

Experimental Questions in Neutrino Physics part 1: The Known Knowns

Andrzej M. Szelc University of Manchester

Outline

- In this lecture I will talk about the history of experimental neutrino physics and where we are now.
- Tomorrow I will talk about measurements that are ongoing or proposed that will expand out understanding of the model.
- I tried to avoid explaining experimental techniques as much as possible – which is not that much.

Neutrinos in the Standard Model

Sources of Neutrinos

A. M. Szelc, LV Krakow School of Theoretical Physics

Experimental detection

- Fortunately, he was proven right (per theory prediction) and wrong (per experimental prediction) by Reines and Cowan in 1956.
- A clever signature: Inverse Beta Decay (IBD):

Fred Reines Clyde Cowan

C. Cowar

Detection of the μ and τ neutrinos

• Discovery of the tau neutrino (v_{τ}) Tau neutrino observed by DONUT

In both cases: shoot a 15 GeV beryllium target Pions

 ν_{μ} A spark chamber 800GeVproton beam at a
tungsten beam dump, create
that decay into D_s mesons,that decay into
v_{\tau}v_{\tau}neutrinos and detect them using
emulsion detector.

"known" Questions in v-physics (answered or being answered)

- Experimental neutrino physics in the last decades was driven by the following questions:
 - why do we see less neutrinos from the sun?
 - where are the atmospheric vs?
 - could this be due to oscillations?
 - What are the parameters of

oscillation ?

- Especially, is θ_{13} non-zero?
- Is the θ_{23} mixing maximal?
- what is going on with neutrino interactions?!

Neutrino physics is an adventurous experimental journey that may be far from over.

Solar Neutrinos

Solar Neutrinos

Observing Solar Neutrinos Experiments р-р, рер Theory ⁸B Uncertainties CNO (1 FWHM Results) 1.4 1.0 7.6+1.3

- Used neutrino capture 3 1.2 on ³⁷Cl, which results in ³⁷Ar which is radioactive. (0.814 MeV thresh.)
- Via ingenious chemical methods the ³⁷Ar was extracted and measured (~0.5 atoms produced/day!)
- The number of neutrinos observed was way off from expectation.

A. M. Szelc, LV Krakow School of Theoretical Physics

A deficit of Solar Neutrinos?

- Other experiments radiochemical using Gallium (0.2 MeV threshold) also saw a deficit.
- As did Water Cherenkov.
- But at a different rate?
- Other measurements of the Sun agree with the Solar Theoretical Model.

Cherenkov Detectors

- Originally developed to look for proton-decay, but appropriated for neutrino physics.

- Cherenkov light is emitted when a particle travels faster than the speed of light (in the medium).

- Hard to see heavier particles like protons etc...
- But has directionality!

Discovery of atmospheric neutrinos and their asymmetry

Super Kamiokande detector misses muon neutrinos from the bottom (but not from the top).

Phys. Rev. Lett. 81, 1562–1567 (1998)

Neutrinos are disappearing. What is happening to them?

SNO – resolving the Solar problem

Extremely clever idea: try to observe electron and other neutrinos separately using properties of Heavy Water.

Different reactions have different signatures: CC – isotropic Cherenkov Rings NC – delayed neutron capture (~6.25 MeV) ES – Cherenkov Rings pointing back to the sun

Charged Current	$v_e + d \rightarrow p + p + e^{-1}$	E _{th} =1.4 MeV	$CC Rate \propto \Phi(\mathbf{v}_e)$
Neutral Current	$\mathbf{v}_x + d \rightarrow \mathbf{v}_x + p + n$	E _{th} =2.2 MeV	<i>NC Rate</i> $\propto \Phi(\mathbf{v}_x)$
Elastic Scattering	$v_x + e^- \rightarrow v_x + e^-$	E _{th} ~ 0	$ESRate \propto \Phi(\mathbf{v}_e) + 0.154 \Phi(\mathbf{v}_{\mu} + \mathbf{v}_{\tau})$
0120110	A. M. Szelc, LV Kr	akow School of The	oretical Physics

SNO (2)

Total flux from the sun agrees with the model. But, we know that the sun only produces v_{e} .

"known" Questions in v-physics (answered or being answered) Experimental neutrino physics in the last decades was driven by the following questions:

- why do we see less neutrinos

from the sun?

- where are the atmospheric vs?

- could this be due to oscillations?
- What are the parameters of

oscillation ?

6/26/15

- Especially, is θ_{13} non-zero?
- Is the θ_{23} mixing maximal?
- what is going on with neutrino interactions?!

Knowing that neutrinos oscillate has opened a whole new field of experimental physics.

Neutrino Oscillations

B. Pontecorvo

- We know three neutrino flavors: $\nu_{_{e}}\!,\nu_{_{\mu}}$ and $\nu_{_{\tau}}.$
- SNO and Super-K tell us that neutrinos are not disappearing. They're changing into one another. Oscillating.
- Then v_1 , v_2 mass eigenstates = eigenstates of free Hamiltonian.
- v_{e} , v_{u} eigenstates of interaction Hamiltonian

$$\begin{pmatrix} \boldsymbol{\nu_e} \\ \boldsymbol{\nu_{\mu}} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \boldsymbol{\nu_1} \\ \boldsymbol{\nu_2} \end{pmatrix}$$

Measuring Neutrino Oscillations

- In oscillation physics we usually start with one type of neutrino and measure how it changes into another type.
- We can do this by detecting the new neutrinos (appearance) or registering the loss of original (disappearance).
- We can tell neutrinos apart by the effect of their "Charged Current" interactions.

In a two neutrino model, the probability of this oscillation looks like this:

Nucleon

ν,

$$P\left(\nu_{\mu} \to \nu_{e}\right) = \sin^{2} 2\theta \, \sin^{2} \left(\frac{\Delta m_{12}^{2} L}{4 E_{\nu}}\right)$$

Things to note

- Oscillations are only possible if neutrinos have mass
- But we don't know what it is, only the squared difference (a parameter).
- Mixing angles are another parameter.
- Adjusting L/E allows us to measure different mixings.

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2}}{4} \frac{L}{E_{\nu}}\right)$$

$$\Delta m_{12}^2 = m_1^2 - m_2^2$$

$$\frac{\Delta m^2 L}{4E} \ll 1$$
Oscillations did not have
a chance to happen
$$\frac{\Delta m^2 L}{4E} \gg 1$$
Oscillations averaged out –
only sensitive to mixing angle

Expanding to three flavours

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix}$$

6/26/15

A. M. Szelc, LV Krakow School of Theoretical Physics

Filling out the PMNS mixing matrix

- For precise measurements we need:
 - Large detectors (statistics)
 - Control of flux (how many neutrinos do we have?)
 - Energy resolution both at source and in detector
 Experiment L/E [km/MeV]
 - Patience

Change L/E in order to probe different ∆m² and mixing angles.

Create neutrinos to our specifications.

Experiment	L/E [km/MeV]	Δm^2 sensitivity
Reactor LBL	~1	~10 ⁻³ eV ²
Reactor VLBL	~100	~10 ⁻⁵ eV ²
Accelerator SBL	~10 ⁻³	~10 ⁻⁵ eV ²
Accelerator LBL	~1	~10 ⁻³ eV ²
Atmoshperic	~10	~10 ⁻⁴ eV ²

Man-Made Neutrinos: Reactor

- Used to discover first neutrinos.
- Cheap (apparently people use them for other things.)

- Energy range is fixed.
- The neutrino spectrum is a result of a complicated system.

Man-Made Neutrinos: Reactor

Nuclear reactor fuel and subsequent fission fragments are neutron rich and decay by turning neutrons to protons and emitting antineutrinos.

99% of neutrinos comes from 4 isotopes ²³⁵U, ²³⁹Pu, ²³⁸U and ²⁴¹Pu.

• Ab Initio approach:

Calculate spectrum branch-by-branch using beta branch databases: endpoints, decay schemes \rightarrow needs some guessing with rare beta decays.

Conversion approach
 Measure beta spectra directly, convert to v_e using
 'virtual beta branches'. → This is not that well
 defined. Carter, et al, Phys. Rev. 113 (1959)
 King and Perkins, Phys. Rev. 113 (1958)

In general, anti-neutrino flux follows the heat Emission of the reactor

Man-Made neutrinos: Accelerator

- Need:
 - Beam of protons
 - Target
 - Focusing horn (magnetic field)

Costs more, but have more control over energy.

Calculating spectra is also difficult.

Man-Made neutrinos: Accelerator (2)

Off-axis give better energy resolution, But less events.

A. M. Szelc, LV Krakow School of Theoretical Physics

Minos/Minos+

Far Detector (5.4 kton)

Near Detector (1 kton)

600

500

A00 GeV 200 200

100

2

Reconstructed v_u Energy (GeV)

Reconstructed v_µ Energy (GeV)

A. Blake

6/26/15

Tokai to Kamioka (T2K)

A. M. Szelc, LV Krakow School of Theoretic

Ev (GeV)

θ_{23} measurements

Inverted Hierarchy $\left|\Delta m_{32}^2\right| = 2.37^{+0.11}_{-0.07} \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.43^{+0.19}_{-0.05}$ $0.36 < \sin^2 \theta_{23} < 0.65$ (90% C.L.)

Normal Hierarchy $|\Delta m_{32}^2| = 2.34^{+0.09}_{-0.09} \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.43^{+0.16}_{-0.04}$ $0.37 < \sin^2 \theta_{23} < 0.64$ (90% C.L.)

6/26/15

A. M. Szelc, LV Krakow School of Theoretical Physics

OPERA and τ appearance

 v_{τ} extremely hard to detect – need high energy to create τ and great resolution to see it.

Emulsion detectors.

NATURE | NEWS

< 🛛 🔒

Neutrinos found to switch to elusive 'tau' flavour

Experiment that once claimed faster-than-light observation achieves its original goal.

Davide Castelvecchi

Now a 5 sigma measurement.

Rights & Permissions

16 June 2015

6/26/15

A. M. Szelc, LV Krakow School of Theoretical Physics

Solar neutrinos

 The best measurement of the Solar Mixing angle comes from a reactor experiment (KamLand).

We are still looking at the Sun

 Was able to reduce natural radioactivity enough to lower their threshold to ~100 keV

6/26/15

Observation of the pp-cycle in Borexino

6/26/15

A. M. Szelc, LV Krakow School of Theoretical Physics

The state of affairs as of 2011

- We knew that 3 neutrinos exist.
- Two mass splittings Δm^2_{sol} , Δm^2_{atm} and mixing angles measured.
- We do not know the mass hierarchy (normal or inverted?).
- We do know the neutrino masses are very small.
- Biting our nails, hoping the mixing angle: θ_{13} is big enough so that a measurement of the CP violation phase is possible (tomorrow's lecture).

Daya-Bay – an example of an LBL reactor neutrino experiment.

- Detection via scintillation light (liquid scintillator)
- Use Inverse Beta Decay signature.
- Doped with Gd to increase neutron capture.

A. M. Szelc, LV Krakow school of fineoretical rhysics

Daya-Bay/Reno/Double Chooz

The 5 MeV bump

A. M. Szelc, LV Krakow School of Theoretical Physics

Ab-initio calculations

- Making different assumptions can reproduce bump.
- But has problems with the beta spectra.
- There are other things that are fishy with the fluxes (more on that tomorrow).

A. M. Szelc, LV Krakow School of Theorem at russies

θ_{13} by v_{P} appearance

In parallel, long baseline neutrino experiments have measured v_{P} appearance

7.3 sigma evidence for electron neutrino appearance in T2K.

 $\rightarrow v_e$ appearance

🗕 Data

Reconstructed Energy (GeV)

Background

v, CC Signal

v CC Signal

- First ever conclusive evidence of neutrino flavour appearance

α_{LEM} > 0.8

v Mode

30

10

Events 00

40

MINOS

"known" Questions in v-physics (answered or being answered) Experimental neutrino physics in the last decades

- was driven by the following questions:
 - why do we see less neutrinos from the sun?
 - where are the atmospheric vs?
 - could this be due to oscillations?
 - What are the parameters of
 - **Oscillation** ?

6/26/15

- Especially, is θ_{13} non-zero?
- Is the θ_{23} mixing maximal?
- what is going on with neutrino interactions?!

Let's take a step back

and see what we know.

The Current State of Knowledge The neutrino model

- Our picture of Neutrinos in the standard model is almost complete.
- Large "mixing" angle θ_{13} opens the way to measurements of CP violation in the neutrino sector (not guaranteed).
- The mixings are very different than in the quark sector.
- We do not know the absolute neutrino mass.

"known" Questions in ν-physics (answered or being answered) Experimental neutrino physics in the last decades

was driven by the following questions:

- why do we see less neutrinos from the sun?
- where are the atmospheric vs?
- could this be due to oscillations?
- What are the parameters of
 - **Oscillation** ?
 - Especially, is θ_{13} non-zero?
- Is the θ_{23} mixing maximal?
- what is going on with neutrino interactions?!

Interesting things happening in neutrino nucleus interactions

How to measure v interactions in a LArTPC

- The LArTPC and its bubble chamber like-data gives us strong background rejection tools.
- As well as extremely powerful tools to see e.g. nuclear effects.

A. M. Szelc, LV Krakow School of Theoretical Physics

LArTPC Operation

Final State Interactions

- LArTPCs, and their resolution and calorimetric capabilities of allow us to reconstruct exclusive topologies.
- We can see if nuclear effects play a key role in neutrino-nucleus interactions in nuclear targets.
- Due to intra-nuclear re-scattering (FSI) Final State interactions additional nucleons, many de-excitation γ's and and soft pions appear in the Final State.
- ArgoNeuT was one of the first detectors to be able to observe these effects.

Observing proton multiplicities

- The granularity of the LArTPC allows seeing actual final state topologies.
- Measuring cross sections as a function of proton multiplicity.

A. M. Szelc, LV Krakow School of Theoretical Physics

Back-to-Back Protons

We can see nuclear effects!

ArXiv:1405.4261

PRD**90**, 012008 (2014) 6/26/15 4 back-to-back 2-proton events observed in Lab frame.

Possible mechanism is CC RES pionless reactions involving pre-existing SRC np pairs.

A. M. Szelc, LV Krakow School of Theoretical Physics

P.

Summary of Part 1

- The 3 neutrino model seems almost sorted out.
- We have understood many of the first questions in experimental neutrino physics thanks to the phenomenon of oscillations.
- There are interesting things happening in the neutrino-nucleus interactions.
- Tomorrow: what are the experimental questions that are driving the field today and in the future.

The v-interaction conundrums

6/26/15

A. M. Szelc, LV Krakow School of Theoretical Physics

Coherent Pion Production

$$\nu_{\mu} + \mathbf{A}_{g.s.} \rightarrow \mu^{-} + \pi^{+} + \mathbf{A}_{g.s.}$$
 $\bar{\nu}_{\mu} + \mathbf{A}_{g.s.} \rightarrow \mu^{+} + \pi^{-} + \mathbf{A}_{g.s.}$

Both **ArgoNeuT** and **MINERVA** measured coherent pion production.

51

A.M. Szelc, LV Krakow School of Theoretical Physics

New MINOS+ Data

Combined MINOS and MINOS+ beam data are well-described by standard neutrino oscillations:

 MINOS+ data provide significant statistical improvement at multi-GeV energies.

★ Full MINOS+ data set (>10×10²⁰ POT) will further improve precision of ∆m²₃₂ measurement.

Reactor SBL oscillation

$$P_{\bar{\nu_e} \to \bar{\nu_e}} = 1 - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E} \right) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E} \right)$$

6/26/15

A. M. Szelc, LV Krakow School of Theoretical Physics

The IceCube Neutrino Observatory

IceCube:

- 78 strings, 125 m/17 m spacing
- Energy range: ~ 100 GeV to ≥ 10 PeV
- 1 km³ volume of south pole ice as v target, and medium for Cherenkov light production.

DeepCore:

- 8 additional strings, ~ 40 70 m / 7 m spacing
- Spans ~ 10 100 GeV
- Targets atmospheric v oscillations and dark matter searches

Timothy C. Arlen

WIN 2015, 1

Atmospheric Neutrino Oscillations

- Neutrinos available over a wide range of energies and baselines
 - + Oscillations produce a distinctive pattern in energy-angle space
 - + v_{μ} 1st survival minimum ~ 25 GeV, and hierarchy-dependent matter effects below ~ 12 GeV.
- Large detector required to provide sufficient statistics to make this approach feasible
 - DeepCore event rates

type	triggered	analysis level
νµ	~70 k/yr	~1-10 k/yr
Ve	~10 k/yr	~0.1-3 k/yr

Atmospheric Oscillations with IceCube-DeepCore

+ Projection onto reconstructed L/E_{ν} for illustration purposes

A. M. Szelc, LV Krakow School of Theoretical Physics

UHE neutrinos in IceCube

Coherence of Conventional Neutrino Beams

Neutrinos are finite wave packets. Different masses should travel with different velocities – how long are they coherent?

For Pion DIF it depends on the size of the pion wave packet – clculate that and you know how long the coherence sticks.
 Re(ψ) Source Osc Max

P(f)

6/26/15

Kicks in sooner with big Δm2 or small packet width

