Hadron spectroscopy from lattice QCD

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

Cracow School of Theoretical Physics, Zakopane, 20 – 28 June 2015

Partial support from the Science & Technology Facilities Council (UK)

- Lecture 1 Lattice QCD and some applications
- Lecture 2 Hadron spectroscopy
- Lecture 3 Resonances, scattering, etc

- Why lattice quantum chromodynamics?
- Introduction to lattice QCD
- Some applications

General references

- *"Lattice Gauge Theories, An Introduction"*, Heinz Rothe (World Scientific, Lecture Notes in Physics, 4th edn. 2012)
- *"Lattice Methods for Quantum Chromodynamics"*, Thomas Degrand and Carleton DeTar (World Scientific, 2006)
- "Quantum Chromodynamics on the Lattice: An Introductory Presentation", Christof Gattringer and Christian Lang (Springer, Lecture Notes in Physics, 2009, also available as an e-book)
- "Quantum fields on the lattice", I. Monvay and G. Münster (CUP, 1994)
- Reviews from the annual International Symposium on Lattice Field Theory, http://www.bnl.gov/lattice2014/ and proceedings, http://pos.sissa.it/cgi-bin/reader/family.cgi?code=lattice
- INT Summer School on Lattice QCD for Nuclear Physics (2012) http://www.int.washington.edu/PROGRAMS/12-2c/

The strong interaction

- Binds quarks → hadrons: mesons and baryons (protons, neutrons, ...)
- Binds protons and neutrons → nuclei
- Responsible for most of mass of conventional matter (~99% of proton mass)

The strong interaction

• Binds quarks → hadrons: mesons and baryons (protons, neutrons, ...)

$$\mathcal{L} = \sum_{q} \bar{\psi}_{q,a} \left(i\delta_{ab} \gamma^{\mu} \partial_{\mu} - g \ \gamma^{\mu} t^{C}_{ab} A^{C}_{\mu} - m_{q} \delta_{ab} \right) \psi_{q,b} - \frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu}$$

SU(3) gauge field theory; quarks and gluons

Quarks spin =1/2		
Flavor	Approx. Mass GeV/c ²	Electric charge
U up	0.002	2/3
d down	0.005	-1/3
C charm	1.3	2/3
S strange	0.1	-1/3
t top	173	2/3
bottom	4.2	-1/3

$$\mathcal{L} = \sum_{q} \overline{\psi}_{q,a} \left(i\delta_{ab} \gamma^{\mu} \partial_{\mu} - g \ \gamma^{\mu} t_{ab}^{C} A_{\mu}^{C} - m_{q} \delta_{ab} \right) \psi_{q,b} - \frac{1}{4} F_{\mu\nu}^{A} F^{A\mu\nu}$$

SU(3) gauge field theory; quarks and gluons

Quarks spin =1/2				
Flavor	Approx. Mass GeV/c ²	Electric charge		
U up	0.002	2/3		
d down	0.005	-1/3		
C charm	1.3	2/3		
S strange	0.1	-1/3		
t top	173	2/3		
bottom	4.2	-1/3		

$$F^A_{\mu\nu} = \partial_\mu A^A_\nu - \partial_\nu A^A_\mu - g \ f_{ABC} A^B_\mu A^C_\nu$$

$$\mathcal{L} = \sum_{q} \overline{\psi}_{q,a} \left(i\delta_{ab} \gamma^{\mu} \partial_{\mu} - \left[g \ \gamma^{\mu} t^{C}_{ab} A^{C}_{\mu} - m_{q} \delta_{ab} \right] \psi_{q,b} - \frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu} \right)$$

SU(3) gauge field theory; quarks and gluons

Quarks spin =1/2				
Flavor	Approx. Mass GeV/c ²	Electric charge		
U up	0.002	2/3		
d down	0.005	-1/3		
C charm	1.3	2/3		
S strange	0.1	-1/3		
top	173	2/3		
bottom	4.2	-1/3		

$$F^A_{\mu\nu} = \partial_\mu A^A_\nu - \partial_\nu A^A_\mu - g \ f_{ABC} A^B_\mu A^C_\nu$$

$$\mathcal{L} = \sum_{q} \overline{\psi}_{q,a} \left(i\delta_{ab} \gamma^{\mu} \partial_{\mu} - \left[g \ \gamma^{\mu} t^{C}_{ab} A^{C}_{\mu} - m_{q} \delta_{ab} \right] \psi_{q,b} - \frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu} \right)$$

SU(3) gauge field theory; quarks and gluons

Quarks spin =1/2				
Flavor	Approx. Mass GeV/c ²	Electric charge		
U up	0.002	2/3		
d down	0.005	-1/3		
C charm	1.3	2/3		
S strange	0.1	-1/3		
t top	173	2/3		
bottom	4.2	-1/3		

$$F^A_{\mu\nu} = \partial_\mu A^A_\nu - \partial_\nu A^A_\mu - g f_{ABC} A^B_\mu A^C_\nu$$

Running coupling constant

Running coupling constant

Why lattice QCD?

- Non-perturbative regime:
 - Confinement of quarks into hadrons
 - Masses of hadrons (spectra), widths, transitions, ...
 - Nuclei
 - ...
- Models, effective field theories (EFTs), ...
 - Based on some symmetry properties, (expected) physics of QCD, approximation in some regime.
 - In general not derived from QCD
 - May be only approach (currently) applicable to some problems
 - Can be useful for getting insight into physics (complementary)
- Lattice QCD numerical non-perturbative calculations in QCD

Discretise theory on a 4d grid (spacing = *a*) - UV regulator

Finite volume ($L^3 \times T$) \rightarrow finite no. of d.o.f.

Quantised momenta

$$\vec{p} = \frac{2\pi}{L_s}(n_x, n_y, n_z)$$
 for spatial periodic BCs

Discretise theory on a 4d grid (spacing = *a*) - UV regulator

Finite volume ($L^3 \times T$) \rightarrow finite no. of d.o.f.

Quantised momenta

$$\vec{p} = \frac{2\pi}{L_s}(n_x, n_y, n_z)$$
 for spatial periodic BCs

Gauge fields on links; *U* is an element of SU(3)

Quark fields on lattice sites

 $\psi(x)
ightarrow \psi_x$

$$A_{\mu}(x) \rightarrow U_{x,\mu} = e^{-aA_{x,\mu}}$$

$$\frac{\partial}{\partial x}\psi(x) \rightarrow \frac{1}{2a}\left(\psi_{x+1} - \psi_{x-1}\right)$$

Path integral formulation (continuum) – Integrate over all field configurations (infinite number)

$$Z = \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}Ae^{i\mathcal{S}[\psi,\bar{\psi},A]} \qquad S = \int d^4x \mathcal{L}[\psi,\bar{\psi},A]$$

Observable:

$$\left\langle f[\psi,\bar{\psi},A]\right\rangle = Z^{-1} \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}A f[\psi,\bar{\psi},A] e^{i\mathcal{S}[\psi,\bar{\psi},A]}$$

Path integral formulation (continuum) – Integrate over all field configurations (infinite number)

$$Z = \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}Ae^{i\mathcal{S}[\psi,\bar{\psi},A]} \qquad S = \int d^4x \mathcal{L}[\psi,\bar{\psi},A]$$

Observable:

$$\left\langle f[\psi,\bar{\psi},A]\right\rangle = Z^{-1} \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}A f[\psi,\bar{\psi},A] e^{i\mathcal{S}[\psi,\bar{\psi},A]}$$

Finite lattice – finite num. of quark and gluon fields to integrate over

Euclidean time: $t \rightarrow -it$ oscillating phase \rightarrow decaying exponential – amenable to numerical computation

$$\int \mathcal{D}\psi \mathcal{D}ar{\psi}\mathcal{D}Ue^{-ar{\mathcal{S}}[\psi,ar{\psi},U]}$$

c.f. statistical physics $Tr \exp(-\beta H)$

Many possible discretisations which all \rightarrow continuum QCD as $a \rightarrow 0$. 'Improved' actions reduce discretisation effects, e.g. O(a).

Generic Euclidean action (gauge invariant):

$$\tilde{\mathcal{S}} = \sum_{q,x,y} \bar{\psi}_{q,x} Q_{x,y}[U] \psi_{q,y} + \tilde{\mathcal{S}}_{gauge}[U]$$

Many possible discretisations which all \rightarrow continuum QCD as $a \rightarrow 0$. 'Improved' actions reduce discretisation effects, e.g. O(a).

Generic Euclidean action (gauge invariant):

$$\tilde{\mathcal{S}} = \sum_{q,x,y} \bar{\psi}_{q,x} Q_{x,y}[U] \psi_{q,y} + \tilde{\mathcal{S}}_{gauge}[U]$$

Gauge fields, e.g.
$$\tilde{S}_{gauge} = \frac{2}{g^2} \sum_{x} \sum_{\mu < \nu} \operatorname{ReTr} \left[1 - U_{\mu\nu}(x) \right]$$

$$x + \hat{\nu} \qquad x + \hat{\mu} + \hat{\nu}$$

$$x \qquad U_{\mu\nu}(x) \qquad x + \hat{\mu}$$

Many possible discretisations which all \rightarrow continuum QCD as $a \rightarrow 0$. 'Improved' actions reduce discretisation effects, e.g. O(a).

Generic Euclidean action (gauge invariant):

$$\tilde{S} = \sum_{q,x,y} \bar{\psi}_{q,x} Q_{x,y}[U] \psi_{q,y} + \tilde{S}_{gauge}[U]$$

Gauge fields, e.g.
$$ilde{\mathcal{S}}_{gauge} = rac{2}{g^2} \sum_x \sum_{\mu <
u} \operatorname{ReTr} \left[1 - U_{\mu
u}(x) \right]$$

'Naive' fermions:

$$Q_{x,y}[U] = a^4 \sum_{\mu} \frac{1}{2a} \gamma_{\mu} \left(U_{\mu}(x) \delta_{x,y+\hat{\mu}} - U_{\mu}(x-\mu) \delta_{x,y-\hat{\mu}} \right) + m_q \delta_{x,y}$$

Technical problems with this... Various solutions each with advantages and disadvantages

$$\left| < ar{\psi}(x_1)\psi(x_0) > = Z^{-1} \int \mathcal{D}\psi \mathcal{D}ar{\psi}\mathcal{D}U\ ar{\psi}(x_1)\psi(x_0)\ e^{- ilde{\mathcal{S}}[\psi,ar{\psi},U]}
ight|$$

$$=Z^{-1}\int \mathcal{D}\psi\mathcal{D}ar{\psi}\mathcal{D}ar{\psi}\mathcal{D}ar{\psi}[x_1)\psi(x_0)e^{- ilde{\mathcal{S}}[\psi,ar{\psi},U]}$$

Gauge fields (bosons) – complex matrices

Fermion fields – anticommuting 'Grassmann' numbers

$$\psi\psi=ar{\psi}ar{\psi}=0\ ,\ ar{\psi}\psi=-\psiar{\psi}$$

$$\Big| < ar{\psi}(x_1)\psi(x_0) > = Z^{-1}\int \mathcal{D}\psi\mathcal{D}ar{\psi}\mathcal{D}U\ ar{\psi}(x_1)\psi(x_0)\ e^{- ilde{\mathcal{S}}[\psi,ar{\psi},U]}$$

$$= Z^{-1} \int \mathcal{D}U \ Q_{x_1x_0}^{-1}[U] \det(Q[U]) \ e^{-\tilde{\mathcal{S}}'[U]}$$

$$\langle \bar{\psi}(x_1)\psi(x_0) \rangle = Z^{-1} \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}U \ \bar{\psi}(x_1)\psi(x_0) \ e^{-\tilde{\mathcal{S}}[\psi,\bar{\psi},U]}$$
$$= Z^{-1} \int \mathcal{D}U \ Q_{x_1x_0}^{-1}[U] \ \det(Q[U]) \ e^{-\tilde{\mathcal{S}}'[U]}$$

Q has dim. $((L/a)^3 \times (T/a) \times 4 \times 3)^2$, e.g. $(20^3 \times 128 \times 4 \times 3)^2 \approx (10^7)^2$ - huge!

$$\langle \langle ar{\psi}(x_1)\psi(x_0)
angle = Z^{-1} \int \mathcal{D}\psi \mathcal{D}ar{\psi}\mathcal{D}U \ ar{\psi}(x_1)\psi(x_0) \ e^{- ilde{\mathcal{S}}[\psi,ar{\psi},U]}$$

$$= Z^{-1} \int \mathcal{D}U \ Q_{x_1 x_0}^{-1}[U] \det(Q[U]) \ e^{-\tilde{\mathcal{S}}'[U]}$$

Q has dim. $(L/a)^3 \times (T/a) \times 4 \times 3^2$, e.g. $(20^3 \times 128 \times 4 \times 3)^2 \approx (10^7)^2$ - huge!

Fermion det. – nonlocal function of U \rightarrow very computationally expensive

 Q^{-1} and det(Q) more expensive for small m_{π}

Historically, quenched approx: set det[Q] = 1 – don't include quark loops

Now most calculations are dynamical ('unquenched') – include det[Q]

$$\int \mathcal{D}U \ f[U] \det(Q[U]) \ e^{-\tilde{\mathcal{S}}'[U]}$$

Use Importance Sampling Monte Carlo to evaluate numerically

Dominated by field cfgs of U where this is large

Sample integral with prob.

$$\sum \left[\mathsf{det}(Q[U]) \ e^{-\tilde{\mathcal{S}}'[U]} \right]$$

det(Q[U]) must be re-calculated for each U – expensive

Sample integral a finite number of times (num. of cfgs.) → mean and statistical uncertainty

Lattice \rightarrow QCD

- Continuum limit: lattice spacing, $a \rightarrow 0$ L = const, so $N = L/a \rightarrow \infty$
- Volume, L >> physical size of problem e.g. L m_π>> 1
- Pion mass, $m_{\pi} \rightarrow$ physical m_{π}

Lattice \rightarrow QCD

- Continuum limit: lattice spacing, $a \rightarrow 0$ L = const, so $N = L/a \rightarrow \infty$
- Volume, L >> physical size of problem e.g. L m_π>> 1
- Pion mass, $m_{\pi} \rightarrow$ physical m_{π}

Setting the scale (determine a in physical units)

- Every dimensional quantity measured in terms of a
- 'Set the scale' by comparing with a physical observable calculated on the lattice to experimental value
- E.g. static quark potential, Ω baryon mass, ...

Set bare quark masses (m_q) in action by comparing lattice computations of hadron masses with experimental masses

Some applications

Static potential from lattice QCD

Potential between two infinitely heavy quarks (static colour sources)

Static potential from lattice QCD

Potential between two infinitely heavy quarks (static colour sources)

Compare length scale with experimental charmonium and bottomonium spectra

Spectroscopy on the lattice

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of hadron interpolating fields "operators"

 $\overline{\psi} \Gamma \overline{\psi} \quad \epsilon^{abc} \psi_a \psi_b \overline{\psi}_c \quad + \overleftarrow{D}_i$

 $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$
Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of hadron interpolating fields "operators"

 $ar{\psi} {\sf \Gamma} \psi$

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

- $\overline{\psi}(\vec{x})\overline{\Gamma\psi(\vec{x})}$ is local but hadrons are extended objects ~ 1 fm.
- Improve overlap onto states of interest (reduce overlap with UV modes) by spatially smearing quark fields.

$$\psi(\vec{x},t) = \sum_{\vec{y}} F(\vec{x},\vec{y},U(t))\psi(\vec{y},t)$$

 $\epsilon^{abc} \psi_a \psi_b \psi_c$

$\langle \bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0)\rangle =$ $Z^{-1}\int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}U \ \bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0) \ e^{-\tilde{\mathcal{S}}[\psi,\bar{\psi},U]}$

$$\langle \bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0)\rangle =$$

$$Z^{-1}\int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}U \overline{\bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0)} e^{-\tilde{\mathcal{S}}[\psi,\bar{\psi},U]}$$

$$\langle \bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0)\rangle =$$

$$Z^{-1}\int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}U \overline{\bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0)} e^{-\tilde{\mathcal{S}}[\psi,\bar{\psi},U]}$$

$$\rightarrow -Q_{x_1x_0}^{-1}[U]Q_{x_0x_1}^{-1}[U] + Q_{x_1x_1}^{-1}[U]Q_{x_0x_0}^{-1}[U]$$

$$\langle \bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0)\rangle =$$

$$Z^{-1}\int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}U \overline{\bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0)} e^{-\tilde{\mathcal{S}}[\psi,\bar{\psi},U]}$$

$$\rightarrow -Q_{x_1x_0}^{-1}[U]Q_{x_0x_1}^{-1}[U] + Q_{x_1x_1}^{-1}[U]Q_{x_0x_0}^{-1}[U]$$

Diagrammatically:

$$\langle \bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0)\rangle =$$

$$Z^{-1}\int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}U \overline{\bar{\psi}(x_1)\psi(x_1)\bar{\psi}(x_0)\psi(x_0)} e^{-\tilde{\mathcal{S}}[\psi,\bar{\psi},U]}$$

$$\rightarrow -Q_{x_1x_0}^{-1}[U]Q_{x_0x_1}^{-1}[U] + Q_{x_1x_1}^{-1}[U]Q_{x_0x_0}^{-1}[U]$$

Diagrammatically:

'Disconnected'

N.B. these are **not** perturbation theory diagrams

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of meson interpolating fields "operators"

 $\overline{\psi}\Gamma\overline{\psi} = \epsilon^{abc}\psi_a\psi_b\overline{\psi}_c + \overleftrightarrow{D}_i$

 $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of meson interpolating fields "operators"

 $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$ = $\sum_n 1/(2E_n) \left\langle 0 \left| \mathcal{O}_i(t) \right| n \right\rangle \left\langle n \left| \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$ = $\sum_n \frac{e^{-E_n t}}{2 E_n} \left\langle 0 \left| \mathcal{O}_i(0) \right| n \right\rangle \left\langle n \left| \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of meson interpolating fields "operators"

 $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0) \right| 0 \right\rangle$ = $\sum_{n} \frac{1}{(2E_{n})} \left\langle 0 \left| \mathcal{O}_{i}(t) \right| n \right\rangle \left\langle n \left| \mathcal{O}_{j}^{\dagger}(0) \right| 0 \right\rangle$ = $\sum_{n} \frac{e^{-E_{n}t}}{2E_{n}} \left\langle 0 \left| \mathcal{O}_{i}(0) \right| n \right\rangle \left\langle n \left| \mathcal{O}_{j}^{\dagger}(0) \right| 0 \right\rangle$

Calculate energies and matrix elements ("overlaps", Z) from 2-point correlation functions of meson interpolating fields "operators"

 $\overline{\psi} \Gamma \psi = \epsilon^{abc} \psi_a \psi_b \psi_c + \overleftrightarrow{D}_i$

$$C(t) = <0|ar{\psi}(t)\gamma_i\psi(t)\cdotar{\psi}(0)\gamma_i\psi(0))|0>$$

$$C(t) \sim e^{-E_0 t} + \dots$$

 $C(t) = <0|\bar{\psi}(t)\gamma_{i}\psi(t)\cdot\bar{\psi}(0)\gamma_{i}\psi(0))|0> M_{eff}(t) = -\ln\left[C(t+dt)/C(t)\right]/dt$

$$C(t) \sim e^{-E_0 t} + \dots$$

 $M_{eff}(t) = E_0 + \dots$

Low-lying spectrum of hadrons

BMW Collaboration, Durr et al, Science 322, 1224 (2008)

Use only smeared local operators (e.g. γ_i). Set scale using M_{Ξ} Nucleons & isovector mesons – only connected diagrams

Low-lying spectrum of hadrons

BMW Collaboration, Durr et al, Science 322, 1224 (2008)

Low-lying spectrum of hadrons

BMW Collaboration, Durr et al, Science 322, 1224 (2008)

Light baryons – comparison

Alexandrou et al, PR D90, 074501 (2014)

Agreement between results from different lattice actions (extrapolated to continuum limit and physical m_{π})

Quarkonia and heavy-light mesons

Dowdall et al (HPQCD) [PR D86, 094510 (2012)]

Quarkonia and heavy-light mesons

Dowdall et al (HPQCD) [PR D86, 094510 (2012)]

25

More applications

- Hadron form factors, radiative transitions
- Hadron structure, TMDs, etc
- Decay constants
- Weak matrix elements, flavour physics
 → SM tests and BSM constraints
- Nuclear physics / nuclei
- QCD at finite temperature and density
- Other field theories, BSM physics

. . .

Summary of lecture 1

- Why lattice quantum chromodynamics?
- A (very brief) introduction to lattice QCD
- Applications: static potential and some 'simple' hadron spectroscopy

Next time

• Excited hadron spectroscopy

Hadron spectroscopy from lattice QCD

Lecture 2

- Background on hadron spectroscopy
- Excited hadron spectroscopy in lattice QCD
 - Mesons
 - Baryons

(I won't review all lattice calculations of hadron spectra)

Hadron spectroscopy

Masses and other properties of hadrons probe the non-perturbative regime of QCD.

- Relevant degrees of freedom?
- Confinement?
- Role of gluons?

Hadron spectroscopy

Masses and other properties of hadrons probe the non-perturbative regime of QCD.

- Relevant degrees of freedom?
- Confinement?
- Role of gluons?

Experiments

Quark-antiquark pair: n^{2S+1}L

 $J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, \dots$

Quark-antiquark pair: $n^{2S+1}L_J$ Parity: $P = (-1)^{(L+1)}$ Charge Conj Sym: $C = (-1)^{(L+S)}$

 $J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, \dots$

Exotic J^{PC} (**0**⁻⁻, **0**⁺⁻, **1**⁻⁺, **2**⁺⁻, ...) or flavour quantum numbers – can't just be a $q\bar{q}$ pair

E.g. multiquark systems (tetraquarks, molecular mesons) Hybrid mesons (gluonic field excited) Glueballs

Flavours of mesons

 $m_u = m_d - \text{isospin sym.}$ $I_z = \begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} -\overline{d} \\ \overline{u} \end{pmatrix}$

Light mesonsu, d, s (anti)quarks $\gtrsim 135 \text{ MeV}$ Isovectors (I = 1) e.g. π , ρ , a_1 $\frac{1}{\sqrt{2}} \left(u \overline{u} - d \overline{d} \right)$ Isoscalars (I = 0) e.g. η , η' , ω , ϕ $\ell \overline{\ell} \equiv \frac{1}{\sqrt{2}} \left(u \overline{u} + d \overline{d} \right)$ Kaons (I = 1/2) e.g. K, K* $u \overline{s}$

 $m_u = m_d - \text{isospin sym.}$ $I_z = \begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} -\overline{d} \\ \overline{u} \end{pmatrix}$

u, d, s (anti)quarks Light mesons \gtrsim 135 MeV $\frac{1}{\sqrt{2}}\left(u\overline{u}-d\overline{d}\right)$ Isovectors (I = 1) e.g. π , ρ , a_1 Isoscalars (I = 0) e.g. η , η' , ω , ϕ $\ell \bar{\ell} \equiv \frac{1}{\sqrt{2}} \left(u \bar{u} + d \bar{d} \right) s \bar{s}$ $u\overline{s}$ $d\overline{s}$ Kaons (I = 1/2) e.g. K, K* Charmonium e.g. J/ ψ $car{c}$ \gtrsim 3000 MeV Bottomonium e.g. Y $b\overline{b} \gtrsim 9400 \; {
m MeV}$

Flavours of mesons

 \boldsymbol{q}

Hadron spectroscopy – baryons

- Missing states? 0
- 'Freezing' of degrees of freedom? 0
- **Gluonic excitations?** 0
- **Flavour structure** 0

- Flavour structure
- Gluonic excitations?

Missing states?

0

'Freezing' of degrees of freedom?
Cluenic excitations?

Hadron spectroscopy – baryons

Can we compute spectra of hadrons (including unconventional hadrons), understand these observations and address puzzles with first-principles calculations in QCD? → lattice QCD
Excited meson spectroscopy in LQCD – our approach

Energy eigenstates from:
$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

$$C_{ij}(t) = \sum_{n} \frac{e^{-E_n t}}{2E_n} < 0|\mathcal{O}_i(0)|n > < n|\mathcal{O}_j^{\dagger}(0)|0 >$$

[Hadron Spectrum Collaboration, PR D80 054506, PRL 103 262001, PR D82 034508, D84 074508, D85 014507]

Excited meson spectroscopy in LQCD – our approach

Energy eigenstates from:
$$C_{ij}(t) = \left\langle 0 \begin{array}{c} \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) & 0 \right\rangle$$
$$C_{ij}(t) = \sum_n \frac{e^{-E_n t}}{2E_n} < 0 |\mathcal{O}_i(0)| n > < n |\mathcal{O}_j^{\dagger}(0)| 0 >$$

Interpolating operators

$$O(t) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \left[\Gamma \times \overleftrightarrow{D} \times \overleftrightarrow{D} \dots \right] \psi(x)$$

Ops have definite $J^{P(C)}$ in continuum (when p = 0) Here p = 0 and up to 3 derivatives included:

- many ops in each channel (up to ~ 26)
- different spin and angular structures, include ~ $[D_i, D_i]$

[Hadron Spectrum Collaboration, PR D80 054506, PRL 103 262001, PR D82 034508, D84 074508, D85 014507]

Large basis of ops \rightarrow matrix of correlators

Generalised eigenvalue problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

 $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$

Large basis of ops \rightarrow matrix of correlators $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$ Generalised eigenvalue problem: $C_{ij}(t) v_j^{(n)} = \lambda^{(n)}(t) C_{ij}(t_0) v_j^{(n)}$

Eigenvalues \rightarrow energies

$$\lambda^{(n)}(t) \rightarrow e^{-E_n(t-t_0)}$$
 (t >> t_0)

Large basis of ops \rightarrow matrix of correlators

Generalised eigenvalue problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

 $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$

Eigenvalues \rightarrow energies

$$(n)(t) \to e^{-E_n(t-t_0)}$$
 (t >> t_0)

Z⁽ⁿ⁾ related to eigenvectors

$$Q_i^{(n)} o Z_i^{(n)} \equiv < 0 |\mathcal{O}_i| n > 0$$

Also \rightarrow optimal linear combination of operators to overlap on to a state

Large basis of ops \rightarrow matrix of correlators

Generalised eigenvalue problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

 $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$

Eigenvalues \rightarrow energies

$$(n)(t) \to e^{-E_n(t-t_0)}$$
 (t >> t_0)

Z⁽ⁿ⁾ related to eigenvectors

$$Q_i^{(n)} o Z_i^{(n)} \equiv < 0 |\mathcal{O}_i| n > 0$$

Also \rightarrow optimal linear combination of operators to overlap on to a state

Var. method uses orthog of eigenvectors; don't just rely on separating energies

Reduced symmetry and spin

Continuum

Infinite number of *irreps*: J = 0, 1, 2, 3, 4, ...

Reduced symmetry and spin

Continuum

Infinite number of *irreps*: J = 0, 1, 2, 3, 4, ...

Finite cubic lattice

Broken sym: 3D rotation group \rightarrow cubic group

Finite number of *irreps* Λ : A₁, A₂, T₁, T₂, E (+ others for half-integer spin)

Irrep	<i>A</i> ₁	A ₂	<i>T</i> ₁	<i>T</i> ₂	Ε			
Dim	1	1	3	3	2			
Cont. Spin		0	1	2	3		4	
Irrep(s)		A ₁	<i>T</i> ₁	$T_2 + E$	$T_1 + T_2 + A_2$		$A_1 + T_1 + T_2 + E$	

'Subduce' operators into lattice irreps (J $\rightarrow \Lambda$):

Reduced symmetry and spin

Continuum

Infinite number of *irreps*: J = 0, 1, 2, 3, 4, ...

Finite cubic lattice

Description of	20			· · · · · · · · · · · · · · · · · · ·	
- Broken s	VM: 3D	rotation	group –		group

Finite	R	Relevant symmetry reduced further					alf-integer spin)			
Irrep	<i>A</i> ₁	fc	for hadrons at non-zero momentum							
Dim	1	1	3	3	2					
Cont. Spin		0	1	2		3	4			
Irrep(s)		<i>A</i> ₁	<i>T</i> ₁	$T_2 + E$	T ₁ +	$+ T_2 + A_2$	$A_1 + T_1 + T_2$	+ <i>E</i>		

'Subduce' operators into lattice irreps (J $\rightarrow \Lambda$):

Hadron Spectrum Collaboration

JHEP 07 (2012) 126 – Liu, Moir, Peardon, Ryan, CT, Vilaseca, Dudek, Edwards, Joó, Richards

- **Dynamical** 'clover' *u*, *d* and *s* quarks, $m_u = m_d < m_s [N_f = 2+1]$
- Relativistic c quark
- Anisotropic finer in temporal dir $(a_s/a_t \approx 3.5)$,
- $m_{\pi} \approx 400$ MeV (not physical m_{π})
- One lattice spacing, $a_s \approx 0.12$ fm (no extrap. to contin. limit)
- Two volumes: 16^3 , **24**³ ($L_s \approx 1.9$, 2.9 fm)
- Only compute connected contributions

JHEP 07 (2012) 126 – Liu, Moir, Peardon, Ryan, CT, Vilaseca, Dudek, Edwards, Joó, Richards

u and *d* quarks are degenerate – isospin symmetry

$$I_z = \left(egin{array}{c} +1/2 \ -1/2 \end{array}
ight) \left(egin{array}{c} u \ d \end{array}
ight) \left(egin{array}{c} -ar d \ ar u \end{array}
ight)$$

u and d quarks are degenerate – isospin symmetry

$$I_z = \left(egin{array}{c} +1/2 \ -1/2 \end{array}
ight) \left(egin{array}{c} u \ d \end{array}
ight) \left(egin{array}{c} -ar d \ ar u \end{array}
ight)$$

Isovectors (I = 1) e.g. π , ρ , a_1 – only connected contributions

Isoscalars (I = 0) e.g.
$$\eta$$
, η' , ω , ϕ

Isoscalars (I = 0) e.g. η , η' , ω , ϕ

QCD annihilation dynamics

Isoscalars (I = 0) e.g.
$$\eta$$
, η' , ω , ϕ

QCD annihilation dynamics

m_s = m_u = m_d [SU(3) sym] - eigenstates are octet, singlet

$$\frac{1}{\sqrt{6}} \left(u\bar{u} + d\bar{d} - 2s\bar{s} \right) \quad \frac{1}{\sqrt{3}} \left(u\bar{u} + d\bar{d} + s\bar{s} \right)$$

Isoscalars (I = 0) e.g.
$$\eta$$
, η' , ω , ϕ

QCD annihilation dynamics

$$m_s = m_u = m_d$$
 [SU(3) sym]
- eigenstates are octet, singlet

$$\frac{1}{\sqrt{6}} \left(u\bar{u} + d\bar{d} - 2s\bar{s} \right) \left(\frac{1}{\sqrt{3}} \left(u\bar{u} + d\bar{d} + s\bar{s} \right) \right)$$

$$m_s \neq m_u = m_d \rightarrow mixing$$

'Ideal mixing'

$$\ell \bar{\ell} \equiv \frac{1}{\sqrt{2}} \left(u \bar{u} + d \bar{d} \right) \quad s \bar{s}$$

Isoscalars (I = 0) e.g.
$$\eta$$
, η' , ω , ϕ

QCD annihilation dynamics

$$\begin{array}{l} \underset{s \neq m_{u} = m_{d} \ [SU(3) \ sym]}{- \ eigenstates \ are \ octet, \ singlet} & \begin{array}{l} \frac{1}{\sqrt{6}} \left(u \bar{u} + d \bar{d} - 2 s \bar{s} \right) & \begin{array}{l} \frac{1}{\sqrt{3}} \left(u \bar{u} + d \bar{d} + s \bar{s} \right) \\ \alpha = 54.7^{\circ} \end{array}$$

$$\begin{array}{l} \underset{s \neq m_{u} = m_{d} \ \rightarrow \ mixing}{} & \begin{array}{l} \ell \bar{\ell} \equiv \frac{1}{\sqrt{2}} \left(u \bar{u} + d \bar{d} \right) & s \bar{s} \end{array} & \begin{array}{l} \alpha = 0 \end{array}$$

$$\begin{array}{l} \underset{s \neq m_{u} = m_{d} \ \rightarrow \ mixing}{} & \begin{array}{l} ln \ general \\ |b\rangle \ = \ sin \alpha \ |\ell \bar{\ell} \rangle + \cos \alpha |s \bar{s} \rangle \end{array}$$

Isoscalars (I = 0) e.g.
$$\eta$$
, η' , ω , ϕ

QCD annihilation dynamics

Experimentally

 ω, ϕ (1⁻⁻) and f₂(1270), f₂'(1525) (2⁺⁺) – close to 'ideal'

 η , η' (0⁻⁺) – closer to octet-singlet

Isoscalars (I = 0) e.g.
$$\eta$$
, η' , ω , ϕ

QCD annihilation dynamics
Light isoscalar mesons

Operator basis doubled in size c.f. isovectors:

$$O^{\ell} \sim \frac{1}{\sqrt{2}} \left(\bar{u} \Gamma u + \bar{d} \Gamma d \right) \qquad O^{s} \sim \bar{s} \Gamma s$$

No glueball ops for now

Light isoscalar mesons

Operator basis doubled in size c.f. isovectors:

$$O^{\ell} \sim \frac{1}{\sqrt{2}} \left(\bar{u} \Gamma u + \bar{d} \Gamma d \right) \qquad O^{s} \sim \bar{s} \Gamma s$$

No glueball ops for now

Connected and **disconnected** contrib. required

$$C_{AB}^{q'q}(t',t) = \langle 0 | \mathcal{O}_A^{q'}(t') \mathcal{O}_B^{q\dagger}(t) | 0 \rangle$$

Same lattice setup as before

Volume and m_{π} dependence

Volume and m_{π} dependence

Light mesons (isospin = 0)

Twisted mass quarks [N_f = 2+1+1] Extrapolate in *a* and m_{π} : η : 551 ± 8 ± 6 MeV, η ': 1006 ± 54 ± 38 + 61 MeV ϕ : 46 ± 1 ± 3 °

[c.f. HadSpec 46(1)° @ $m_{\pi} \approx 400$ MeV]

Michael, Ottnad, Urbach (ETM), PRL 111, 181602 (2013)

Glueballs in pure gauge theory (SU(3) Yang-Mills)

- No fermion fields computationally much less expensive
- Operators are closed loops of links, with different spatial symmetries

Morningstar and Peardon, PR D60, 034509 (1999)

Excited baryon spectroscopy – our approach

Energy eigenstates from:
$$C_{ij}(t) = \left\langle 0 \ \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \ 0 \right\rangle$$
 $C_{ij}(t) = \sum_n \frac{e^{-E_n}t}{2E_n} < 0|\mathcal{O}_i(0)|n > < n|\mathcal{O}_j^{\dagger}(0)|0 >$ Interpolating operators $\langle 1, m_1; 1, m_2|L, m_l \rangle \langle L, m_l; S, m_s|J, m_J \rangle \overrightarrow{D}_{m_1} \overrightarrow{D}_{m_2} [\psi \psi \psi]_{S,m_s}$ Up to 2 derivs: $1 \otimes 1 \otimes S \rightarrow \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$

• Again, many ops in each channel with different spin and angular structures

• Same lattice setup as before but only one volume (16³, $L_s \approx 1.9$ fm)

N and Δ baryons

[HadSpec, PR D84 074508, PR D85 054016]

Counting in lowest bands as expected in non. rel. quark model, $SU(6) \times O(3)$ (flavour x spin x space), no 'freezing of d.o.f.'

N and Δ baryons

[HadSpec, PR D84 074508, PR D85 054016]

Counting in lowest bands as expected in non. rel. quark model, $SU(6) \times O(3)$ (flavour x spin x space), no 'freezing of d.o.f.'

Flavour structure of excited baryons

[HadSpec, PR D87, 054506 (2013)]

m_s = m_u = m_d SU(3) flavour symmetry, M_π \approx 700 MeV, qqq \rightarrow 1 $_F \oplus$ 8 $_F \oplus$ 10 $_F$

 Again, multiplicities in lowest bands as expected in non. rel. quark model SU(6) x O(3)

• No 'freezing' of d.o.f.

Flavour structure of excited baryons

[HadSpec, PR D87, 054506 (2013)]

 m_s = m_u = m_d SU(3) flavour symmetry, M_π pprox 700 MeV, qqq ightarrow $1_F \oplus$ $8_F \oplus$ 10_F

Flavour structure of excited baryons

[HadSpec, PR D87, 054506 (2013)]

 $\frac{1^{+}}{2}$

 $\frac{1^+}{2}$

 $\frac{3^+}{2}$

 $\frac{5^+}{2}$

 $\frac{7^{+}}{2}$

 $\frac{1^{-}}{2}$

 $\frac{3^{-}}{2}$

 $\frac{5^{-}}{2}$

 $\frac{7^{-}}{2}$

 $\frac{3^+}{2}$

 $\frac{5^+}{2}$

 $\frac{7^{+}}{2}$

 $\frac{1^{-}}{2}$

 $\frac{3^{-}}{2}$

 $\frac{5^{-}}{2}$

 $\frac{7^{-}}{2}$

[HadSpec, PR D87, 054506 (2013)]

 $m_s > m_u = m_d$ Broken SU(3) flav. sym. $m_\pi \approx 400$ MeV

Excited charm (cc) baryons

Padmanath et al (HadSpec), PR D91, 094502 (2015)

- Again, pattern in lowest bands consistent with non. rel. quark model
- Spectra don't support quark-diquark picture
- Also triply-charmed (ccc) baryons

Excited bottom (bbb) baryons

Meinel, PR D85, 114510 (2012)

- NRQCD action for *b* quark
- Dynamical domain-wall u,d and s quarks
- Two different lattice spacings
- A number of m_{π} extrapolate to physical m_{π}

Excited bottom (bbb) baryons

- NRQCD action for *b* quark
- Dynamical domain-wall u,d and s quarks
- Two different lattice spacings
- A number of m_{π} extrapolate to physical m_{π}

Excited bottom (bbb) baryons

Meinel, PR D85, 114510 (2012)

- NRQCD action for *b* quark
- Dynamical domain-wall u,d and s quarks
- Two different lattice spacings
- A number of m_{π} extrapolate to physical m_{π}

Summary of lecture 2

- Background on hadron spectroscopy
- Excited hadron spectroscopy in lattice QCD
 - Mesons
 - Baryons

But so far we've neglected the fact that many of these hadrons are above the threshold for strong decay...

Summary of lecture 2

- Background on hadron spectroscopy
- Excited hadron spectroscopy in lattice QCD
 - Mesons
 - Baryons

But so far we've neglected the fact that many of these hadrons are above the threshold for strong decay...

Next time

• Scattering, resonances, etc

Hadron spectroscopy from lattice QCD

Lecture 3

- Scattering, resonances, etc in lattice QCD
- Some examples:
 - The ρ resonance in elastic $\pi\pi$ scattering
 - Coupled-channel K π, K η scattering
 - Some *D*, mesons and charmonia

(I won't review all lattice calculations)

Hadron Spectroscopy

Hadron Spectroscopy

Maiani & Testa (1990): scattering matrix elements cannot be extracted from infinite-volume Euclidean-space correlation functions (except at threshold).

Scattering in LQCD

Two hadrons: **non-interacting** $E_{AB} = \sqrt{m_A^2 + \vec{k}_A^2} + \sqrt{m_B^2 + \vec{k}_B^2}$

Infinite volume

Continuous spectrum

Scattering in LQCD

Two hadrons: **non-interacting** $E_{AB} = \sqrt{m_A^2 + \vec{k}_A^2} + \sqrt{m_B^2 + \vec{k}_B^2}$

Infinite volume Co

Continuous spectrum

Finite volume

Discrete spectrum

$$\vec{k}_{A,B} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

periodic b.c.s (torus)

Scattering in LQCD

Two hadrons: interacting

Infinite volume

Continuous spectrum

Finite volume

Discrete spectrum

$$\vec{k}_{A,B} \neq \frac{2\pi}{L}(n_x, n_y, n_z)$$

periodic b.c.s (torus)

c.f. 1-dim:
$$k = \frac{2\pi}{L}n + \frac{2}{L}\delta(k)$$

scattering phase shift

Scattering in an infinite volume – reminder

Scattering amplitude, f

$$\langle \vec{p'} | (S-1) | \vec{p} \rangle = \frac{i}{2\pi m} \delta(E'-E) f(E,\theta)$$
$$\frac{d\sigma}{d\Omega} = |f(E,\theta)|^2$$

Partial-wave expansion: $f(E,\theta) = \sum_{l=0}^{\infty} (2l+1)P_l(\cos\theta)f_l(E)$ $\sigma_l = 4\pi(2l+1)|f_l|^2$

Scattering in an infinite volume – reminder

Scattering amplitude, f

$$\langle \vec{p'} | (S-1) | \vec{p} \rangle = \frac{i}{2\pi m} \delta(E'-E) f(E,\theta)$$
$$\frac{d\sigma}{d\Omega} = |f(E,\theta)|^2$$

Partial-wave expansion: $f(E,\theta) = \sum_{l=0}^{\infty} (2l+1)P_l(\cos\theta)f_l(E)$ $\sigma_l = 4\pi(2l+1)|f_l|^2$

Elastic scattering and the **phase shift**, $\delta_{\varrho}(E)$

$$\langle E', l', m'|S|E, l, m\rangle = \delta(E'-E)\delta_{l'l}\delta_{m'm}e^{2i\delta_l(E)}$$

Scattering – 'Lüscher method'

Lüscher, NP B354, 531 (1991); extended by many others

$$\det \left[\delta_{ij} \delta_{\ell\ell'} \delta_{nn'} + i\rho_i \ t_{ij}^{(l)} \ \left(\delta_{\ell\ell'} \delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2) \right) \right] = 0$$

Lüscher, NP B354, 531 (1991); extended by many others

Infinite-volume
scattering t-matrix
$$s_{ij}^{(\ell)} = \delta_{ij} + 2i\sqrt{\rho_i\rho_k} t_{ij}^{(\ell)}$$
 Here
 $t^{(\ell)} \propto f_\ell$ \vec{P} = overall mom.

det $\left[\delta_{ij}\delta_{\ell\ell'}\delta_{nn'} + i\rho_i t_{ij}^{(l)} \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2)\right)\right] = 0$

 i, j label channels
 $e.g. \ \kappa\pi, \ \kappa\eta$ $\rho_i = \frac{2k_{\rm cm}, i}{E_{\rm cm}}$
 $\vec{q} = \vec{k}_{\rm cm}L/2\pi$

Lüscher, NP B354, 531 (1991); extended by many others

Infinite-volume
scattering t-matrix
$$s_{ij}^{(\ell)} = \delta_{ij} + 2i\sqrt{\rho_i\rho_k} t_{ij}^{(\ell)}$$
 Here
 $t^{(\ell)} \propto f_\ell$ $\vec{P} = \text{overall mom.}$
$$det \left[\delta_{ij}\delta_{\ell\ell'}\delta_{nn'} + i\rho_i t_{ij}^{(\ell)} \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2) \right) \right] = 0$$

$$i, j \text{ label channels}$$
$$e.g. \, \kappa_{\pi}, \, \kappa_{\eta}$$
$$\rho_i = \frac{2k_{\text{cm},i}}{E_{\text{cm}}}$$
$$\vec{q} \equiv \vec{k}_{\text{cm}}L/2\pi$$
$$\text{Reduced symmetry} \Rightarrow \ell \text{ mix}$$
$$\text{ [all } \ell \text{ that subduce to a given lattice irrep } (\Lambda) \text{ mix]}$$

scattering *t*-matrix $s_{ij}^{(\ell)} = \delta_{ij} + 2i\sqrt{\rho_i\rho_k} t_{ij}^{(\ell)}$

Lüscher, NP B354, 531 (1991); extended by many others

 \vec{P} = overall mom.

Integrals over momenta in loops \rightarrow sums over momenta Difference ~ 1/L³ effects

Ignore
$$\sim e^{-ML}$$
 effects

$$an' + \left[i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2)\right] = 0$$

Here

 $f^{(\ell)} \propto f_{\ell}$

effect of finite vol.

Reduced symmetry \rightarrow ℓ mix

[all ℓ that subduce to a given lattice irrep (Λ) mix]

Lüscher, NP B354, 531 (1991); extended by many others

Infinite-volume
scattering t-matrix
$$s_{ij}^{(\ell)} = \delta_{ij} + 2i\sqrt{\rho_i\rho_k} t_{ij}^{(\ell)}$$
 Here
 $t^{(\ell)} \propto f_\ell$ \vec{P} = overall mom.

det $\left[\delta_{ij}\delta_{\ell\ell'}\delta_{nn'} + i\rho_i t_{ij}^{(\ell)} \left(\delta_{\ell\ell'}\delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2)\right)\right] = 0$

 i, j label channels
 $e.g. \ K\pi, \ K\eta$ $\rho_i = \frac{2k_{\rm Cm}, i}{E_{\rm Cm}}$ effect of finite vol.

 $\vec{q} \equiv \vec{k}_{\rm Cm}L/2\pi$ Reduced symmetry $\Rightarrow \ell$ mix
[all ℓ that subduce to a given
lattice irrep (Λ) mix]

We need: spectrum \rightarrow *t*-matrix

$$t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\det \left[\delta_{\ell\ell'} \delta_{nn'} + i\rho_i \ t^{(l)} \ \left(\delta_{\ell\ell'} \delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\wedge}(q_i^2) \right) \right] = 0$$

$$t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\det \left[\delta_{\ell\ell'} \delta_{nn'} + i\rho_i \ t^{(l)} \ \left(\delta_{\ell\ell'} \delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2) \right) \right] = 0$$

E.g. Relativistic Breit-Wigner param. (m_R, g_R) for an isolated resonance

$$t^{(\ell)} = \frac{1}{\rho(s)} \frac{\sqrt{s} \Gamma_{\ell}(s)}{m_R^2 - s - i\sqrt{s} \Gamma_{\ell}(s)}$$

$$T_{\ell}(s) = \frac{g_R^2}{6\pi} \frac{k_{\rm Cm}^{2\ell+1}}{s \, m_R^{2(\ell-1)}}$$

$$s = E_{\rm cm}^2$$

$$t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\det \left[\delta_{\ell\ell'} \delta_{nn'} + i\rho_i \ t^{(l)} \ \left(\delta_{\ell\ell'} \delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2) \right) \right] = 0$$

E.g. Relativistic Breit-Wigner param. (m_R, g_R) for an isolated resonance

$$t^{(\ell)} = \frac{1}{\rho(s)} \frac{\sqrt{s} \Gamma_{\ell}(s)}{m_R^2 - s - i\sqrt{s} \Gamma_{\ell}(s)}$$

$$_{\ell}(s) = \frac{g_R^2}{6\pi} \frac{k_{\rm cm}^{2\ell+1}}{s \, m_R^{2(\ell-1)}}$$

$$s = E_{\rm cm}^2$$

$$t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\det \left[\delta_{\ell\ell'} \delta_{nn'} + i\rho_i \ t^{(l)} \ \left(\delta_{\ell\ell'} \delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2) \right) \right] = 0$$

If assume only lowest ℓ relevant [near threshold $t \sim k^{2\ell}$] \rightarrow can solve equ. for each energy level $\{E^*\} \rightarrow$ phase shift $\delta(E)$ Alternatively parameterise t(E) and fit $\{E^*_{lat}\}$ to $\{E^*_{param}\}$

$$t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$

$$\det \left[\delta_{\ell\ell'} \delta_{nn'} + i\rho_i \ t^{(l)} \ \left(\delta_{\ell\ell'} \delta_{nn'} + i\mathcal{M}_{\ell n;\ell'n'}^{\vec{P},\Lambda}(q_i^2) \right) \right] = 0$$

If assume only lowest ℓ relevant [near threshold $t \sim k^{2\ell}$] \rightarrow can solve equ. for each energy level $\{E^*\} \rightarrow$ phase shift $\delta(E)$ Alternatively parameterise t(E) and fit $\{E^*_{lat}\}$ to $\{E^*_{param}\}$

Need many (multi-hadron) energy levels

- Single and multi-hadron ops
- Non-zero P_{cm}, different box sizes and shapes, twisted b.c.s, ...

Map out phase shift \rightarrow resonance parameters etc

P-wave $\pi\pi$ (J^{PC} = 1⁻⁻, I = 1)

Dudek, Edwards, CT (HadSpec), PR D87, 034505 (2013)

The l = 1 partial wave can mix with l = 3 and higher.

Find no significant signal for $\delta_{l=3}$ and so assume $\delta_{l>3} \approx 0$ in this energy range.

Dudek, Edwards, CT (HadSpec), PR D87, 034505 (2013)

$\pi\pi$ I=1 – diagrams

[PR D87, 034505]

+ similar diagrams

$\pi\pi$ I=1 – spectra

$\pi\pi$ I=1 – spectra

The ρ resonance – other calcs.

Pelissier, Alexandru, [PR D87 014503 (2013)] $N_f = 2$, $M_\pi \approx 300$ MeV

π K, η K (I=1/2) coupled-channel scattering

$$J^P = 0^+$$
 $\kappa, K_0^*(1430), \dots$ $J^P = 1^ K^*(892), \dots$ $J^P = 2^+$ $K_2^*(1430), \dots$

lsospin = 1/2 Strangeness = 1

πK , ηK (I=1/2) coupled-channel scattering

$$J^P = 0^+$$
 $\kappa, K_0^*(1430), \dots$ $J^P = 1^ K^*(892), \dots$ $J^P = 2^+$ $K_2^*(1430), \dots$

lsospin = 1/2 Strangeness = 1

 $C_{ij}(t) = <0 \mathcal{D}_{i}(t) \mathcal{D}_{j}^{\dagger}(0) 0 >$ 'single-meson' $\sim \overline{\psi} \Gamma D \dots \psi$ + πK + ηK ops.

 M_{π} = 391 MeV, M_{κ} = 549 MeV, M_{n} = 589 MeV; 3 volumes as before

Wilson, Dudek, Edwards, CT (HadSpec), PRL 113, 182001; PR D91, 054008

π K, η K (I=1/2) – diagrams

πK, ηK (I=1/2) spectra

$P = [0,0,0] A_1^+$

Neglect $\ell \ge 4$: only $\ell = 0$ contributes

π K, η K (I=1/2) coupled-channel scattering

Extension of Lüscher method to **inelastic scattering**: relate finite vol. energy levels to infinite vol. scattering *t*-matrix.

Underdetermined problem

 \rightarrow parameterize E_{cm} dependence of *t*-matrix and fit $\{E^*_{lat}\}$ to $\{E^*_{param}\}$

πK , ηK (I=1/2) coupled-channel scattering

Extension of Lüscher method to **inelastic scattering**: relate finite vol. energy levels to infinite vol. scattering *t*-matrix.

Underdetermined problem

 \rightarrow parameterize E_{cm} dependence of t-matrix and fit $\{E^*_{lat}\}$ to $\{E^*_{param}\}$

K-matrix param. – respects unitarity (conserve prob.) and flexible

$$t_{ij}^{-1}(s) = \frac{1}{(2k_i)^{\ell}} K_{ij}^{-1}(s) \frac{1}{(2k_j)^{\ell}} + I_{ij}(s) \qquad \text{Im}I_{ij} = -\delta_{ij}\rho_i(s)$$

Use various different params for K (see the paper for details)

πK, ηK (I=1/2) spectra

$P = [0,0,0] A_1^+$

Neglect $\ell \ge 4$: only $\ell = 0$ contributes

π K, ηK (I=1/2) spectra

$P = [0,0,0] A_1^+$

Neglect $\ell \ge 4$: only $\ell = 0$ contributes

π K, ηK (I=1/2) spectra

π K (I=1/2): P-wave near threshold

(well below nK threshold)

π K (I=1/2): P-wave near threshold

(well below nK threshold)

πK, ηK (I=1/2): S & P-waves

(73 energy levels)

πK, ηK (I=1/2): D-wave

Assume $\ell \ge 3$ negligible Up to $\pi\pi\pi K$ threshold; neglect coupling to $\pi\pi K$

π K, ηK (I=1/2): *t*-matrix poles

πK, ηK (I=1/2): *t*-matrix poles

πK, ηK (I=1/2): *t*-matrix poles

πK, ηK (I=1/2): *t*-matrix poles

Some other recent lattice calculations

First go at including multi-hadron operators in the open-charm sector:

- Mohler et al [PR D87, 034501 (2012)] 0⁺ $D \pi$ and 1⁺ $D^* \pi$ resonances
- Mohler et al [PRL 111, 222001 (2013)] 0⁺ D_s(2317) below D K threshold
- Lang et al [PRD 90, 034510 (2014)] 0⁺ $D_s(2317)$ and 1⁺ $D_{s1}(2460)$, $D_{s1}(2536)$
- ... charmonium:
- Ozaki, Sasaki [PR D87, 014506 (2013)] no sign of Y(4140) in J/ $\psi \phi$
- Prelovsek & Leskovec [PRL 111, 192001 (2013)] 1⁺⁺ near/below DD* X(3872)?
- Prelovsek et al [PL B727, 172 ; PR D91, 014504 (2015)] no sign of Z⁺(3900) in 1⁺⁻
- Chen et al [PR D89, 094506 (2014)] find 1⁺⁺ I=1 $D\bar{D}^*$ is weakly repulsive
 - ... light and strange meson:
- Lang et al [PR D86, 054508 (2012), PR D88, 054508 (2013)]
 - $-K\pi$ in s-wave (0⁺) and p-wave (1⁻) including K* resonances
- Lang et al [JHEP 04 (2014) 162] channels relevant for a₁(1260) & b₁(1235)

... baryons:

- Lang & Verduci [PR D87, 054502 (2013)] N π with J^P=1/2⁻ I=1/2
- Alexandrou et al [PR D88, 031501 (2013)] different approach for Δ (3/2⁺ I=3/2)
- Also see reviews e.g. from Lattice 2014 or 2013

$J^{P} = 0^{+}$ [relevant for $D_{s0}(2317)$]: 4 $D_{s} + 3 DK$ ops

$J^{P} = 0^{+}$ [relevant for $D_{s0}(2317)$]: 4 $D_{s} + 3 DK$ ops

$J^{P} = 1^{+}$ [relevant for $D_{s1}(2460)$, $D_{s1}(2536)$]: 8 $D_{s} + 3 D^{*}K$ ops

$J^{P} = 1^{+}$ [relevant for $D_{s1}(2460)$, $D_{s1}(2536)$]: 8 $D_{s} + 3 D^{*}K$ ops

Prelovsek, Leskovec [PRL 111, 192001 (2013)]

X(3872) $[J^{PC} = 1^{++}]$ near/below D D* threshold

Look in I=0 (one vol, one **P**_{cm})

 $car{c}, Dar{D}^*, J/\psi\,\omega$ ops

X(3872) $[J^{PC} = 1^{++}]$ near/below D D* threshold

Look in I=0 (one vol, one **P**_{cm})

 $car{c}, Dar{D}^*, J/\psi\,\omega$ ops

Look in I=0

Prelovsek et al [PR D91, 014504 (2015)]

Prelovsek et al [PR D91, 014504 (2015)]

Scattering channels with 3 or more hadrons?

- Much more complicated than 2-hadron scattering.
- No straightforward analogue of the determinant equation.
- Theoretical work is ongoing, e.g.
 - Polejaeva, Rusetsky [EPJA 48, 67 (2012)]
 - Kreuzer, Griesshammer [EPJA 48, 93 (2012)]
 - Roca, Oset [PR D85, 054507 (2012)]
 - Briceno, Davoudi [PR D87, 094507 (2013)]
 - Hansen, Sharpe [PR D90, 116003 (2014)]
 - Meissner, Rios, Rusetsky [PRL 114, 091602 (2015)]
 - Hansen, Sharpe [1504.04248]
- No real applications yet.
- Another reason why calculating at physical m_{π} is challenging (particularly for light mesons): more >2 hadron channels open

Summary of lecture 3

- Scattering, resonances, etc in lattice QCD
- Some examples:
 - The ρ resonance in elastic $\pi\pi$ scattering
 - Coupled-channel K π, K η scattering
 - Some *D_s* mesons and charmonia

Conclusions

- Significant progress in computing spectra of (excited) hadrons using lattice QCD in last few years

 improved algorithms, clever techniques, more powerful computers and novel use of technology (e.g. GPUs)
- I've aimed to give some idea of what goes into these lattice calculations, some highlights of results and some interpretation.
- Calculating properties of unstable hadrons is currently a very active area – only recently have we been able to do this in practice. There is still a lot to do here.
- Masses only get you so far. We can also compute other properties of hadrons that probe their structure using lattice QCD: e.g. form factors, transition amplitudes. Again, there is interesting work going on, but that's another set of lectures...