

PDG 2013 

Quark Model (G&I) 

M
 /

 M
eV

 

Y(4260) 

X(3872) 

Z+(4430) 

c 

J/ 

χc0 

χc1 
χc2 hc 

Z+(3900) 

Hadron spectroscopy – mesons  

Puzzles (don’t fit expected pattern): 
X(3872), Y(4260), Z+(4430), Zc

+(3900),  
 

Also: Zb
+, Ds(2317), light scalars, ...  
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Charmonium 

PDG 2013 

Quark Model (G&I) 

M
 /

 M
eV

 

Y(4260) 

X(3872) 

Z+(4430) 

c 

J/ 

χc0 

χc1 
χc2 hc 

Z+(3900) 

Hadron spectroscopy – mesons  

Puzzles (don’t fit expected pattern): 
X(3872), Y(4260), Z+(4430), Zc

+(3900),  
 

Also: Zb
+, Ds(2317), light scalars, ...  

Exotic JPC ? 
• No sign in charmonium or bottomonium 
• Light sector: 1(1600) (1 

- +) needs conf. 

Flavour exotics 
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• Missing states?   
• ‘Freezing’ of degrees of freedom? 
• Gluonic excitations? 
• Flavour structure 

Hadron spectroscopy – baryons 
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• Missing states?   
• ‘Freezing’ of degrees of freedom? 
• Gluonic excitations? 
• Flavour structure 

Hadron spectroscopy – baryons 
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‘Roper’ resonance 
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Can we compute spectra of hadrons (including unconventional 
hadrons), understand these observations and address puzzles 
with first-principles calculations in QCD? 
  lattice QCD 

Hadron spectroscopy  
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Excited meson spectroscopy in LQCD – our approach 

Energy eigenstates from: 

[Hadron Spectrum Collaboration, PR D80 054506, PRL 103 262001, PR D82 034508, D84 074508, D85 014507] 
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Excited meson spectroscopy in LQCD – our approach 

Energy eigenstates from: 

Interpolating operators 

Ops have definite JP(C) in continuum (when p = 0) 
Here p = 0 and up to 3 derivatives included: 
• many ops in each channel (up to  26) 
• different spin and angular structures, include  [Di, Dj]

 

[Hadron Spectrum Collaboration, PR D80 054506, PRL 103 262001, PR D82 034508, D84 074508, D85 014507] 
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Large basis of ops  matrix of correlators 
 
Generalised eigenvalue problem: 
 
 

Variational method 
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Large basis of ops  matrix of correlators 
 
Generalised eigenvalue problem: 
 
 

Eigenvalues  energies 

Also  optimal linear combination of operators to overlap on to a state 

Z(n) related to eigenvectors 

(t >> t0) 

Variational method 
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Large basis of ops  matrix of correlators 
 
Generalised eigenvalue problem: 
 
 

Eigenvalues  energies 

Also  optimal linear combination of operators to overlap on to a state 

Z(n) related to eigenvectors 

(t >> t0) 

Var. method uses orthog of eigenvectors; don’t just rely on separating energies 

Variational method 
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Continuum 

Infinite number of irreps: J = 0, 1, 2, 3, 4, ... 

Reduced symmetry and spin 
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Continuum 

Irrep A1 A2 T1 T2 E 

Dim 1 1 3 3 2 

Infinite number of irreps: J = 0, 1, 2, 3, 4, ... 

Finite cubic lattice 

Cont. Spin 0 1 2 3 4 ... 

Irrep(s) A1 T1 T2 + E T1 + T2 + A2  A1 + T1 + T2 + E ... 

Broken sym: 3D rotation group  cubic  group 
 

Finite number of irreps Λ: A1, A2, T1, T2, E  (+ others for half-integer spin) 

Reduced symmetry and spin 

‘Subduce’ operators into lattice irreps (J  ): 
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Continuum 

Irrep A1 A2 T1 T2 E 

Dim 1 1 3 3 2 

Infinite number of irreps: J = 0, 1, 2, 3, 4, ... 

Finite cubic lattice 

Cont. Spin 0 1 2 3 4 ... 

Irrep(s) A1 T1 T2 + E T1 + T2 + A2  A1 + T1 + T2 + E ... 

Broken sym: 3D rotation group  cubic  group 
 

Finite number of irreps Λ: A1, A2, T1, T2, E  (+ others for half-integer spin) 

Reduced symmetry and spin 

Relevant symmetry reduced further 
for hadrons at non-zero momentum 

‘Subduce’ operators into lattice irreps (J  ): 
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JHEP 07 (2012) 126 – Liu, Moir, Peardon, Ryan, CT, Vilaseca, Dudek, Edwards, Joó, Richards 

Hadron Spectrum Collaboration Excited charmonia 
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• Dynamical ‘clover’ u, d and s quarks, mu = md < ms [Nf = 2+1]  
 

• Relativistic c quark 
 

• Anisotropic – finer in temporal dir (as/at  3.5),  
 

• m  400 MeV (not physical m) 
 

• One lattice spacing, as  0.12 fm (no extrap. to contin. limit) 
 

• Two volumes: 163, 243 (Ls  1.9, 2.9 fm) 
 

• Only compute connected contributions 
 
 
 

 
 
 
 
 

c 

c 

c 

c 

c 

c 

JHEP 07 (2012) 126 – Liu, Moir, Peardon, Ryan, CT, Vilaseca, Dudek, Edwards, Joó, Richards 

Hadron Spectrum Collaboration Excited charmonia 
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J/ ’ 

m at = 0.53726(4) m at = 0.6713(5) 

Excited charmonia 
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JPC 

c J/ 
χc0 χc1 χc2 hc 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 
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Exotics 

JPC 

c J/ 
χc0 χc1 χc2 hc 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 
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S-wave 

Exotics 

JPC 

c J/ 
χc0 χc1 χc2 hc 

L 
½ 

½ 

J = L  S 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 
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S-wave 

P-wave 

Exotics 

JPC 

c J/ 
χc0 χc1 χc2 hc 

L 
½ 

½ 

J = L  S 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 
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S-wave 

P-wave 

D-wave 

Exotics 

JPC 

c J/ 
χc0 χc1 χc2 hc 

L 
½ 

½ 

J = L  S 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 



41 

S-wave 

P-wave 

D-wave 

F-wave 

Exotics 

JPC 

c J/ 
χc0 χc1 χc2 hc 
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½ 

½ 

J = L  S 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 
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S-wave 

P-wave 

D-wave 

F-wave 

Exotics 

JPC 

c J/ 
χc0 χc1 χc2 hc 

L 
½ 

½ 

J = L  S 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 
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S-wave 

P-wave 

D-wave 

F-wave 

part of G-wave 
Exotics 

JPC 

c J/ 
χc0 χc1 χc2 hc 

L 
½ 

½ 

J = L  S 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 
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S-wave 

P-wave 

D-wave 

F-wave 

part of G-wave 
Exotics 

JPC 

c J/ 
χc0 χc1 χc2 hc 

L 
½ 

½ 

J = L  S 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 
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c J/ 
χc0 χc1 χc2 hc 

JPC 

Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 

       in L=0, with gluonic 1+-,  
scale  1.2 – 1.3 GeV 

Large overlap with op 
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c J/ 
χc0 χc1 χc2 hc 

JPC 

       in L=1, with gluonic 1+- 
Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 

       in L=0, with gluonic 1+-,  
scale  1.2 – 1.3 GeV 

Large overlap with op 

   



42 

Y(4260)? 

c J/ 
χc0 χc1 χc2 hc 

JPC 

       in L=1, with gluonic 1+- 
Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 

       in L=0, with gluonic 1+-,  
scale  1.2 – 1.3 GeV 

Large overlap with op 
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Y(4260)? 

c J/ 
χc0 χc1 χc2 hc 

X(3872)? 

JPC 

       in L=1, with gluonic 1+- 
Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 

       in L=0, with gluonic 1+-,  
scale  1.2 – 1.3 GeV 

Large overlap with op 
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Y(4260)? 

c J/ 
χc0 χc1 χc2 hc 

X(3872)? 

JPC 

       in L=1, with gluonic 1+- 
Excited charmonia 

M  400 MeV [HadSpec, JHEP 07 (2012) 126] 

       in L=0, with gluonic 1+-,  
scale  1.2 – 1.3 GeV 

Large overlap with op 

   

Compare pattern of lightest hybrids with models 
[Dudek, PR D84, 074023 (2011)] 

Bag model hybrids: 0- +, 1- +, 2- +, 1- - 

Constituent gluon in L=1 (1+ -): 0- +, 1- +, 2- +, 1- - 

Flux tube: 1+ +, 1- -, 0- +, 0+ -, 1- +, 1+ -, 2- +, 2+ - 

Constituent gluon in L=0 (1- -): 0- - , 1- +, non-exotics 
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Light mesons 

u and d quarks are degenerate – isospin symmetry 
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Isoscalars (I = 0) e.g. , ’, ,  

Isovectors (I = 1) e.g. , , a1 – only connected contributions 

Light mesons 

q 

q' 

u and d quarks are degenerate – isospin symmetry 



44 

Isoscalars (I = 0) e.g. , ’, ,  QCD annihilation dynamics 

Light isoscalar mesons 
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ms = mu = md  [SU(3) sym] 
 –  eigenstates are octet, singlet   

Isoscalars (I = 0) e.g. , ’, ,  QCD annihilation dynamics 

Light isoscalar mesons 
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ms = mu = md  [SU(3) sym] 
 –  eigenstates are octet, singlet   

ms ≠ mu = md   mixing 

‘Ideal mixing’  

Experimentally ,  (1--) and f2(1270), f2’(1525) (2++) – close to ‘ideal’ 

, ’ (0-+) – closer to octet-singlet 

In general 

Isoscalars (I = 0) e.g. , ’, ,  QCD annihilation dynamics 

Light isoscalar mesons 
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ms = mu = md  [SU(3) sym] 
 –  eigenstates are octet, singlet   

ms ≠ mu = md   mixing 

‘Ideal mixing’  

Experimentally ,  (1--) and f2(1270), f2’(1525) (2++) – close to ‘ideal’ 

, ’ (0-+) – closer to octet-singlet 

In general 

Can also mix 
with glueballs 

Isoscalars (I = 0) e.g. , ’, ,  QCD annihilation dynamics 

Light isoscalar mesons 
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Light isoscalar mesons 
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Operator basis doubled 
in size c.f. isovectors: 

No glueball ops for now 

Light isoscalar mesons 
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Connected and 
disconnected contrib. 
required 

q 

q 

q 

q 

q 

q 

Operator basis doubled 
in size c.f. isovectors: 

No glueball ops for now 

Same lattice setup as before 

Light isoscalar mesons 

NVIDIA 
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Light mesons (isospin = 0 and 1) 

Dudek, Edwards, Guo, CT (HadSpec), PR D88, 094505 (2013) 
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S-wave 

P-wave 
D-wave 

Light mesons (isospin = 0 and 1) 

Dudek, Edwards, Guo, CT (HadSpec), PR D88, 094505 (2013) 
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Lightest hybrid mesons 

Light mesons (isospin = 0 and 1) 

Dudek, Edwards, Guo, CT (HadSpec), PR D88, 094505 (2013) 

       in L=0, with gluonic 1+-,  
scale  1.2 – 1.3 GeV 
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Hidden-flavour mixing:  
 - ’  = 46(1), f1 – f1’  = 27(2), 1-+ exotics 21(5) 

Light mesons (isospin = 0 and 1) 

Dudek, Edwards, Guo, CT (HadSpec), PR D88, 094505 (2013) 
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Light mesons (isospin = 0 and 1) 

Dudek, Edwards, Guo, CT (HadSpec), PR D88, 094505 (2013) 

Volume and m dependence 

m
 /

 M
eV
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Light mesons (isospin = 0 and 1) 

Dudek, Edwards, Guo, CT (HadSpec), PR D88, 094505 (2013) 

Volume and m dependence 

m
 /

 M
eV
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Light mesons (isospin = 0) 

Michael, Ottnad, Urbach (ETM), PRL 111, 181602 (2013) 

Twisted mass quarks [Nf = 2+1+1] 
Extrapolate in a and m: 
: 551  8  6 MeV,   
’: 1006  54  38 + 61 MeV 
:  46  1  3  

 

[c.f. HadSpec  46(1) @ m  400 MeV] 
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Morningstar and Peardon, PR D60, 034509 (1999) 

• No fermion fields – 
computationally much less 
expensive  

 

• Operators are closed loops 
of links, with different 
spatial symmetries 
 
 
 
 
 

 

Glueballs in pure gauge theory (SU(3) Yang-Mills) 
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Baryons 
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Excited baryon spectroscopy – our approach 

Energy eigenstates from: 

Interpolating operators 

Up to 2 derivs: 

• Again, many ops in each channel with different spin and angular structures 
• Same lattice setup as before but only one volume (163 , Ls  1.9 fm) 
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N and  baryons [HadSpec, PR D84 074508, PR D85 054016] 

4 5 3 1 2 3 2 1 

2 2 1 1 1 

N (I = 1/2, |S| = 0)  (I = 3/2, |S| = 0) 

Counting in lowest bands as expected in non. rel. quark model,  
SU(6) x O(3)  (flavour x spin x space), no ‘freezing of d.o.f.’ 

m ≈ 400 MeV 
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N and  baryons [HadSpec, PR D84 074508, PR D85 054016] 

4 5 3 1 2 3 2 1 

2 2 1 1 1 

N (I = 1/2, |S| = 0)  (I = 3/2, |S| = 0) 

Counting in lowest bands as expected in non. rel. quark model,  
SU(6) x O(3)  (flavour x spin x space), no ‘freezing of d.o.f.’ 

Hybrid baryons 
Gluonic 1+- (8c) with qqq (8c),  
scale  1.2 – 1.3 GeV 

Blue: large overlap with ops  [Di, Dj]  Fij 

m ≈ 400 MeV 
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Flavour structure of excited baryons 

ms = mu = md   SU(3) flavour symmetry, M  700 MeV, qqq 

• Again, multiplicities in 
lowest bands as expected 
in non. rel. quark model 
SU(6) x O(3) 
 

• No ‘freezing’ of d.o.f. 

[HadSpec, PR D87, 
054506 (2013)] 
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Flavour structure of excited baryons 

ms = mu = md   SU(3) flavour symmetry, M  700 MeV, qqq 
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• No ‘freezing’ of d.o.f. 
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Flavour structure of excited baryons 
 (I = 0, |S| = 1)  (I = 1, |S| = 1) 

 (I = 1/2, |S| = 2)  (I = 0, |S| = 3) 

8F 

10F 

1F 

ms > mu = md 
 

Broken SU(3)  
flav. sym. 
 

m  400 MeV 
 

[HadSpec, PR D87, 
054506 (2013)] 
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Padmanath et al (HadSpec),  
PR D91, 094502 (2015) Excited charm (cc) baryons 

• Again, pattern in lowest bands consistent with 
non. rel. quark model 

• Spectra don’t support quark-diquark picture 
• Also triply-charmed (ccc) baryons 

m  400 MeV 

Large overlap with ops  [Di, Dj] 

cc 
cc 
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Excited bottom (bbb) baryons Meinel, PR D85, 114510 (2012) 

• NRQCD action for b quark 
• Dynamical domain-wall u,d and s quarks 
• Two different lattice spacings 
• A number of m – extrapolate to physical m 
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Excited bottom (bbb) baryons Meinel, PR D85, 114510 (2012) 

• NRQCD action for b quark 
• Dynamical domain-wall u,d and s quarks 
• Two different lattice spacings 
• A number of m – extrapolate to physical m 

m
2 / GeV2 
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Excited bottom (bbb) baryons Meinel, PR D85, 114510 (2012) 

• NRQCD action for b quark 
• Dynamical domain-wall u,d and s quarks 
• Two different lattice spacings 
• A number of m – extrapolate to physical m 
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Summary of lecture 2 

• Background on hadron spectroscopy 
 

• Excited hadron spectroscopy in lattice QCD 
 

• Mesons 
 

• Baryons 
 

But so far we’ve neglected the fact that many of these 
hadrons are above the threshold for strong decay… 
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Summary of lecture 2 

Next time 

• Background on hadron spectroscopy 
 

• Excited hadron spectroscopy in lattice QCD 
 

• Mesons 
 

• Baryons 
 

But so far we’ve neglected the fact that many of these 
hadrons are above the threshold for strong decay… 

• Scattering, resonances, etc 



60 
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• Scattering, resonances, etc in lattice QCD 
 

• Some examples: 
 

• The ρ resonance in elastic  scattering 
 

• Coupled-channel K , K η scattering 
 

• Some Ds mesons and charmonia 
 

(I won’t review all lattice calculations) 

Lecture 3 

Hadron spectroscopy from lattice QCD 
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Based on Klempt & Zaitsev, Phys Rep 454, 1 (2007)  

Experimental light isovector (I = 1) mesons 

.
.
.
 

Hadron Spectroscopy 
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Based on Klempt & Zaitsev, Phys Rep 454, 1 (2007)  

Experimental light isovector (I = 1) mesons 

 
 
 
 

• Many states are resonances 
• Most of the puzzling states are 

close to or above threshold(s) 

.
.
.
 

Hadron Spectroscopy 

 – resonance 
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Maiani & Testa (1990): scattering matrix elements cannot be 
extracted from infinite-volume Euclidean-space correlation 
functions (except at threshold). 

Scattering in LQCD 



64 

Continuous spectrum Infinite volume 

Two hadrons: non-interacting 

Scattering in LQCD 
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Continuous spectrum 

Discrete spectrum 

Infinite volume 

Finite volume 

Two hadrons: non-interacting 

L 

periodic b.c.s (torus) 

Scattering in LQCD 
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Discrete spectrum 

Finite volume 

Two hadrons: interacting 

L 

c.f. 1-dim: 

Continuous spectrum Infinite volume 

periodic b.c.s (torus) 

scattering phase shift 

Scattering in LQCD 
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Scattering amplitude, f 

p′ 

p 

 

Partial-wave expansion: 

Scattering in an infinite volume – reminder 
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Scattering amplitude, f 

p′ 

p 

 

Partial-wave expansion: 

Scattering in an infinite volume – reminder 

Elastic scattering and the phase shift, ℓ(E) 
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Scattering – ‘Lüscher method’ 
Lüscher,  NP B354, 531 (1991);  
extended by many others 
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i, j label channels 
e.g. K, K 

Scattering – ‘Lüscher method’ 
Lüscher,  NP B354, 531 (1991);  
extended by many others 
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i, j label channels 
e.g. K, K 

Scattering – ‘Lüscher method’ 
Lüscher,  NP B354, 531 (1991);  
extended by many others 

Infinite-volume 
scattering t-matrix 

Here 
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effect of finite vol.  
i, j label channels 
e.g. K, K 

Reduced symmetry  ℓ mix 
 
 

[all ℓ that subduce to a given 
lattice irrep () mix] 

Scattering – ‘Lüscher method’ 
Lüscher,  NP B354, 531 (1991);  
extended by many others 

Infinite-volume 
scattering t-matrix 

Here 
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effect of finite vol.  
i, j label channels 
e.g. K, K 

Reduced symmetry  ℓ mix 
 
 

[all ℓ that subduce to a given 
lattice irrep () mix] 

Scattering – ‘Lüscher method’ 
Lüscher,  NP B354, 531 (1991);  
extended by many others 

Infinite-volume 
scattering t-matrix 

Ignore 

Integrals over momenta in loops 
 sums over momenta 
Difference  1/L3 effects 

effects 

Here 



67 

effect of finite vol.  
i, j label channels 
e.g. K, K 

Reduced symmetry  ℓ mix 
 
 

[all ℓ that subduce to a given 
lattice irrep () mix] 

Given t(E): solns  finite-vol. spec. {E*} 
 

We need: spectrum  t-matrix 

Scattering – ‘Lüscher method’ 
Lüscher,  NP B354, 531 (1991);  
extended by many others 

Infinite-volume 
scattering t-matrix 

Here 
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Elastic scattering 



E.g. Relativistic Breit-Wigner param. (mR, gR) for an isolated resonance 

68 

‘narrow’ ‘broad’   

Ecm 

Elastic scattering 



E.g. Relativistic Breit-Wigner param. (mR, gR) for an isolated resonance 

68 

‘narrow’ ‘broad’   

Ecm 

ER 
E 

 

Elastic scattering 



69 

If assume only lowest ℓ relevant [near threshold t  k2ℓ ] 

 can solve equ. for each energy level {E*}  phase shift (E) 
 

Alternatively parameterise t(E) and fit {E*lat} to {E*param} 

Elastic scattering 
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If assume only lowest ℓ relevant [near threshold t  k2ℓ ] 

 can solve equ. for each energy level {E*}  phase shift (E) 
 

Alternatively parameterise t(E) and fit {E*lat} to {E*param} 

Need many (multi-hadron) energy levels 

• Single and multi-hadron ops 
 

• Non-zero Pcm,   different box sizes and shapes,   twisted b.c.s, ... 

Map out phase shift  resonance parameters etc 

Elastic scattering 
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The  resonance in  scattering 

P-wave   
(JPC = 1--, I = 1) 
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Feng, Jansen, Renner (ETMC),  
[PR D83 094505 (2011)] Nf = 2, 
M ≈ 480, 420, 330, 290 MeV 

Lang, Mohler, Prelovsek, Vidmar,  
[PR D84 054503 (2011)] 
Nf = 2, m ≈ 266 MeV 

The  resonance in  scattering 

P-wave   
(JPC = 1--, I = 1) 

Aoki et al (PACS-CS),  
[PR D84 094505 (2011)] 
Nf = 2+1, m ≈ 410, 300 MeV 



‘single-meson’ ops. 

and  ops. 

71 

Dudek, Edwards, CT (HadSpec), PR D87, 034505 (2013) 

M  400 MeV, 
3 volumes (L ≈ 2 – 3 fm,   m L ≈ 4 - 6),  
as  0.12 fm, as/at  3.5 

for various different P and  

The  resonance in  scattering 

Use many 



‘single-meson’ ops. 

and  ops. 

71 

Dudek, Edwards, CT (HadSpec), PR D87, 034505 (2013) 

M  400 MeV, 
3 volumes (L ≈ 2 – 3 fm,   m L ≈ 4 - 6),  
as  0.12 fm, as/at  3.5 

for various different P and  

The  resonance in  scattering 

Use many 

The l = 1 partial wave can mix with l = 3 and higher. 
 

Find no significant signal for l = 3 and so assume l > 3  0 in this energy range. 
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+ similar diagrams 

[PR D87, 034505]  I=1 – diagrams 
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 I=1 – spectra [PR D87, 034505] 

L / as 

at  E 

  thresh. 

(1)(-1) 

thresh. 
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 I=1 – spectra [PR D87, 034505] 
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M 400 MeV 

[PR D87, 034505] The  resonance in  scattering 



76 

[PR D87, 034505] The  resonance in  scattering 
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M = 854.1 ± 1.1 MeV   
 = 12.4 ± 0.6 MeV 
g = 5.80 ± 0.11 

[M  400 MeV] 

[PR D87, 034505] The  resonance in  scattering 

c.f. experimentally  
M = 775.49 ± 0.34 MeV 
 = 149.1 ± 0.8 MeV 
g ≈ 5.9 
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The  resonance – other calcs. 

Pelissier, Alexandru,  
[PR D87 014503 (2013)] 
Nf = 2, M ≈ 300 MeV 

M. Döring 
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JP = 0+ , K0*(1430), ... 

JP = 1- K*(892), ... 

JP = 2+ K2*(1430), ... 

Isospin = 1/2 
Strangeness = 1 

K, ηK (I=1/2) coupled-channel scattering 
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Wilson, Dudek, Edwards, CT (HadSpec), PRL 113, 182001; PR D91, 054008 

JP = 0+ , K0*(1430), ... 

JP = 1- K*(892), ... 

JP = 2+ K2*(1430), ... 

‘single-meson’ 

+ K + K ops. 

M = 391 MeV, MK = 549 MeV, Mη = 589 MeV;   3 volumes as before 

Isospin = 1/2 
Strangeness = 1 

K, ηK (I=1/2) coupled-channel scattering 
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K, ηK (I=1/2) – diagrams 
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K, ηK (I=1/2) spectra P = [0,0,0] A1
+ 

Neglect ℓ  4: only ℓ = 0 contributes 



81 

Extension of Lüscher method to inelastic scattering:  
 relate finite vol. energy levels to infinite vol. scattering t-matrix. 
 

Underdetermined problem 
  parameterize Ecm dependence of t-matrix and fit {E*lat} to {E*param} 

K, ηK (I=1/2) coupled-channel scattering 
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K-matrix param. – respects unitarity (conserve prob.) and flexible 

Extension of Lüscher method to inelastic scattering:  
 relate finite vol. energy levels to infinite vol. scattering t-matrix. 
 

Underdetermined problem 
  parameterize Ecm dependence of t-matrix and fit {E*lat} to {E*param} 

K, ηK (I=1/2) coupled-channel scattering 

Use various different params for K (see the paper for details) 
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K, ηK (I=1/2) spectra P = [0,0,0] A1
+ 

Neglect ℓ  4: only ℓ = 0 contributes 
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Neglect ℓ  4: only ℓ = 0 contributes 

K, ηK (I=1/2) spectra P = [0,0,0] A1
+ 
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K, ηK (I=1/2) spectra 

> 100 energy levels in total 
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K (I=1/2): P-wave near threshold (well below ηK threshold) 
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K (I=1/2): P-wave near threshold (well below ηK threshold) 

Bound state just  
below K threshold 
 

Breit-Wigner param. 
gR = 5.93(26)  
     c.f. K* exp. = 5.52(16) 
MR = 933(1) MeV 
     c.f. K* exp. ≈ 892 MeV 
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K, ηK (I=1/2): S & P-waves 

S-wave 

(73 energy levels) 

2/Ndof = 49.1/(61 - 6) = 0.89 2/Ndof = 15.0/(19 - 5) = 1.0 

P-wave 
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K, ηK (I=1/2): D-wave 

Assume ℓ  3 negligible 
 

Up to K threshold; 
neglect coupling to K 
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K, ηK (I=1/2): t-matrix poles 

Circle = on physical sheet 
Square = on unphysical sheet(s) 
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Broad resonance 
c.f. K0

*(1430) 

Narrow resonance  
c.f. K2

*(1430) 
(exp. B.R. to K  50%) 

K, ηK (I=1/2): t-matrix poles 

Circle = on physical sheet 
Square = on unphysical sheet(s) 



88 

Broad resonance 
c.f. K0

*(1430) 

Narrow resonance  
c.f. K2

*(1430) 
(exp. B.R. to K  50%) 

Bound state just below 
threshold c.f. K*(892) 

K, ηK (I=1/2): t-matrix poles 

Circle = on physical sheet 
Square = on unphysical sheet(s) 
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Broad resonance 
c.f. K0

*(1430) 

Narrow resonance  
c.f. K2

*(1430) 
(exp. B.R. to K  50%) 

Bound state just below 
threshold c.f. K*(892) 

K, ηK (I=1/2): t-matrix poles 

Circle = on physical sheet 
Square = on unphysical sheet(s) 

Virtual bound state  
[pole below threshold 
on unphysical sheet(s)] 
 

c.f. unitarised pt 
[Nebreda & Pelaez,  
PR D81, 034035 (2010)] 
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Some other recent lattice calculations 

First go at including multi-hadron operators in the open-charm sector: 
• Mohler et al [PR D87, 034501 (2012)] – 0+ D  and 1+ D*  resonances 
• Mohler et al [PRL 111, 222001 (2013)] – 0+ Ds(2317) below D K threshold 
• Lang et al [PRD 90, 034510 (2014)] – 0+ Ds(2317) and 1+ Ds1(2460), Ds1(2536) 
 

... charmonium: 
• Ozaki, Sasaki [PR D87, 014506 (2013)] – no sign of Y(4140) in J/  
• Prelovsek & Leskovec [PRL 111, 192001 (2013)] – 1+ + near/below DD* – X(3872)? 
• Prelovsek et al [PL B727, 172 ; PR D91, 014504 (2015)] – no sign of Z+(3900) in 1+- 

• Chen et al [PR D89, 094506 (2014)] – find 1+ +  I=1             is weakly repulsive  
 

... light and strange meson: 
• Lang et al [PR D86, 054508 (2012), PR D88, 054508 (2013)] 

 – K  in s-wave (0+) and p-wave (1-) including K* resonances 
• Lang et al [JHEP 04 (2014) 162] – channels relevant for a1(1260) & b1(1235) 
 

... baryons: 
• Lang & Verduci [PR D87, 054502 (2013)] – N   with JP=1/2- I=1/2 
• Alexandrou et al [PR D88, 031501 (2013)] – different approach for  (3/2+  I=3/2) 

 

• Also see reviews e.g. from Lattice 2014 or 2013 

(not complete list) 
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Ds mesons Lang et al [PRD 90, 034510 (2014)] 

(1) Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 
(2) Clover [Nf = 2+1] (PACS-CS), m = 156 MeV, M L  2.3, a  0.09 fm [small volume] 

JP = 0+ [relevant for Ds0(2317)]: 4 Ds + 3 DK ops 

0+ 
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Ds mesons Lang et al [PRD 90, 034510 (2014)] 

(1) Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 
(2) Clover [Nf = 2+1] (PACS-CS), m = 156 MeV, M L  2.3, a  0.09 fm [small volume] 

JP = 0+ [relevant for Ds0(2317)]: 4 Ds + 3 DK ops 

0+ 

2

0

0 2

11
)(cot pr

a
pp 

(1) a0 = -0.756(25) 
r0 = -0.056(31) 
m – (mK + mD) 
 = -78.9(5.4)(0.8) MeV 
 

(2) a0 = -1.33(20) 
r0 = 0.27(17) 
m – (mK + mD) 
 = -36.6(16.6)(0.5) MeV 
 

c.f. Ds0(2317) exp. 
 ≈ -45.1 MeV 

[Use two points per ensemble] 
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Ds mesons Lang et al [PRD 90, 034510 (2014)] 

(1) Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 
(2) Clover [Nf = 2+1] (PACS-CS), m = 156 MeV, M L  2.3, a  0.09 fm [small volume] 

JP = 1+ [relevant for Ds1(2460), Ds1(2536)]: 8 Ds + 3 D*K ops 

1+ 
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Ds mesons Lang et al [PRD 90, 034510 (2014)] 

(1) Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 
(2) Clover [Nf = 2+1] (PACS-CS), m = 156 MeV, M L  2.3, a  0.09 fm [small volume] 

JP = 1+ [relevant for Ds1(2460), Ds1(2536)]: 8 Ds + 3 D*K ops 

1+ (1) a0 = -0.665(25) 
r0 = -0.106(37) 
m – (mK + mD*) 
 = -93.2(4.7)(1.0) MeV 
 

(2) a0 = -1.15(19) 
r0 = 0.13(22) 
m – (mK + mD*) 
 = -43.2(13.8)(0.6) MeV 
 

c.f. Ds1(2460) exp. 
 ≈ -44.7 MeV 

[Use two points per ensemble] 
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Ds mesons Lang et al [PRD 90, 034510 (2014)] 

(1) Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 
(2) Clover [Nf = 2+1] (PACS-CS), m = 156 MeV, M L  2.3, a  0.09 fm [small volume] 

JP = 1+ [relevant for Ds1(2460), Ds1(2536)]: 8 Ds + 3 D*K ops 

1+ (1) a0 = -0.665(25) 
r0 = -0.106(37) 
m – (mK + mD*) 
 = -93.2(4.7)(1.0) MeV 
 

(2) a0 = -1.15(19) 
r0 = 0.13(22) 
m – (mK + mD*) 
 = -43.2(13.8)(0.6) MeV 
 

c.f. Ds1(2460) exp. 
 ≈ -44.7 MeV 

[Use two points per ensemble] 

Also “Ds1(2536)”  
[see no coupling to D*K] 
 

(1) m – (mK + mD*) 
 = -53(12) MeV 
 

(2) m – (mK + mD) 
 = 56(11) or 50(8) MeV 
 

c.f. Ds1(2536) exp. 
m – (mK + mD) ≈ 31 MeV 



Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 
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Charmonium Prelovsek, Leskovec [PRL 111, 192001 (2013)] 

X(3872) [JPC = 1++] near/below D D* threshold Look in I=0  
(one vol, one Pcm) 



Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 
92 

Charmonium Prelovsek, Leskovec [PRL 111, 192001 (2013)] 

X(3872) [JPC = 1++] near/below D D* threshold Look in I=0  
(one vol, one Pcm) 



Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 
92 

Charmonium Prelovsek, Leskovec [PRL 111, 192001 (2013)] 

X(3872) [JPC = 1++] near/below D D* threshold 

fm1.05.0

fm4.07.1

2

11
)(cot

0

0

2

0

0







r

a

pr
a

pp 

[2 points] 

Look in I=0  
(one vol, one Pcm) 

X - (c + 3 J/)/4 = 815(7) MeV 
exp = 803.1(2) MeV 

X - (D + D*) = -11(7) MeV 
exp = -8.2(3) MeV [D+ D*- ] 
        = -0.2(3) MeV [D0 D*0] 



Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 
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Charmonium Prelovsek, Leskovec [PRL 111, 192001 (2013)] 

X(3872) [JPC = 1++] near/below D D* threshold 

fm1.05.0

fm4.07.1

2

11
)(cot

0

0

2

0

0







r

a

pr
a

pp 

[2 points] 

Also look in I=1  no evidence for bound state/resonance 

Look in I=0  
(one vol, one Pcm) 

X - (c + 3 J/)/4 = 815(7) MeV 
exp = 803.1(2) MeV 

X - (D + D*) = -11(7) MeV 
exp = -8.2(3) MeV [D+ D*- ] 
        = -0.2(3) MeV [D0 D*0] 
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Various Zc
+ structures in exp.  

e.g. Zc
+(3900), Zc

+(4020), Zc
+(4200), 

JPC = ??- 

Look in JPC = 1+- I=1.  Many two-
meson and some ‘4-quark’ ops 

•   Weak interaction 

•   No Z+ candidate 

Prelovsek et al [PR D91, 014504 (2015)] 

Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 

Charmonium 
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Various Zc
+ structures in exp.  

e.g. Zc
+(3900), Zc

+(4020), Zc
+(4200), 

JPC = ??- 

Look in JPC = 1+- I=1.  Many two-
meson and some ‘4-quark’ ops 

•   Weak interaction 

•   No Z+ candidate 

Prelovsek et al [PR D91, 014504 (2015)] 

Clover [Nf = 2] (Hasenfratz et al), m = 266 MeV, m L  2.7, a  0.12 fm [small volume] 

Charmonium 

No sign of any Zc
+  up to  4.2 GeV 

Only see non-interacting energies. 
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Scattering channels with 3 or more hadrons? 

• Much more complicated than 2-hadron scattering. 
 

• No straightforward analogue of the determinant equation. 
 

• Theoretical work is ongoing, e.g. 
• Polejaeva, Rusetsky [EPJA 48, 67 (2012)] 
• Kreuzer, Griesshammer [EPJA 48, 93 (2012)] 
• Roca, Oset [PR D85, 054507 (2012) ] 
• Briceno, Davoudi [PR D87, 094507 (2013)] 
• Hansen, Sharpe [PR D90, 116003 (2014)] 
• Meissner, Rios, Rusetsky [PRL 114, 091602 (2015)] 
• Hansen, Sharpe [1504.04248] 

 

• No real applications yet. 
 

• Another reason why calculating at physical  
m  is challenging (particularly for light  
mesons): more >2 hadron channels open 
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• Scattering, resonances, etc in lattice QCD 
 

• Some examples: 
 

• The ρ resonance in elastic  scattering 
 

• Coupled-channel K , K η scattering 
 

• Some Ds mesons and charmonia 

Summary of lecture 3 
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• Significant progress in computing spectra of (excited) hadrons using 
lattice QCD in last few years 
 – improved algorithms, clever techniques, more powerful 
computers and novel use of technology (e.g. GPUs) 
 

• I’ve aimed to give some idea of what goes into these lattice 
calculations, some highlights of results and some interpretation. 
 

• Calculating properties of unstable hadrons is currently a very active 
area – only recently have we been able to do this in practice.  There 
is still a lot to do here. 

 

• Masses only get you so far.  We can also compute other properties 
of hadrons that probe their structure using lattice QCD:  
e.g. form factors, transition amplitudes.  Again, there is interesting 
work going on, but that’s another set of lectures... 

Conclusions 
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