

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 -

55 Cracow School of Theoretical Physics

20 - 28/6/2015, Zakopane, Poland

The Lagrangian of QCD and its symmetries

What is a meson?

Conventional mesons and nonconventional mesons

Experiments

Panoramic of candidates of non-connventional mesons

Summary

The Lagrangian of QCD and its symmetries

Born	Giuseppe Lodovico Lagrangia 25 January 1736 Turin
Died	10 April 1813 (aged 77) Paris

The QCD Lagrangian

Antired

Antigreen Antiblue

Quark: u,d,s and c,b,t R,G,B

$$q_{i} = \begin{pmatrix} q_{i}^{R} \\ q_{i}^{G} \\ q_{i}^{B} \end{pmatrix}; i = u, d, s, \dots$$

8 type of gluons ($\overline{RG}, \overline{BG}, \ldots$)

$$\mathcal{L}_{QCD} = \sum_{i=1}^{N_f} \overline{q}_i (i\gamma^\mu D_\mu - m_i) q_i - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$$

Red

Green

Blue

$$A_{\mu}^{a}$$
; $a = 1,..., 8$

Feynman diagrams of QCD Jniwersytet Humanistuczno - Przurodniczu Jana Kochanowskiego w Kielcach $\mathcal{L}_{QCD} = \sum_{i=1}^{N_f} \overline{q}_i (i\gamma^\mu D_\mu - m_i) q_i - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$ 0000000 Quark Gluon ٥ ۵ \sim Gluon-quark-antiquark 3-gluon vertex 4-gluon vertex vertex

Trace anomaly: the emergence of a dimension

Chiral limit: $m_i = 0$

$$x^{\mu} \to x'^{\mu} = \lambda^{-1} x^{\mu}$$

 $g_0 \stackrel{\text{Renormierung}}{\longrightarrow} g(\mu)$

Dimensional transmutation $\Lambda_{YM} \approx 250 \text{ M eV}$

Flavor symmetry

Gluon-quark-antiquark vertex.

It is democratic! The gluon couples to each flavor with the same strength

$$q_i \rightarrow U_{ij} q_j$$

 $U \in U(3)_V \rightarrow U^+U = 1$

 $U(3)_{R} \times U(3)_{L} = U(1)_{R+L} \times U(1)_{R-L} \times SU(3)_{R} \times SU(3)_{L}$

In the chiral limit (mi=0) chiral symmetry is exact

Spontaneous breaking of chiral symmetry

 $U(3)_{R} \times U(3)_{L} = U(1)_{R+L} \times U(1)_{R-L} \times SU(3)_{R} \times SU(3)_{L}$

SSB: $SU(3)_R \times SU(3)_L \rightarrow SU(3)_{V=R+L}$

Chiral symmetry \rightarrow Flavor symmetry

$$\left\langle \overline{q}_{i}q_{i}\right\rangle = \left\langle \overline{q}_{i,R}q_{i,L} + \overline{q}_{i,L}q_{i,R}\right\rangle \neq 0$$

m \approx m_u \approx m_d \approx 5 MeV \rightarrow m^{*} \approx 300 MeV

$$m_{\rho-meson} \approx 2m^*$$

 $m_{proton} \approx 3m^*$

Symmetries of QCD: summary

SU(3)color: exact. Confinement: you never see color, but only white states.

- Dilatation invariance:holds only at a classical level and in the chiral limit.Broken by quantum fluctuations (trace anomaly)and by small quark masses
- **SU(3)**_R**xSU(3)**_L: holds in the chiral limit, but is broken by nonzero quark masses. Moreover, it is spontaneously broken to U(3)V=R+L
- U(1)A=R-L: holds at a classical level, but is also broken by quantum fluctuations (chiral anomaly)

What is a meson?

No ,colored' state has been seen.

Confinement: physical states are white and are called hadrons.

Hadrons can be:

Mesons: bosonic hadrons

Baryons: fermionic hadrons

Definition of mesons: WIkipedia???

${f H}$ Genova, bussano alla p ${f c}$ ${f x}$	S II tradimento? È scritto r × W Meson - Wikipedia, the I ×] <u>∞</u>
🔸 🔿 🕻 🚹 en.wikij	pedia.org/wiki/Meson			50 3
ο Ω W J			Create account Log	in
3 44 7	Article Talk Read Edit View	w history	earch	-
WIKIPEDIA The Free Encyclopedia	Meson			
Main page Contents	From Wikipedia, the free encyclopedia			
Featured content	In particle physics, mesons (/ˈmiːzɒnz/ or /ˈmɛzɒnz/) are hadronic subatomic particles		Mesons	
Current events	composed of one quark and one antiquark, bound together by the strong interaction.			1
Random article	Because mesons are composed of sub-particles, they have a physical size, with a	\rightarrow	K ⁰ K S=+1	
Donate to Wikipedia	diameter roughly one femtometre, $[citation needed]$ which is about $\frac{2}{3}$ the size of a proton or			
vvikipedia store	neutron. All mesons are unstable, with the longest-lived lasting for only a few hundredths		π η π^0 $\pi^{-s=0}$	
Interaction	of a microsecond. Charged mesons decay (sometimes through intermediate particles) to			
Help	form electrons and neutrinos. Uncharged mesons may decay to photons.			
About Wikipedia	······································	м	esons of spin 0 form a nonet	
Community portai	Mesons are not produced by radioactive decay, but appear in nature only as short-lived	Compositio	on Composite—Quarks and	
Contact name	products of very high-energy interactions in matter, between particles made of quarks. In		antiquarks	
	cosmic ray interactions, for example, such particles are ordinary protons and neutrons.	Statistics	Bosonic	
Tools	Mesons are also frequently produced artificially in high-energy particle accelerators that	Interaction	s Strong	
vvnat links here	collide protons, anti-protons, or other particles.	Theorized	Hideki Yukawa (1935)	
Unload file	In nature, the importance of lighter mesons is that they are the associated quantum-field	Discovere	d 1947	
Special pages	narticles that transmit the nuclear force in the same way that photons are the particles	Types	~140 (List)	
Permanent link	that transmit the electromagnetic force. The higher energy (more massive) mesons were	Mass	From 139 MeV/c2 (-++)	
	that transmit the electromagnetic force. The higher energy (more massive) mesons were			

Ξ

H Genova, bussano alla po × S Il tradimento? È scritto r × W Mesone - Wikipedia ×

← → C 🖌 🗋 it.wikipedia.org/wiki/Mesone

🖪 Genova, bussano alla po 🗙 🗸	S Il tradimento? È scritto r × W Meson – Wikipedia ×
> C 🖌 🗋 de.wikipe	dia.org/wiki/Meson 🔚
N W J	Artikel Diskussion Lesen Bearbeiten Versionsgeschichte Suchen Q
WIKIPEDIA Die freie Enzyklopädie	Meson
Hauptseite Themenportale Von A bis Z Zufälliger Artikel	Mesonen (von griechisch: τὸ μέσον (tó méson) "das Mittlere") sind instabile subatomare Teilchen. Aufgebaut aus einem Quark- Antiquark-Paar bilden sie eine der zwei Gruppen von Hadronen. Von der zweiten Hadronengruppe, den Baryonen, unterscheiden sich Mesonen durch ihren ganzzahligen Spin; sie sind somit Bosonen.
Mitmachen Artikel verbessern Neuen Artikel anlegen Autorenportal Hilfe Letzte Änderungen Kontakt Spenden	Der Name "Meson" wurde wegen der mittelschweren Masse des zuerst entdeckten Mesons, des Pions, zwischen Elektron und Proton gewählt. Mesonen entstehen in hochenergetischen Teilchenkollisionen (z. B. in der kosmischen Strahlung oder in Experimenten der Hochenergiephysik) und zerfallen in Sekundenbruchteilen. Sie werden nach der Art der enthaltenen Quarks, ihrem Spin und ihrer Parität klassifiziert. Mittels ihrer Quarks nehmen Mesonen an der starken und schwachen Wechselwirkung sowie der Gravitation teil; elektrisch geladene Mesonen unterliegen zusätzlich der elektromagnetischen Wechselwirkung.
Drucken/exportieren Buch erstellen Als PDF herunterladen Druckversion	Inhaltsverzeichnis [Verbergen] 1 Definition 2 2 Eigenschaften 2.1 Spin und Parität
Werkzeuge Links auf diese Seite Änderungen an	3 Multipletts 4 Namensgebung 4.1 Mesonen ohne Flavour-Quantenzahl

📙 Genova, bussano alla po 🗙	S Il tradimento? È scritto r × W Mezony – Wikipedia, wo ×
← → C A D pl.wikipe	edia.org/wiki/Mezony
δ Ω W J	Utwórz konto Zaloguj się
A 411 7	Artykuł Dyskusja Czytaj Edytuj Edytuj kod źródłowy Historia i autorzy Szukaj Q
WIKIPEDIA Wolna encyklopedia	Mezony [edytuj]
Strona główna Losuj artykuł Kategorie artykułów Najlepsze artykuły Zgłoś błąd Częste pytania (FAQ)	Mezony – cząstki elementarne należące do hadronów, o liczbie barionowej B=0 oraz spinach całkowitych. Mezony zbudowane są z par kwark-antykwark, co jest związane z tym, że wypadkowy ładunek kolorowy cząstki musi być równy zeru (antykwark posiada antykolor kwarku). Wewnętrzna geometria mezonu może być określona poprzez geometrię Bolai-Łobaczewskiego i przypuszczalnie ma, tak jak grawitacja, naturę geometryczną. Historycznie pazwa mezon dotyczyła cząstek o masie pośredniej (no grecku mesos – pośredni) miedzy masa elektrony a masa
Dla czytelników Wyszukaj informacje Użyj informacji O Wikipedii Kontakt Wspomóż Wikipedię	 Protonu. Obecnie do mezonów zalicza się także wiele rezonansów o masach większych od masy protonu. Do metatrwałych (trwałych ze względu na oddziaływanie silne) mezonów należą mezony π (piony), K (kaony), η, D i B, a do rezonansów mezonowych mezony ρ, ω, φ, J/ψ i Y, przy czym zgodnie z regułą OZI lekkie stany mezonów ψ i Y są jednak stosunkowo trwałe^[1].
Dla wikipedystów Pierwsze kroki Centrum pomocy Zasady edytowania	Jądro atomowe, interpretowane jako stany związane barionów, istnieje wskutek wymiany mezonów między barionami. Spis treści [ukryj]
Kawiarenka Ogłoszenia	1 Historia 2 Nazewnictwo
pl.wikipedia.org/wiki/Geometria_hip	erboliczna

🖽 Genova, bussano alla po 🗴 🌘 S Il tradimento? È scritto r 🗴 🐨 W Mesón - Wikipedia, la er 🗴 🔛	
← → C fi 🗋 es.wikipedia.org/wiki/Mesón	5a) =
Artículo Discusión Leer Editar Ver	Crear una cuenta Acceder
WIKIPEDIA La enciclopedia libre Mesón	
Portada Portal de la comunidad ActualidadEn física de partículas, un mesón (del griego antiguo μέσος mésos 'que está en medio) es un bosón que responde a la interacción nuclear fuerte, esto es, un hadrón 	κ ⁰ κ ² S=+1 π η π ⁰ π ² S=0
Página aleatoria antiquark. Se cree que todos los mesones conocidos consisten en un par quark- antiquark. Se cree que todos los mesones conocidos consisten en un par quark- antiquark (los así llamados quarks de valencia) más un "mar" de pares quark-antiquark Notificar un error y gluones virtuales. Está en progreso la búsqueda de mesones exóticos que tienen constituyentes diferentes. Los quarks de valencia pueden existir en una superposición	G=-1 G=-1 Mesones de espín 0 G=+1 Mesones de espín 0
Crear un libro de estados de sabor; por ejemplo, el pion neutro no es ni un par arriba-antiarriba ni un Descargar como PDE par abaio-antiabaio, sino una superposición cuántica igual de ambos. Los mesones	Composición Compuesta - Quarks y antiquarks
Versión para imprimir pseudoescalares (con espín 0) tienen la menor energía en reposo, donde el quark y	Grupo Hadrón
Herramientas antiquark tienen espines opuestos, y luego el mesón vectorial (vector meson) (con	Interacción Nuclear fuerte
Lo que enlaza aquí espín 1), donde el quark y antiquark tienen espines paralelos. Ambos presentan	Teorizada Hideki Yukawa (1935)
Cambios en versiones de mayor energía donde el espín está incrementado por el momento angular	Descubierta 1946
Subir archivo orbital. Todos los mesones son inestables.	Tipos ~140 (Lista)
Páginas especiales Eplace permanente	Masa Entre 139 MeV/c ² (π+) y 9,460 MeV/c ² (Υ)

Definition(s):

- 1) A meson is a strongly interacting particle with integer spin.
- 2) A meson is a strongly interacting particle with zero baryon number.

A meson is not necessarily a quark-antiquark state

Quark: u,d,s,... R,G,B

Quark-antiquark bound states: conventional mesons

$$|color\rangle = \sqrt{1/3}(\overline{R}R + \overline{B}B + \overline{G}G)$$

Conventional mesons/2

Surely, with quark-antiquark states we can understand a lot of QCD, but definitely not everything.

Exotic quantum numbers

Not all quantum numbers are permitted for a quark-antiquark states.

$$J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, \dots$$

are exotic quantum numbers.

Short ex: show it is so! $P = -(-1)^{L}$ $C = (-1)^{L+S}$ $\vec{J} = \vec{L} + \vec{S}$

$$L = S = 0 \rightarrow J^{PC} = 0^{-+}$$
 pseudoscalar mesons

$$\left|\pi^{+}\right\rangle = \left|u\overline{d}\right\rangle \left|\text{space}:L=0\right\rangle \left|\text{spin}:S=0\right\rangle \left|\overline{R}R+\overline{B}B+\overline{G}G\right\rangle$$

$$|\pi^{-}\rangle = |\overline{du}\rangle |\operatorname{space} : L = 0\rangle |\operatorname{spin} : S = 0\rangle |\overline{RR} + \overline{BB} + \overline{GG}\rangle$$
$$|\pi^{0}\rangle = |\overline{uu} - d\overline{d}\rangle |\operatorname{space} : L = 0\rangle |\operatorname{spin} : S = 0\rangle |\overline{RR} + \overline{BB} + \overline{GG}\rangle$$

Flavor symmetry: the 3 pions have the same mass.

$$|K^{+}\rangle = |u\bar{s}\rangle|space: L = 0\rangle|spin: S = 0\rangle|\overline{R}R + \overline{B}B + \overline{G}G\rangle$$

...
$$|D^{0}\rangle = |u\bar{c}\rangle|space: L = 0\rangle|spin: S = 0\rangle|\overline{R}R + \overline{B}B + \overline{G}G\rangle$$

• • •

$$\begin{aligned} \left| \rho^{+} \right\rangle &= \left| u \overline{d} \right\rangle \left| \text{space} : L = 0 \right\rangle \left| \text{spin} : S = 1 \right\rangle \left| \overline{R}R + \overline{B}B + \overline{G}G \right\rangle \end{aligned}$$

$$\begin{aligned} & \cdots \\ \left| K^{*}(892)^{+} \right\rangle &= \left| u \overline{s} \right\rangle \left| \text{space} : L = 0 \right\rangle \left| \text{spin} : S = 1 \right\rangle \left| \overline{R}R + \overline{B}B + \overline{G}G \right\rangle \end{aligned}$$

$$\begin{aligned} & \cdots \\ \left| D^{*0} \right\rangle &= \left| u \overline{c} \right\rangle \left| \text{space} : L = 0 \right\rangle \left| \text{spin} : S = 1 \right\rangle \left| \overline{R}R + \overline{B}B + \overline{G}G \right\rangle \end{aligned}$$

$$\begin{aligned} & \cdots \\ \left| j / \Psi \right\rangle &= \left| c \overline{c} \right\rangle \left| \text{space} : L = 0 \right\rangle \left| \text{spin} : S = 1 \right\rangle \left| \overline{R}R + \overline{B}B + \overline{G}G \right\rangle \end{aligned}$$

L = 0, $S = 1 \rightarrow J^{PC} = 1^{--}$ vector mesons

$$L = S = 1 \rightarrow J^{PC} = 0^{++}$$
 scalar mesons

$$|\sigma\rangle = |u\overline{u} + d\overline{d}\rangle|\text{space}: L = 1\rangle|\text{spin}: S = 1\rangle|\overline{R}R + \overline{B}B + \overline{G}G|$$

corresponds to the resonance $f_0(1370)$.

. . .

. . .

$$|\chi_{c0}(1S)\rangle = |c\overline{c}\rangle|$$
 space : L = 1 \rangle |spin : S = 1 \rangle | $\overline{R}R + \overline{B}B + \overline{G}G\rangle$

PDG quark-antiquark listing/1

Table 15.2: Suggested $q\bar{q}$ quark-model assignments for some of the observed light mesons. Mesons in bold face are included in the Meson Summary Table. The wave functions f and f' are given in the text. The singlet-octet mixing angles from the quadratic and linear mass formulae are also given for the well established nonets. The classification of the 0⁺⁺ mesons is tentative: The light scalars $a_0(980)$, $f_0(980)$, and $f_0(500)$ are often considered as meson-meson resonances or four-quark states, and are omitted from the table. Not shown either is the $f_0(1500)$ which is hard to accommodate in the nonet. The isoscalar 0⁺⁺ mesons are expected to mix. See the "Note on Scalar Mesons" in the Meson Listings for details and alternative schemes.

$n^{2s+1}\ell_J$	J^{PC}	$I = 1$ $u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$ $u\overline{s}, d\overline{s}; \overline{ds}, -\overline{u}s$	I = 0 f'	I = 0 f	$ heta_{ ext{quad}}$ [°]	$ heta_{ m lin}$ [°]
$1 {}^1S_0$	0^{-+}	π	K	η	$\eta'(958)$	-11.4	-24.5
$1 {}^3S_1$	1	ho(770)	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	39.1	36.4
$1 \ {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$		
$1 \ {}^{3}P_{0}$	0++	$a_0(1450)$	$K_{0}^{*}(1430)$	$f_0(1710)$	$f_0(1370)$		
$1 \ {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$		
$1 {}^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_2^\prime(1525)$	$f_2(1270)$	32.1	30.5
$1 \ {}^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$		
$1 \ {}^{3}D_{1}$	1	ho(1700)	$K^*(1680)$		$\omega(1650)$		
$1 \ {}^{3}D_{2}$	2		$K_2(1820)$				
$1 \ {}^{3}D_{3}$	3	$ ho_3(1690)$	$K_{3}^{*}(1780)$	$\phi_3(1850)$	$\omega_3(1670)$	31.8	30.8
1 3F_4	4++	$a_4(2040)$	$K_{4}^{*}(2045)$		$f_4(2050)$		
$1 \ {}^3G_5$	5	$ \rho_5(2350) $	$K_5^*(2380)$				
$1 \ {}^{3}H_{6}$	6++	$a_6(2450)$			$f_6(2510)$		
$2 \ {}^{1}S_{0}$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$		
$2 \ {}^3S_1$	1	ho(1450)	$K^{*}(1410)$	ϕ (1680)	$\omega(1420)$		

[†] The 1^{+±} and 2^{-±} isospin $\frac{1}{2}$ states mix. In particular, the K_{1A} and K_{1B} are nearly equal (45°) mixtures of the $K_1(1270)$ and $K_1(1400)$ The physical vector mesons listed under 1³ D_1 and 2³ S_1 may be mixtures of 1³ D_1 and 2³ S_1 , or even have hybrid components.

PDG quark-antiquark listing/2

Table 15.3: $q\bar{q}$ quark-model assignments for the observed heavy mesons with established J^{PC} . Mesons in bold face are included in the Meson Summary Table.

$n^{2s+1}\ell_J J^{PC}$	$I = 0$ $c\overline{c}$	$I = 0$ $b\overline{b}$	$I = \frac{1}{2}$ $c\overline{u}, c\overline{d}; \overline{c}u, \overline{c}d$	I = 0 $c\overline{s}; \overline{c}s$	$\mathbf{I} = \frac{1}{2}$ $b\overline{u}, \ b\overline{d}; \ \overline{b}u, \ \overline{b}d$	$ I = 0 b\overline{s}; \overline{b}s $	I = 0 $b\overline{c}; \ \overline{b}c$
$1 {}^{1}S_{0} \qquad 0^{-+}$	$\eta_c(1S)$	$\eta_b(1S)$	D	D_s^\pm	В	B_s^0	B_c^\pm
$1 {}^{3}S_{1}$ 1	$J/\psi(1S)$	$\Upsilon(1S)$	D^*	$D_s^{*\pm}$	B^*	B_s^*	
$1 {}^{1}P_{1}$ 1^{+-}	$h_c(1P)$	$h_b(1P)$	$D_1(2420)$	$D_{s1}(2536)^\pm$	$B_1(5721)$	$B_{s1}(5830)^0$	
$1 {}^{3}P_{0} = 0^{++}$	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$	$D_0^*(2400)$	$D_{s0}^{*}(2317)^{\pm \dagger}$			
$1 {}^{3}P_{1}$ 1^{++}	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$	$D_1(2430)$	$D_{s1}(2460)^{\pm\dagger}$			
$1 {}^{3}P_{2} \qquad 2^{++}$	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$	$D_2^{*}(2460)$	$D_{s2}^{*}(2573)^{\pm}$	$B_{2}^{*}(5747)$	$B^*_{s2}(5840)^0$	
$1 {}^{3}D_{1}$ $1^{}$	$\psi(3770)$			$D^*_{s1}(2700)^{\pm}$			
$2 {}^{1}S_{0} \qquad 0^{-+}$	$\eta_c(2S)$		D(2550)				
$2 {}^{3}S_{1}$ 1	$\psi(2S)$	$\Upsilon(2S)$					
$2 {}^{1}P_{1}$ 1 ⁺⁻		$h_b(2P)$					
$2 {}^{3}P_{0,1,2} 0^{++}, 1^{++}, 2^{++}$	$\chi_{c2}(2P)$	$\chi_{b0,1,2}(2P)$					

[†] The masses of these states are considerably smaller than most theoretical predictions. They have also been considered as four-quark states The open flavor states in the 1^{+-} and 1^{++} rows are mixtures of the $1^{+\pm}$ states.

Chiral models: the basic idea

Spontaneous symmetry breaking at the meson level

$$\pi = \pi^0 \equiv \sqrt{1/2} (\overline{u}u - \overline{d}d) \text{ neutral pion}$$
$$\sigma \equiv \sqrt{1/2} (\overline{u}u + \overline{d}d) \equiv f_0(1370)$$

Chiral transformation: $\sigma \leftrightarrow \pi$

$$V = \frac{m_0^2}{2} \left(\sigma^2 + \pi^2\right) + \frac{\lambda}{4} \left(\sigma^2 + \pi^2\right)^2$$

 $m_0^2 < 0 \rightarrow \text{Mexican hat}$ SSB: $\langle \sigma \rangle \propto \langle u\bar{u} + d\bar{d} \rangle \neq 0$

The donkey of Buridan

Jean Buridan (in Latin, Johannes Buridanus) (ca. 1300 – after 1358)

Although Nicolás likes the symmetric food configuration, he must break the symmetry deciding which carrot is more appealing. In three dimensions, there is a continuous valley where Nicolás can move from one carrot to the next without effort.

Picture taken from A. Pich, arXiv:0705.4264 [hep-ph], Cern-Claf Lecture on 'The Standard model of electroweak interactions '

Hadronic Experiments

Photoproduction: Compass at Cern GlueX AND CLAS12 AT Jlab (start soon)

Proton-antiproton (Lear,Fermilab, and in the future: Panda)

The PANDA experiment

Formation process: the energy range in PANDA

 $\overline{p} + p \rightarrow X$

...then X decays in something else (pions,kaons,...)

Antiproton moves, proton at rest

$$E_{\frac{1}{p}} = \sqrt{\dot{q}^{2} + m_{p}^{2}}$$

$$m_{X} = \sqrt{2 m_{p} (m_{p} + E_{\overline{p}})}$$

Short ex: show that it is so!

Using $|\vec{q}| = 1.5 - 10$ GeV: m_x = 2.25 - 4.53 GeV

Theoretical expectations

Glueball spectrum from quenched lattice QCD

The missing pieces of the mesonic spectrum: the glueballs. Where are they?

Hybrid mesons: lattice predictions for 1^-+ hybrids at about 2 GeV

See for instance the review: C. Meyer and E. Swanson, Hybrid Mesons," Prog.\ Part.\ Nucl.\ Phys.\ {\bf 82} (2015) 21 [arXiv:1502.07276 [hep-ph]].

(Many) tetraquark states are predicted in various models. Actually even too many...

See for instance: D. Ebert et al, Excited heavy tetraquarks with hidden charm, Eur. Phys. J. C 58 (2008) 399 [arXiv:0808.3912 [hep-ph]].

Non-quarkonium candidates: light sector

The light scalar mesons

$a_0(980) k(800) f_0(980) f_0(500)$

 $J^{PC} = 0^{++}$

They (most probably!) are not quark-antiquark states!!!

The light scalars can be interpeted as tetraquark state

A tetraquark is the bound state of two diquarks

An example of "good diquark" is: $|qq\rangle = |Space: L=0\rangle |Spin:(\uparrow\downarrow-\downarrow\uparrow\rangle)|f:(ud-du)\rangle |c:(RB-BR)\rangle$

Example:
$$a_0^+(980) = -[\overline{d}, \overline{s}][u, s]$$
 (and not $u\overline{d}$)

$J^{PC} = 0^{++}$	M < 1 GeV	Tetraquark interpretation for horonouskiego w Hielcoch
<i>I</i> = 1	<i>a</i> ₀ (980)	$[u,s][\overline{d},\overline{s}], [\overline{u},\overline{s}][d,s],$ $([u,s][\overline{u},\overline{s}]-[d,s][\overline{d},\overline{s}])$
$I = \frac{1}{2}$	k(800)	$[u,d][\overline{d},\overline{s}], \ [\overline{u},\overline{d}][d,s],$ $[u,d][\overline{u},\overline{s}], \ [\overline{u},\overline{d}][u,s]$
I = 0	$f_0(500)$ $f_0(980)$	$\approx [\overline{u}, \overline{d}][u, d]$ $\approx ([u, s][\overline{u}, \overline{s}] + [d, s][\overline{d}, \overline{s}])$

$J^{PC} = 0^{++}$	M < 1 GeV	Molecular interpretation to Kochanowskiego w Kiekcach
<i>I</i> = 1	$a_0(980)$	KK bound-state
$I = \frac{1}{2}$	k(800)	πK bound-state
I = 0	$f_0(500)$	ππ bound-state
	I ₀ (980)	KK bound-state

Scalars above 1 GeV and scalar glueball candidate

fo(1370) is compatible with a quark-antiquark substructure.

Yet, a large glueball component is expected in f0(1500) and/or in f0(1710).

Latest studies actually point toward fo(1710) as being predominantly gluonic.

Up to now we do not know where it is. A light pseudoscalar glueball was not found yet. Here also the candidates are not so easily found.

 $\eta(1405)$ and $\eta(1475)$ (but much lighter than the lattice value of 2.6 GeV)

X(2370) (BES)

Tensor glueball: candidate

Here it is fog...

The resonance $f_J(2220)$ could be a candidate, if J=2 will be confirmed.

$$J^{PC} = 1^{-+}$$

Π1(1400)

П1(1600)

What are they? They cannot be quark-antiquark states, but they could be hybrid (but mass too low w.r.t. lattice)

or they could be four-quark states

Pseudoscalar glueball

Up to now we do not know where it is. A light pseudoscalar glueball was not found yet. Here also the candidates are not so easily found.

 $\eta(1405)$ and $\eta(1475)$ (but much lighter than the lattice value of 2.6 GeV)

X(2370) (BES)

Non-quarkonium candidates: charmonium sector

X,Y states

State	$M ({\rm MeV})$	$\Gamma ~({\rm MeV})$	J^{PC}	Decay modes	1^{st} observation
X(3823)	3823.1 ± 1.9	< 24	??-	$\chi_{c1}\gamma$	Belle 2013
X(3872)	$3871.68 {\pm} 0.17$	< 1.2	1^{++}	$J/\psi \pi^+\pi^-, J/\psi \pi^+\pi^-\pi^0$	Belle 2003
				$D^0 \bar{D}^0 \pi^0, \ D^0 \bar{D}^0 \gamma$	
				$J/\psi\gamma,\psi(2S)\gamma$	
X(3915)	3917.5 ± 1.9	20 ± 5	0^{++}	$J/\psi\omega,(\gamma\gamma)$	Belle 2004
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$D\bar{D}, (\gamma\gamma)$	Belle 2005
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$?^{?+}$	$D^*\bar{D}, \ D\bar{D}^*$	Belle 2007
G(3900)	3943 ± 21	52 ± 11	$1^{}$	$D\bar{D}, (e^+e^-)$	BABAR 2007
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$J/\psi \pi^+ \pi^-, (e^+ e^-)$	Belle 2007
Y(4140)	4144.5 ± 2.6	15^{+11}_{-7}	$?^{?+}$	$J/\psi\phi$	CDF 2009
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$D^*\bar{D}^*$	Belle 2007
Y(4220)	4216 ± 7	39 ± 17	1	$h_c(1P) \pi^+ \pi^-, (e^+ e^-)$	BESIII 2013
Y(4260)	4263_{-9}^{+8}	95 ± 14	1	$J/\psi \pi^+ \pi^-, J/\psi \pi^0 \pi^0$	BABAR 2005
				$Z_c(3900) \pi, (e^+e^-)$	
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$J/\psi\phi$	CDF 2010
X(4350)	$4350.6_{-5.1}^{+4.6}$	$13.3^{+18.4}_{-10.0}$	$0/2^{++}$	$J/\psi\phi,(\gamma\gamma)$	Belle 2009
Y(4360)	4361 ± 13	74 ± 18	1	$\psi(2S) \pi^+\pi^-, (e^+e^-)$	BABAR 2007
X(4630)	$4634^{+\ 9}_{-11}$	92^{+41}_{-32}	1	$\Lambda_c^+\Lambda_c^-, (e^+e^-)$	Belle 2007
Y(4660)	4664 ± 12	48 ± 15	$1^{}$	$\psi(2S) \pi^+ \pi^-, (e^+ e^-)$	Belle 2007

Z states

State	$M \ ({\rm MeV})$	$\Gamma \ ({\rm MeV})$	J^{PC}	Decay modes	$1^{\rm st}$ observation
$Z_c^+(3885)$	3883.9 ± 4.5	24.8 ± 11.5	$1^{+?}$	$D^{*+}\bar{D}^0, \ D^+\bar{D}^{*0}$	BESIII 2013
$Z_c^+(3900)$	3898 ± 5	51 ± 19	??-	$J/\psi \pi^+$	BESIII 2013
$Z_c^+(4020)$	4022.9 ± 2.8	7.9 ± 3.7	??-	$h_c(1P) \pi^+, D^{*+} \bar{D}^{*0}$	BESIII 2013
$Z_1^+(4050)$	4051_{-43}^{+24}	82^{+51}_{-55}	??+	$\chi_{c1}(1P) \pi^+$	Belle 2008
$Z_2^+(4250)$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$\chi_{c1}(1P) \pi^+$	Belle 2008
$Z^{+}(4430)$	4443_{-18}^{+24}	107^{+113}_{-71}	1^{+-}	$\psi(2S) \pi^+$	Belle 2007

From M. Kavatsyuk for BES, eQCD 2015

X(3872) $M_x = 3871.52 \pm 0.2 \text{ MeV}, \Gamma = 1.3 \pm 0.6 \text{ MeV}, J^{PC} = 1^{++}$

Various works (see Brambilla et al, EPJ C (2011) 71): tetraquark or molecular states the most probable intepretations. (Mass too light when compared to quark-antiquark predictions)

Possibilities: tetraquark? a D-D* molecular state? It could arise due to mesonic loops as a companion pole. The starting seed state is a regular charm-anticharm object. Loops do the rest.

Other unclarified states: open-charm sector

D*so(2317): too light to be a cs, cs quarkonium. J^P = 0⁺, Mass = 2317.8 ± 0.6 MeV

It is a good candidate to be a molecular state / dynamically generated state...

In arXiv: 1405.5861 we find that the quarkonium state of 2.47 GeV and a very large width. Loop effects and companion pole?

Confinement: hadrons

Mesons: not only quark-antiquark states.

Glueballs: the still missing link. They are yet to be found.

States beyond quark-antiquark: light scalar mesons amd related topics.

Region of charm-anticharm states: experimental proof of non-quarkonium states, but different models exist.

Thank You

