Asymptotic freedom of gluons in the Fock space

Stanisław D. Głazek
Faculty of Physics, University of Warsaw

Asymptotic freedom of gluons is described in terms of a family of scale-dependent renormalized Hamiltonian operators acting in the Fock space. The Hamiltonians are obtained by applying the renormalization group procedure for effective particles (RGPEP) to quantum $S U(3)$ Yang-Mills theory. The RGPEP is a general method for solving quantum field theories in the Minkowski space-time.
S.D.Głazek, Dynamics of effective gluons, Phys. Rev. D 63, 116006 (2001).
S.D.Głazek, Perturbative formulae for relativistic interactions of effective particles, Acta Phys. Pol. B43, 1843, 20p (2012).
M.Gómez-Rocha, S.D.Głazek, Asymptotic freedom in the front-form Hamiltonian for quantum chromodynamics of gluons, arXiv:1505.06688.

Outline:

explanation of asymptotic freedom of gluons in the Fock space as an example of application of the renormalization group procedure for effective particles (RGPEP) as a new computational tool in quantum field theory

In popular approaches to QCD, one way or the other, one assumes that there exists some $H_{Q C D}$.

$$
\begin{gathered}
H_{Q C D}=? \\
\text { simplify } \\
H_{Y M}=?
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{2} \operatorname{tr} F^{\mu \nu} F_{\mu \nu} \\
F^{\mu \nu} & =\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}+i g\left[A^{\mu}, A^{\nu}\right] \\
\mathcal{T}^{\mu \nu} & =-F^{a \mu \alpha} \partial^{\nu} A_{\alpha}^{a}+g^{\mu \nu} F^{a \alpha \beta} F_{\alpha \beta}^{a} / 4 \\
P^{\nu} & =\int d \sigma_{\mu} \mathcal{T}^{\mu \nu}
\end{aligned}
$$

$P^{\nu}=\int_{\Sigma} d \sigma_{\mu} \mathcal{T}^{\mu \nu}$ requires a choice of a hyperplane Σ

$$
\begin{aligned}
& d \sigma^{\mu}=(1,0,0,0)^{\mu} d^{3} x \\
& \mathcal{T}^{00} \\
& H=P^{0} \\
& d \sigma^{\mu}=(1,0,0,-1)^{\mu} \frac{1}{2} d x^{-} d^{2} x^{\perp} \\
& \mathcal{T}^{+-} \\
& H=P^{-} \\
& A^{ \pm}=A^{0} \pm A^{3} \quad A^{\perp}=\left(A^{1}, A^{2}\right)
\end{aligned}
$$

instant hyperplane $\leftrightarrow 6$-dimensional invariance group
front hyperplane $\leftrightarrow 7$-dimensional invariance group

$$
\begin{aligned}
\mathcal{H}_{Y M} & =\mathcal{H}_{A^{2}}+\mathcal{H}_{A^{3}}+\mathcal{H}_{A^{4}} \\
\mathcal{H}_{A^{3}} & =g i \partial_{\alpha} A_{\beta}^{a}\left[A^{\alpha}, A^{\beta}\right]^{a}
\end{aligned}
$$

quantization $\quad \hat{A}^{\mu}=\sum_{\sigma c} \int_{k}\left[t^{c} \varepsilon_{k \sigma}^{\mu} a_{k \sigma c} e^{-i k x}+t^{c} \varepsilon_{k \sigma}^{\mu *} a_{k \sigma c}^{\dagger} e^{i k x}\right]_{o n \Sigma}$

$$
\begin{aligned}
{\left[a_{k \sigma c}, a_{k^{\prime} \sigma^{\prime} c^{\prime}}^{\dagger}\right] } & =k^{+} \tilde{\delta}\left(k-k^{\prime}\right) \delta^{\sigma \sigma^{\prime}} \delta^{c c^{\prime}} \\
\hat{H}_{Y M} & =\frac{1}{2} \int d x^{-} d^{2} x^{\perp}: \mathcal{H}_{Y M}(\hat{A}):
\end{aligned}
$$

Is it it?
 No, it is not.

Key example

$$
\hat{H}_{A^{3}}=\int_{\Sigma} g: i \partial_{\alpha} \hat{A}_{\beta}^{a}\left[\hat{A}^{\alpha}, \hat{A}^{\beta}\right]^{a}:
$$

$\hat{A} \sim a+a^{\dagger} \quad: \hat{A}^{3}: \quad \sim a^{\dagger 3}+a^{\dagger 2} a+a^{\dagger} a^{2}+a^{3}$
$a_{k}|0\rangle=0 \quad a_{k_{1}}^{\dagger} a_{k_{2}}^{\dagger} a_{k_{3}}^{\dagger}|0\rangle=? \quad e^{-i \hat{H} t / \hbar}|0\rangle=?$
$\Delta E_{|0\rangle}^{(2)}=\sum_{|3 g\rangle} \frac{|\langle 3 g| \hat{H}| 0\rangle\left.\right|^{2}}{-E_{3 g}}=-\infty$
$\Delta E_{|g\rangle}^{(2)}=\sum_{|2 g\rangle} \frac{|\langle 2 g| \hat{H}| g\rangle\left.\right|^{2}}{E_{g}-E_{2 g}}=-\infty$
etc.

$$
\begin{aligned}
\hat{H}|G P\rangle & =\frac{M_{G}^{2}+P^{\perp 2}}{P^{+}}|G P\rangle \\
P^{2} & =P^{+} P^{-}-P^{\perp 2}=M_{G}^{2} \\
|G P\rangle & =|g g P\rangle+|g g g P\rangle+|g g g g P\rangle+\ldots \\
\left(P^{+} \hat{H}-P^{\perp 2}\right)|G P\rangle & =M_{G}^{2}|G P\rangle
\end{aligned}
$$

infinitely large range of momenta (locality)
inifintely many components (products of more than 2 fileds)

$$
\begin{aligned}
& \hat{H}_{A^{3}}=\sum_{123} \int[123] \delta(1+2-3)\left[g Y_{123} a_{1}^{\dagger} a_{2}^{\dagger} a_{3}+g Y_{123}^{*} a_{3}^{\dagger} a_{2} a_{1}\right] \\
& \rightarrow \hat{H}_{A^{3} R}=\sum_{123} \int[123] \delta(1+2-3) R\left[g Y_{123} a_{1}^{\dagger} a_{2}^{\dagger} a_{3}+g Y_{123}^{*} a_{3}^{\dagger} a_{2} a_{1}\right] \\
& 1 x_{1}=p_{1}^{+} / p_{3}^{+}=x \quad k_{1}=p_{1}-x_{1} p_{3}=\kappa \\
& x_{2}=p_{2}^{+} / p_{3}^{+}=1-x \quad k_{2}=p_{2}-x_{2} p_{3}=-\kappa \\
& r\left(x_{i}, k_{i}^{\perp}\right)=x_{i}^{\delta} e^{-k_{i}^{\perp 2} / \Delta^{2} \quad i=1,2,3} \quad x_{3}=1 \quad k_{3}^{\perp}=0^{\perp} \\
& R=r\left(x_{1}, k_{1}^{\perp}\right) r\left(x_{2}, k_{2}^{\perp}\right) r\left(1,0^{\perp}\right)=x^{\delta}(1-x)^{\delta} e^{-2 \kappa^{2} / \Delta^{2}} \\
& Y_{123}=i f_{1}^{c_{1} c_{2} c_{3}}\left[\varepsilon_{1}^{*} \varepsilon_{2}^{*} \cdot \varepsilon_{3} \kappa-\varepsilon_{1}^{*} \varepsilon_{3} \cdot \varepsilon_{2}^{*} \kappa \frac{1}{x_{2}}-\varepsilon_{2}^{*} \varepsilon_{3} \cdot \varepsilon_{1}^{*} \kappa \frac{1}{x_{1}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\hat{H}_{R}|G P\rangle & =\frac{M_{G}^{2}+P^{\perp 2}}{P^{+}}|G P\rangle \\
|G P\rangle & =|g g P\rangle+|g g g P\rangle+|g g g g P\rangle+\ldots \\
\left(P^{+} \hat{H}_{R}-P^{\perp 2}\right)|G P\rangle & =M_{G}^{2}|G P\rangle
\end{aligned}
$$

momenta limited by the regularization
need to remove effects of regularization \rightarrow
renormalization of Hamiltonians \rightarrow
scale-dependent effective theory, including bound states

RGPEP

$$
t=s^{4}
$$

$$
\begin{gathered}
H_{0}\left(a_{0}\right)=\sum_{n=2}^{\infty} \sum_{i_{1}, i_{2}, \ldots, i_{n}} c_{0}\left(i_{1}, \ldots, i_{n}\right) a_{0 i_{1}}^{\dagger} \cdots a_{0 i_{n}} \\
H_{t}\left(a_{t}\right)=\sum_{n=2}^{\infty} \sum_{i_{1}, i_{2}, \ldots, i_{n}} c_{t}\left(i_{1}, \ldots, i_{n}\right) a_{t i_{1}}^{\dagger} \cdots a_{t i_{n}} \\
c_{0}=\text { initial condition, including } C T_{R} \\
c_{t}=?
\end{gathered}
$$

$$
\begin{aligned}
H_{t}\left(a_{t}\right) & =H_{0}\left(a_{0}\right) \\
a_{t} & =U_{t} a_{0} U_{t}^{\dagger} \\
H_{t}\left(a_{0}\right) & =U_{t}^{\dagger} H_{0}\left(a_{0}\right) U_{t} \\
H_{t}^{\prime} & =\left[-U_{t}^{\dagger} U_{t}^{\prime}, H_{t}\right]=\left[G_{t}, H_{t}\right] \\
U_{t} & =T \exp \left(-\int_{0}^{t} d \tau G_{\tau}\right) \\
G_{t} & =\left[H_{f}, \tilde{H}_{t}\right]
\end{aligned}
$$

RGPEP generator and non-perturbative QCD

$$
\begin{aligned}
G_{t} & =\left[H_{f}, \tilde{H}_{t}\right] \\
H_{f} & =\sum_{i} p_{i}^{-} a_{0 i}^{\dagger} a_{0 i} \quad p_{i}^{-}=\frac{p_{i}^{\perp}}{p_{i}^{+}} \\
H_{t}\left(a_{0}\right) & =\sum_{n=2}^{\infty} \sum_{i_{1}, i_{2}, \ldots, i_{n}} c_{t}\left(i_{1}, \ldots, i_{n}\right) a_{0_{i}}^{\dagger} \cdots a_{0 i_{n}} \\
\tilde{H}_{t}\left(a_{0}\right) & =\sum_{n=2}^{\infty} \sum_{i_{1}, i_{2}, \ldots, i_{n}} c_{t}\left(i_{1}, \ldots, i_{n}\right)\left(\sum_{k=1}^{n} p_{i_{k}}^{+} / 2\right)^{2} a_{0 i_{1}}^{\dagger} \cdots a_{0 i_{n}}
\end{aligned}
$$

$$
\begin{aligned}
H_{t}^{\prime} & =\left[\left[H_{f}, \tilde{H}_{t}\right], H_{t}\right] \\
H_{t} & =H_{f}+g H_{1 t}+g^{2} H_{2 t}+g^{3} H_{3 t}+\ldots \\
H_{1 t}^{\prime} & =\left[\left[H_{f}, \tilde{H}_{1 t}\right], H_{f}\right] \\
H_{1 t} & =f_{t} H_{10} \\
f_{t} & =e^{-t\left(\mathcal{M}_{c}^{2}-\mathcal{M}_{a}^{2}\right)^{2}} \\
H_{A^{3} 1 t} & =\sum_{123} \int[123] \delta(1+2-3) e^{-t \mathcal{M}_{12}^{4}}\left[Y_{123} a_{1}^{\dagger} a_{2}^{\dagger} a_{3}+Y_{123}^{*} a_{3}^{\dagger} a_{2} a_{1}\right]
\end{aligned}
$$

(d)

FIG. 1: Third-order contributions to the three-gluon vertex

$$
\begin{aligned}
H_{A^{3}(1+3) t} & =\sum_{123} \int[123] \delta_{12.3} e^{-t \mathcal{M}_{12}^{4}} V_{t}\left(x, \kappa^{\perp}\right)\left[Y_{123} a_{1}^{\dagger} a_{2}^{\dagger} a_{3}+Y_{123}^{*} a_{3}^{\dagger} a_{2} a_{1}\right] \\
g_{t} & =V_{t}\left(x, 0^{\perp}\right) \\
g_{t} & =g_{0}+\frac{g_{0}^{3}}{48 \pi^{2}} N_{c} 11 \ln \frac{s}{s_{0}} \quad t=s^{4}
\end{aligned}
$$

$$
\text { Hamiltonian } \beta(s) \quad \leftrightarrow \text { Gross-Wilczek-Politzer } \beta(\lambda)
$$

Minkowski $s \quad \leftrightarrow \quad 1 / \lambda$ Euclid

Hydrogen atom analogy

$$
\begin{aligned}
V_{c} & =-\frac{\alpha_{a t o m}}{r} \\
\psi(\vec{r}) & \sim e^{-\alpha_{\text {atom }}|\vec{r}|} \\
\tilde{\psi}(\vec{k}) & \sim \frac{1}{\left[k^{2}+\alpha_{a t o m}^{2} \mu^{2}\right]^{2}} \\
{\left[P^{+} \hat{H}_{Q E D}\left(s_{a t o m}\right)-P^{\perp 2}\right]|\psi P\rangle } & =M_{\text {atom }}^{2}|\psi P\rangle
\end{aligned}
$$

difference between QED and QCD
$\operatorname{RGPEP}\left(g_{t}^{4}\right) \quad \rightarrow \quad$ hadrons

Conclusion

A. third-order RGPEP is just a beginning (4th order \rightarrow breakthrough?)
B. simple generator \rightarrow non-perturbative definition of QCD
C. two-fold universality:

1) Hamiltonian $\leftrightarrow \overline{M S} \quad$ Minkowski $s \leftrightarrow$ Euclid $1 / \lambda$
2) different RGPEP generators
D. SM mass-generation issues \sim QCD mass generation mechanism (?)
E. SM theory issues ~ hierarchy, symmetry breaking, and lc (?)
