kvi - center for advanced radiation technology

university of

groningen

Hunting for Exotic Matter with the BESIII

Myroslav Kavatsyuk

KVI – Center for Advanced Radiation Technology, University of Groningen

For the **BESIII** collaboration

Hadron Matter

Colour-neutral states allowed by QCD

Exotic matter

2

B€SⅢ

matter

Hadron Landscape

Hadron-physics challenges:

- Understanding of established states: precision spectroscopy
- Nature of exotic states: search and spectroscopy of unexpected states

Clean environment and high luminosity are required for resolving puzzle of exotic matter

BESIII Detector

1.0 Tesla super-conducting magnet

e⁺

Be beam pipe

₿€SШ

4

Muon counters:

9/8 RPC layers (barrel/endcaps) Cut-off momentum: 0.4 GeV/c

CsI(TI) ElectroMagnetic Calorimeter: σ_{E}/E (at 1 GeV): 2.5 % $\sigma_{z,\phi}$ (at 1 GeV): 6 mm

Time Of Flight (TOF):
 σ₁: 100/110 ps (barrel/endcaps)

Drift chambers (MDC): σ_p/p (at 1 GeV): 0.5 % $\sigma_{dE/dx}$: 6 %

e

M. Ablikim et al., Nucl. Instr. and Meth. A 614 (2010) 345–399

BESIII: Collected Data

July 18, 2008: First e⁺ e[−] collision event in BESIII

- ~ 0.6 B Ψ' events ~ 24×CLEO-c
- ~ 1.2 B J/ Ψ events ~ 21×BESII
- ~ 42pb^{-1} at 3.65 GeV
- ~ 2.9fb⁻¹

¹ Ψ"

~ 11×CLEO-c

~ 70pb^{-1} scanning of the Ψ " region

- 104 energy points between3.85 and 4.6 GeV
- ~20 energy points between2.0 and 3.1 GeV

Record Luminosity so far: 8.5 × 10³² cm⁻² s⁻¹

(design value: 10^{33} cm⁻² s⁻¹)

BESIII: Collected Data

July 18, 2008: First e⁺ e[−] collision event in BESIII

- ~ 0.6 B Ψ' events ~ 24×CLEO-c
- ~ 1.2 B J/ Ψ events ~ 21×BESII
- ~ $42 pb^{-1}$ at 3.65 GeV
- ~ 2.9fb⁻¹
 - Ψ"

~ 11×CLEO-c

~ 70pb^{-1} scanning of the Ψ " region

High luminosity, clean environment

Access to precise measurements of rare processes:

Key to understanding of exotic matter

Physics Topics at BESIII

Hadron spectroscopy

- search for the new forms of hadrons
- meson spectroscopy
- baryon spectroscopy
- Study of the production and decay mechanisms of charmonium states: J/Ψ, Ψ(2S), η_c(1S), χ_{c{0,1,2}}, η_c(2S), h_c(¹P₁), Ψ(3770), etc.
 - XYZ states

- Precise measurement of R values, τ mass, hadron FF
- Precise measurement of CKM matrix
- Search for DDbar mixing, CP violation, etc.

Meson Spectroscopy: light-quark sector

Over-population?

L = 1

9

New forms of hadrons

Glueball Searches with BESIII PWA of J/Ψ → γηη

Radiative J/ Ψ decay – a gluon-rich process \rightarrow one of the most promising hunting grounds for glueballs

Resonance	$Mass(MeV/c^2)$	$Width(MeV/c^2)$	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2 σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0 σ
$f_0(2100)$	$2081{\pm}13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9 σ
$f_{2}^{'}(1525)$	$1513 \pm 5^{+4}_{-10}$	75_{-10-8}^{+12+16}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0 σ
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229_{-42-155}^{+52+88}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 σ

M1

M2

[Phys. Rev. D 87, 092009 (2013)]

- Scalar contributions mainly from $f_0(1500)$, $f_0(1710)$ and $f_0(2100)$
- Production rate of f₀(1710) consistent with predicted glueball production
 [Phys. Rev. Lett. 110, 021601 (2013)] →

 $f_0(1710)$ has a larger overlap with the glueball

compared to other glueball candidates

Exotics in Light-Hadron Sector

Difficult to uniquely identify: mixed with "normal" states

Any hope for unique identification? **Hes**

Antiproton beam with high resolution will allow to directly populate and analyse charmonium and exotic states (full range of quantum numbers)

AntiProton Annihilation at DArmstadt (PANDA)

₿€SⅢ

PANDA spectrometer employs fixed target and cooled antiproton

<u>beam:</u>

momentum range Luminosity:

PANDA is:

high resolution 4π spectrometer

Designed to achieve: high resolution for tracking, particle identification and calorimetry beam high rate capability versatile readout and event selection

1.5 GeV/c to 15 GeV/c $2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1} (\sigma_{\overline{p}}/\overline{p} \le 2 \cdot 10^{-4})$ $2 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1} (\sigma_{\overline{p}}/\overline{p} \le 2 \cdot 10^{-5})$

PANDA will have a direct access to exotic hadrons at a price of huge hadron background

Precision charmonium spectroscopy

15

Charmonium Physics

16

Charmonium (a bound state of cc quarks) – bridge between perturbative and strong QCD

Strong-interaction coupling constant

<u>Precise</u> data on the key charmonium states and <u>transitions</u>

Insight into the strong interactions at long-distance scales (test of Potential models, lattice QCD, EFT)

State Properties as a Probe

State Properties as a Probe

18

State Properties as a Probe

Puzzle of the η_c Properties

J/ψ radiative transition

γγ processes, PP, B→Kη_c

Measurements in different decay modes yielded not consistent values

B€SⅢ

$\Psi' \rightarrow \pi^0 \mathbf{h}_c, \mathbf{h}_c \rightarrow \gamma \eta_c$

- η_c-resonance: interference with nonresonant backgrounds → difficult to measure
- Only recently consistent results were obtained [Phys. Rev. Lett. 102, 011801 (2009), Phys. Lett. B 706, 139 (2011), Phys. Rev. D 84, 012004 (2011),

Phys. Rev. Lett. 108, 222002 (2012)]

- $h_c \rightarrow \gamma \eta_c E1$ transition: small non-resonant background \rightarrow the η_c line shape is less distorted
- Consistent and precise measurement of h_c and η_c parameters
- Determined branching ratios for 16 exclusive η_c decays (5 measured for the first time)

$\Psi' \rightarrow \pi^0 \mathbf{h}_c, \mathbf{h}_c \rightarrow \gamma \eta_c$

Physics Topics at BESIII

Hadron spectroscopy

- search for the new forms of hadrons
- meson spectroscopy
- baryon spectroscopy

XYZ states

Study of the production and decay mechanisms of charmonium states: J/Ψ, Ψ(2S), η_c(1S), χ_{c{0,1,2}}, η_c(2S), h_c(¹P₁), Ψ(2770), etc.

- Precise measurement of R values, τ mass, hadron FF
- Precise measurement of CKM matrix
- Search for DDbar mixing, CP violation, etc.

Charmonium Region

Hidden-charm region of the spectrum is well understood,

however,

in the open-charm region there are predicted states, but not yet seen...

Moreover...

Charmonium Region

Hidden-charm region of the spectrum is well understood,

however,

in the open-charm region there are predicted states, but not yet seen...

Moreover...

In the last decade there were found not-predicted charmonium-like states with unexpected properties

XYZ States, Nomenclature

Conventional quarkonium (cc̄), meson molecule (cq̄ + c̄q), tetraquark (cc̄qq̄), hybrid state (cc̄ + g ...) et.al.

Mysterious XYZ States...

... unexpectedly narrow for mesons in the open-charm region, strongly coupled to charmonium: What is their nature?

State	$m \; ({\rm MeV})$	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.52±0.20	1.3±0.6 (<2.2)	1++/2-+	$B \to K(\pi^+\pi^- J/\psi)$ $p\bar{p} \to (\pi^+\pi^- J/\psi) + \dots$ $B \to K(\omega J/\psi)$ $B \to K(D^{*0}\bar{D^0})$ $B \to K(\gamma J/\psi)$ $B \to K(\gamma \psi(2S))$	Belle [85, 86] (12.8), BABAR [87] (8.6) CDF [88–90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BABAR [98] (3.5), Belle [99] (0.4)	2003	OK
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$\begin{split} B &\to K(\omega J/\psi) \\ e^+ e^- &\to e^+ e^- (\omega J/\psi) \end{split}$	Belle [100] (8.1), BABAR [101] (19) Belle [102] (7.7)	2004	OK
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$ $e^+e^- \rightarrow J/\psi$ ()	Belle [103] (6.0) Belle [54] (5.0)	2007	NC!
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4260)	4263 ± 5	108±14	1	$\begin{split} e^+e^- &\to \gamma(\pi^+\pi^-J/\psi) \\ e^+e^- &\to (\pi^+\pi^-J/\psi) \\ e^+e^- &\to (\pi^0\pi^0J/\psi) \end{split}$	BABAR [108, 109] (8.0) CLEO [110] (5.4) Belle [104] (15) CLEO [111] (11) CLEO [111] (5.1)	2005	ОК
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$0,2^{++}$	$e^+e^- \to e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	4443_{-18}^{+24}	$107^{+113}_{-\ 71}$?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	$4634^{+\ 9}_{-11}$	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!
$Y_b(10888)$	$10888.4{\pm}3.0$	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

[EPJ C71, 1534 (2011)] **27**

Mysterious XYZ States...

... unexpectedly narrow for mesons in the open-charm region, strongly coupled to charmonium: What is their nature?

State	$m \; ({\rm MeV})$	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status	
X(3872)	3871.52±0.20	1.3 ± 0.6 (<2.2)	1++/2-+	$B \to K(\pi^+\pi^- J/\psi)$ $p\bar{p} \to (\pi^+\pi^- J/\psi) + \dots$ $B \to K(\omega J/\psi)$ $B \to K(D^{*0}\bar{D^0})$ $B \to K(\gamma J/\psi)$ $B \to K(\gamma \psi(2S))$	Belle [85, 86] (12.8), BABAR [87] (8.6) CDF [88–90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BABAR [98] (3.5), Belle [99] (0.4)	2003	OK	
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$\begin{split} B &\to K(\omega J/\psi) \\ e^+ e^- &\to e^+ e^- (\omega J/\psi) \end{split}$	Belle [100] (8.1), BABAR [101] (19) Belle [102] (7.7)	2004	OK	
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$ $e^+e^- \rightarrow J/\psi \; ()$	Belle [103] (6.0) Belle [54] (5.0)	2007	NC!	Suctomatic studios
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK	Systematic studies
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$	Belle [104] (7.4)	2007	NC!	at BESIII
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!	ef V(4200) V(4200)
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!	011(4200), 1(4300)
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	$?^{?+}$	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!	
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!	
Y(4260)	4263 ± 5	108±14	1	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$ $e^+e^- \to (\pi^+\pi^- J/\psi)$ $e^+e^- \to (\pi^0\pi^0 J/\psi)$	BABAR [108, 109] (8.0) CLEO [110] (5.4) Belle [104] (15) CLEO [111] (11) CLEO [111] (5.1)	2005	OK	
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!	
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	0.2^{++}	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!	
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK	
$Z(4430)^+$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!	
X(4630)	$4634^{+\ 9}_{-11}$	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!	
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!	
$Y_b(10888)$	$10888.4 {\pm} 3.0$	$30.7\substack{+8.9 \\ -7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!	[EPJ C71, 1534 (2011)] 28

Studies of Y(4260) at BESIII

Y(4260):

- Does not fit any potential model.
- Has a small coupling to open charm
- J^{PC} = 1⁻⁻
- A hybrid candidate according to Lattice QCD calculations! [JHEP 1207, 126 (2012)]

BESIII: $\sigma^{B} = 62.9 \pm 1.9 \pm 3.7 \text{ pb}$

[Phys. Rev. Lett. 110, 252001 (2013)]

The Z_c(3900)[±]

- Fit with S-wave Breit-Wigner
- M = $(3899.0\pm3.6\pm4.9)$ MeV/c²
- Γ = (46±10±20) MeV

Discovered by BESIII, promptly confirmed by:

Belle: [Phys. Rev. Lett. 110, 252002 (2013)] $M = 3894.5 \pm 6.6 \pm 4.5 \text{ MeV/c}^2$ $\Gamma = 63 \pm 24 \pm 26 \text{ MeV}$

CLEO-C: [Phys. Lett. B 727, 366 (2013)]

Mysterious XYZ States...

... unexpectedly narrow for mesons in the open-charm region, strongly coupled to charmonium: What is their nature?

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.52±0.20	1.3±0.6 (<2.2)	1++/2-+	$B \to \overline{K(\pi^+\pi^- J/\psi)}$ $p\overline{p} \to (\pi^+\pi^- J/\psi) + \dots$ $B \to \overline{K(\omega J/\psi)}$ $B \to \overline{K(\omega J/\psi)}$ $B \to \overline{K(\gamma J/\psi)}$ $B \to \overline{K(\gamma \psi(2S))}$	Belle [85, 86] (12.8), BABAR [87] (8.6) CDF [88–90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BABAR [98] (3.5), Belle [99] (0.4)	2003	OK
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$\begin{split} B &\to K(\omega J/\psi) \\ e^+ e^- &\to e^+ e^- (\omega J/\psi) \end{split}$	Belle [100] (8.1), BABAR [101] (19) Belle [102] (7.7)	2004	OK
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$ $e^+e^- \rightarrow J/\psi \; ()$	Belle [103] (6.0) Belle [54] (5.0)	2007	NC!
G(3900)	3943 ± 21	52 ± 11	$1^{}$	$e^+e^- \to \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	4008^{+121}_{-49}	226 ± 97	$1^{}$	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156_{-25}^{+29}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4260)	4263 ± 5	108±14	1	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$ $e^+e^- \to (\pi^+\pi^- J/\psi)$ $e^+e^- \to (\pi^0\pi^0 J/\psi)$	BABAR [108, 109] (8.0) CLEO [110] (5.4) Belle [104] (15) CLEO [111] (11) CLEO [111] (5.1)	2005	OK
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
X(4350)	$4350.6\substack{+4.6 \\ -5.1}$	$13.3^{+18.4}_{-10.0}$	$0,2^{++}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
Y(4360)	4353 ± 11	$96{\pm}42$	$1^{}$	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	4443_{-18}^{+24}	$107^{+113}_{-\ 71}$?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	$4634^{+ 9}_{-11}$	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle $[114]$ (5.8)	2007	NC!
$Y_b(10888)$	$10888.4{\pm}3.0$	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

Z_c(3900) – first confirmed Z state!

[EPJ C71, 1534 (2011)] **31**

Z₍₃₉₀₀₎ Structure?

... unexpectedly narrow for mesons in the open-charm region, strongly coupled to charmonium: What is their nature?

Z states:

- Charged states
- Strongly coupled to charm

can not be conventional mesons

Four-quark state

Does a neutral partner Z (3900)^o exists?

The Z_c(3900)^o

Structure is seen in $\pi^0 J/\Psi$ (10 σ significance):

- M = $(3894.0\pm 2.3\pm 2.7)$ MeV/c²
- Γ = (29±8.2±8.2) MeV

Z_c(3900) – four-quark isospin triplet?

BEST

Nature of the Z_c(3900)

Most popular models Ha

Hadronic molecule

Tetraquark

Interact by gluonic color force [PRD 87, 111102(R) (2013)] [arXiv:1304.0345, 1304.1301]

[arXiv: 1304.0380]

2 color-neutral mesons Interact by pion exchange [PRD 88, 054007 (2013)] [Phys. Lett. B726, 326 (2013)] [arXiv:1304.1850]

Other models:

- Meson loop [arXiv: 1303.6355, 1304.4458]
- Initial State Pion Emission (ISPE) model

[PRL 110, 232001 (2013), PRD 88, 036008 (2013)]

• Hadro-charmonium [M. B. Voloshin]

BEST

Nature of the Z_c(3900)

Sensitive probes?

• Tetraquark: $\Gamma(Z_c^+ \rightarrow \pi^+ J/\psi) \approx 29 \text{ MeV}$ $\Gamma(Z_c^+ \rightarrow D^+ \overline{D}^{*0}, \overline{D}^0 D^{*+}) \approx 4 \text{ MeV}$

35

Z_c(3900) Decay Rates

M = (3883.9±1.5±4.2) MeV/c²
Γ = (24.8±3.3±11) MeV
[Phys. Rev. Lett. 112, 022001 (2014)]

Reconstruction method:

- Reconstruct $\pi^{\scriptscriptstyle +}$ and $D^{\scriptscriptstyle 0} \to \, K^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +}$
- Infer D^{*-}
- Analyse as well π⁺D⁻D^{*0}
- Is found structure (referred as Z_c(3885)) different decay mode of the Z_c(3900)?
 - Z_c(3900)[±] properties:
 - M = (3899.0±3.6±4.9) MeV/c²
 - Γ = (46±10±20) MeV
- Assuming it is, the partial width ratio: $\Gamma(Z_c \rightarrow DD^*)/\Gamma(Z_c \rightarrow \pi J/\Psi) = 6.2\pm1.1\pm2.7$

Tetraquark model disfavoured ?

Z_c(3900) Quantum Numbers

- M = $(3884.3 \pm 1.2 \pm 1.8) \text{ MeV/c}^2$
- Γ = (23.8±2.1±2.6) MeV

Reconstruction method:

Complete reconstruction of decay

Spin-parity of Z_c(3895) 1⁺ Confirms expectations!

Z_c(4020)[±] seen by the BESIII

BESI

 $e^+e^- \rightarrow \pi^-\pi^+h_c^ \sqrt{s} = 3.9 - 4.42 \text{ GeV}$

M = (4022.9±0.8±2.7) MeV/c²
Γ = (7.9±2.7±2.6) MeV
[Phys. Rev. Lett. 111, 242001 (2013)]

• M = (4026.3 \pm 2.6 \pm 3.7) MeV/c² • Γ = (24.8 \pm 5.6 \pm 7.7) MeV [Phys. Rev. Lett. 112, 132001 (2014)]

Assuming found structures correspond to the same state the opencharm decay-mode is favoured but suppressed in comparison with established open-charm states, e.g. $\Psi(4040)$

Is there a neutral partner?

Z_c(4020)^o seen by the BESIII

Is Z_c(4020) – a partner state to Z_c(3900), predicted by the hadronic-molecule model?

Open-Charm decay of Z_c(4020)^o

Analysis strategy:

- Detect D (decay products of D*)
- Look at recoil mass of π^{o}

Observed state has mass and width close to $Z_c(4020)^0 \rightarrow$ good candidate for isospin partner of $Z_c(4020)^{\pm}$

Comparison between observed and $Z_c(4020)^{\pm}$ states

More Mysteries of Z_c(3900)

√s = 4.23 GeV

Search for $Z_c(3900) \rightarrow \pi^{\pm}\omega$

There are three important decay modes for charmonium-like states:

- the fall-apart to open charm mesons;
- the cascade to hidden charm mesons;
- decays to light hadrons via intermediate gluons.

Since $Z_c(3900)$ decays to $J/\Psi\pi$, a sizeable annihilation rate could be expected with $\bar{c}c$ in S – wave (as for χ_c)

No significant signal observed: $\Gamma(Z_c(3900) \rightarrow \omega \pi) < 0.2\% \Gamma(Z_c(3900))$

Annihilation to cc is suppressed?

Shedding Light on X(3872)

X(3872) – the first discovered unconventional charmonium-like state so far seen in B-meson decays of hadron collisions:

- $J^{PC} = 1^{++}$, measured by LHCb and CDF
- Interpreted as a candidate for a tetraquark or hadronic molecule
- Most probably Y(4260) and Y(4360) couple with exotic Z_c states

Shedding Light on X(3872)

[Phys. Rev. Lett. 112, 092001 (2014)]

- The X(3872) signal is clearly observed: significance 6.3σ
- Cross-section hints radiative transition between Y(4260) and X(3872)
- Existence of transitions between Y(4260) X(3872) and Zc states suggest that there might be some commonality in the nature of these three different states
- Assuming that measured transition is from Y(4260):

 $\frac{B(Y(4260) \to \gamma X(3872))}{B(Y(4260) \to \pi^+ \pi^- J/\psi)} \sim 0.1$

X(3872): Γ_{ee} Measurement

 $\begin{array}{c} 10^{-1} \underbrace{11}_{3.6} \\ 3.65 \\ 3.65 \\ 3.7 \\ 3.7 \\ 3.7 \\ 3.65 \\ 3.7 \\ 3.7 \\ 3.7 \\ 3.8 \\ 3.7 \\ 3.8 \\ 3.9 \\ 4 \\ 4.1 \\ M(\pi^{+}\pi^{-}J/\psi) \ [GeV/c^{2}] \end{array}$

 Γ_{ee} may help to understand the nature of X(3872):

- Theory predicts $\Gamma_{ee} \sim 0.03 \text{ eV}$
- Current measurement: Γ_{ee} < 280 eV [PLB 579, 74]
- Never been observed directly in e⁺e⁻ anaihilation

Even now we can reach eV level!

With more data we can do better...

[arXiv:1505.02559]

Filling Gaps in Charmonium Spectrum

Observation of X(3823)

46

Observation of X(3823)

Simultaneous fit of γX_{c1} (left)

and γX_{c1} (right) events

• M = $(3821.7 \pm 1.3 \pm 0.7)$ MeV/c²

BESI

• Γ < 16 MeV (at 90% C.L.) [arXiv:1503.08203]

Observed narrow resonance is a good candidate for the $\Psi(^{1}D_{3})$ charmonium.

Energy-dependent cross-section

+ data

4.5

4.4

E_{cm} (GeV)

-Y(4360)

-----ψ(4415)

4.6

3.9

Measured crosssections consistent with transitions from Y(4360) and Ψ(4415)

47

Y states: $e^+e^- \rightarrow \omega \chi_{co}$

Energy-dependent cross-section

Resonance structure is observed (significance > 9σ)! Assuming single BW:

- $M = (4230\pm8\pm6) \text{ MeV/c}^2$
- Γ = (38±12±2) MeV

[Phys. Rev. Lett. 114, 092003 (2015)]

Inconsistent with Y(4260) from $\pi\pi J/\Psi$ No significant signals for $e^+e^- \rightarrow \omega \chi_{C1.2}$

Y states: $e^+e^- \rightarrow \eta J/\Psi$

Energy-dependent cross-section compared to Belle data obtained in: $\eta J/\Psi$ and $\pi^+\pi^-J/\Psi$

- Agree with previous results with improved precision.
- Non-trivial structure around 4.2 GeV: This could indicate the existence of a rich spectrum of Y states in this energy region with different coupling strengths to the various decay modes.

A lot of interesting results are already published by the BESIII collaboration

Systematic studies of unexpected states allows BESIII to collects pieces of "exotic-matter" puzzle

New exciting results are coming soon!

Summary

- ₿€SШ
- BESIII is operational since 2008 and already has <u>world's largest</u> data samples of various Y and charmonium states in a clean environment (e⁺e⁻ annihilation)
- BESIII an ideal tool for precision studies of suppressed channels:
 - clean environment
 - well controlled systematics
- A lot of interesting results have been obtained:
 - Precise measurements of resonance properties
 - Discovery of unexpected states
 - Systematic studies of XYZ states in charmonium region
- ... and we are looking forward to the future:
 - More data available than presented in current analysis

Stay tuned!

Thank you for your attention and to the BESIII collaboration!

BESIII collaboration: >360 members in 53 institutions from 11 countries

BESIII at BEPC-II

Other QCD Exotic Objects

QCD predicts exotic objects:

- hybrids (resonances of quark-antiquark and excited glue)
- glueballs (excited states of glue)

Glueballs and hybrids properties are determined by the long-distance features of QCD Insight into QCD vacuum 54