Dark Matter and Colliders

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics
Contents

1 Introduction
Contents

1 Introduction
2 Producing WIMPs
Contents

1 Introduction
2 Producing WIMPs
3 Producing Mediators
1 Introduction
2 Producing WIMPs
3 Producing Mediators
4 Summary
 Conditions for Dark Matter Candidates

Requirements for a good DM candidate χ:

- Must have lifetime $\tau_{\chi} \gg \tau_U$
Conditions for Dark Matter Candidates

Requirements for a good DM candidate χ:

- Must have lifetime $\tau_{\chi} \gg \tau_U$
- Must be electrically neutral (otherwise not dark)
Conditions for Dark Matter Candidates

Requirements for a good DM candidate χ:

- Must have lifetime $\tau_\chi \gg \tau_U$
- Must be electrically neutral (otherwise not dark)
- Must have correct relic density: $\Omega_\chi \simeq 0.22$
Conditions for Dark Matter Candidates

Requirements for a good DM candidate χ:

- Must have lifetime $\tau_\chi \gg \tau_U$
- Must be electrically neutral (otherwise not dark)
- Must have correct relic density: $\Omega_\chi \simeq 0.22$

If DM consists of thermally produced “elementary” particles:
Leads to events with missing E_T at colliders!
Conditions for Dark Matter Candidates

Requirements for a good DM candidate χ:

- Must have lifetime $\tau_\chi \gg \tau_U$
- Must be electrically neutral (otherwise not dark)
- Must have correct relic density: $\Omega_\chi \simeq 0.22$

If DM consists of thermally produced “elementary” particles: Leads to events with missing E_T at colliders!

Counter–examples: axions; Gravitinos; FIMPs; dark atoms; primordial black holes; keV neutrinos: not covered in this talk. **Note:** Proves that LHC does *not* “recreate conditions of the early universe”!
The “WIMP Miracle”

Assume χ was in full thermal equilibrium with SM particles at sufficiently high temperature T:

$$\chi \text{ production rate } n_\chi \langle \sigma(\chi \chi \rightarrow \text{SM})v_\chi \rangle > \text{ expansion rate } H$$
The “WIMP Miracle”

Assume χ was in full thermal equilibrium with SM particles at sufficiently high temperature T:

χ production rate $n_\chi \langle \sigma(\chi\chi \rightarrow \text{SM})v_\chi \rangle > $ expansion rate H

- $n_\chi \propto e^{-m_\chi/T}$, $\langle \sigma(\chi\chi \rightarrow \text{SM})v \rangle \propto T^0$ or 2, $H \propto T^2/M_{\text{Planck}}$
The “WIMP Miracle”

- Assume χ was in full thermal equilibrium with SM particles at sufficiently high temperature T:

 χ production rate $n_\chi \langle \sigma(\chi\chi \rightarrow \text{SM}) v_\chi \rangle >$ expansion rate H

- $n_\chi \propto e^{-m_\chi/T}$, $\langle \sigma(\chi\chi \rightarrow \text{SM}) v \rangle \propto T^0 \text{ or } 2$, $H \propto T^2 / M_{\text{Planck}}$

- \Rightarrow equality ("freeze-out") reached at $T_F \simeq m_\chi / 20$
The “WIMP Miracle”

Assume χ was in full thermal equilibrium with SM particles at sufficiently high temperature T:

$$\chi \text{ production rate } n_\chi \langle \sigma(\chi \chi \rightarrow \text{SM})v_\chi \rangle > \text{ expansion rate } H$$

$$n_\chi \propto e^{-m_\chi/T}, \quad \langle \sigma(\chi \chi \rightarrow \text{SM})v \rangle \propto T^0 \text{ or } 2, \quad H \propto T^2 / M_{\text{Planck}}$$

\implies equality (“freeze-out”) reached at $T_F \simeq m_\chi/20$

$$\implies \Omega_\chi h^2 \simeq \frac{0.1 \text{ pb} \cdot c}{\langle \sigma(\chi \chi \rightarrow \text{SM})v \rangle}$$
The “WIMP Miracle”

Assume χ was in full thermal equilibrium with SM particles at sufficiently high temperature T:

\[n_\chi \langle \sigma(\chi\chi \rightarrow \text{SM})v_\chi \rangle > \text{expansion rate } H \]

\[n_\chi \propto e^{-m_\chi/T}, \quad \langle \sigma(\chi\chi \rightarrow \text{SM})v \rangle \propto T^0 \text{ or }^2, \quad H \propto T^2/M_{\text{Planck}} \]

\[\Rightarrow \text{equality ("freeze-out") reached at } T_F \simeq m_\chi/20 \]

\[\Rightarrow \Omega_\chi h^2 \simeq \frac{0.1 \text{ pb} \cdot c}{\langle \sigma(\chi\chi \rightarrow \text{SM})v \rangle} \]

Indicates weak–scale $\chi\chi$ annihilation cross section:

\[\langle \sigma(\chi\chi \rightarrow \text{any})v \rangle \simeq (2 \text{ to } 4.5) \cdot 10^{-26} \text{cm}^3\text{s}^{-1} \]
$\Omega_{\chi} h^2$ can be changed a lot in non–standard cosmologies (involving $T \gg T_{\text{BBN}}$):

- **Increased**: Higher expansion rate $H(T \sim T_F)$; additional non–thermal χ production at $T < T_F$; ...
$\Omega_{\chi} h^2$ can be changed a lot in non–standard cosmologies (involving $T \gg T_{\text{BBN}}$):

- **Increased**: Higher expansion rate $H(T \sim T_F)$; additional non–thermal χ production at $T < T_F$; . . .
- **Decreased**: Reduced expansion rate $H(T \sim T_F)$; entropy production at $T < T_F$; . . .
$\Omega_\chi h^2$ can be changed a lot in non–standard cosmologies (involving $T \gg T_{\text{BBN}}$):

- **Increased**: Higher expansion rate $H(T \sim T_F)$; additional non–thermal χ production at $T < T_F$; . . .

- **Decreased**: Reduced expansion rate $H(T \sim T_F)$; entropy production at $T < T_F$; . . .

Determining $\sigma(\chi\chi \rightarrow \text{SM})$ allows probe of very early Universe, once χ has been established to be “the” DM particle! e.g. MD, Imninniyaz, Kakizaki, arXiv:0704.1590
Direct WIMP production

Even for a standard thermal WIMP, in general one cannot predict the size of the missing E_T signal from $\chi\chi$ production!
Direct WIMP production

Even for a standard thermal WIMP, in general one cannot predict the size of the missing E_T signal from $\chi\chi$ production!

- Thermal WIMP: Only know total $\chi\chi \rightarrow \text{SM}$ cross section; contribution of specific final states $(e^+e^-, u\bar{u} + d\bar{d})$ not known
Direct WIMP production

Even for a standard thermal WIMP, in general one cannot predict the size of the missing E_T signal from $\chi \chi$ production!

- Thermal WIMP: Only know total $\chi \chi \rightarrow \text{SM}$ cross section; contribution of specific final states ($e^+e^-, u\bar{u} + d\bar{d}$) not known

- $\Omega_\chi h^2$ determined from $\sigma(\chi \chi \rightarrow \text{SM})$ near threshold ($T_F \simeq m_\chi/20 \implies s \simeq 4m_\chi^2$). At colliders need ≥ 3 body final state to get signature (e.g. $e^+e^- \rightarrow \chi \chi \gamma$, $q\bar{q} \rightarrow \chi \chi g$) \implies typically need $\sigma(\chi \chi \rightarrow \text{SM})$ at $s \gtrsim 6$ to $10m_\chi^2$!
Parameterize χ interaction with relevant SM fermion through dim–6 operator; e.g. for hadron colliders:

$$\mathcal{L}_{\text{eff}} = G_{\chi,q} \bar{\chi} \Gamma \chi \bar{q} \Gamma q q$$
“Model-independent” approach

Parameterize χ interaction with relevant SM fermion through dim–6 operator; e.g. for hadron colliders:

$$\mathcal{L}_{\text{eff}} = G_{\chi,q} \bar{\chi} \Gamma_{\chi} \chi \bar{q} \Gamma_q q$$

χ Majorana $\Rightarrow \Gamma_{\chi} \in \{1, \gamma_5, \gamma_\mu \gamma_5\}$

$\Gamma_q \in \{1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5\}$

If $\Gamma_{\chi}, \Gamma_q \in \{1, \gamma_5\}$: $G_{\chi,q} = m_q/(2M^3_*)$ (chirality violating!),

"Model-independent" approach

Parameterize χ interaction with relevant SM fermion through dim–6 operator; e.g. for hadron colliders:

$$L_{\text{eff}} = G_{\chi,q} \bar{\chi} \Gamma_{\chi} \chi \bar{q} \Gamma_{q} q$$

χ Majorana $\implies \Gamma_{\chi} \in \{1, \gamma_5, \gamma_\mu \gamma_5\}$

$\Gamma_{q} \in \{1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5\}$

If $\Gamma_{\chi}, \Gamma_{q} \in \{1, \gamma_5\}$: $G_{\chi,q} = m_q/(2M_*^3)$ (chirality violating!),

Compare monojet signal from $q\bar{q} \rightarrow \chi\chi g$ with monojet limits (current bound) and background (ultimate reach)!
UV completion

Approach can only work if the “mediator” mass m_M is (much) larger than the highest relevant momentum scale:

$m_M \gg 2m_\chi$, missing $E_T \sim 400$ GeV
UV completion

Approach can only work if the “mediator” mass m_M is (much) larger than the highest relevant momentum scale: $m_M \gg 2m_\chi$, missing $E_T \sim 400$ GeV

LHC can only hope to be sensitive if χ couples to quarks at tree level.
UV completion

Approach can only work if the “mediator” mass m_M is (much) larger than the highest relevant momentum scale:

$$m_M \gg 2m_\chi, \text{ missing } E_T \simeq 400 \text{ GeV}$$

LHC can only hope to be sensitive if χ couples to quarks at tree level. Two options:

s–channel

$$G_{\chi,q} = \frac{g_\chi g_q}{m_M^2}$$

t–channel

$$G_{\chi,q} = \frac{g_M^2}{m_M^2}$$
Types of interactions

Spin–indep interaction: $\Gamma_\chi = 1$
Types of interactions

Spin–indep interaction: $\Gamma_{\chi} = 1$

$\Rightarrow G_{\chi,q} \propto m_q$ (chirality)
Types of interactions

Spin–indep interaction: $\Gamma_\chi = 1$

$\Rightarrow G_{\chi,q} \propto m_q$ (chirality)

\Rightarrow Current and future LHC reach only competitive for $m_\chi < 5$ GeV!
Types of interactions

Spin–indep interaction: $\Gamma_\chi = 1$

$\Rightarrow G_{\chi,q} \propto m_q$ (chirality)

\Rightarrow Current and future LHC reach only competitive for $m_\chi < 5 \text{ GeV}$!

\Rightarrow Focus on spin–dep interaction: $\Gamma_\chi = \gamma_5\gamma^\mu$, $\Gamma_q = \gamma_5\gamma^\mu$

For spin $-1/2$ WIMP: from spin -1 exchange in s–channel and/or spin -0 exchange in t–channel
Types of interactions

Spin–indep interaction: \(\Gamma_\chi = 1 \)

\[\Rightarrow G_{\chi,q} \propto m_q \text{ (chirality)} \]

\[\Rightarrow \text{Current and future LHC reach only competitive for } m_\chi < 5 \text{ GeV!} \]

\[\Rightarrow \text{Focus on spin–dep interaction: } \Gamma_\chi = \gamma_5 \gamma^\mu, \Gamma_q = \gamma_5 \gamma_\mu \]

For spin–1/2 WIMP: from spin–1 exchange in \(s \)–channel and/or spin–0 exchange in \(t \)–channel

Case \(\Gamma_\chi = \Gamma_q = \gamma_5 \) also has poor LHC reach. Gives velocity–dependent interaction for \(\chi p \rightarrow \chi p \) \(\Rightarrow \) very poor reach in direct detection as well
Monojet analysis is not model-independent!

Contributing diagrams:

\[M \propto g_S G_{\chi,q} \]
Monojet analysis is not model-independent!

Contributing diagrams:

\[\mathcal{M} \propto g S G_{\chi,q} \]

\[\mathcal{M} \propto G_{\chi,q} G_{\chi,q'} \]
Monojet analysis is not model-independent!

Contributing diagrams:

\[\mathcal{M} \propto g_S G_{\chi,q} \]
\[\mathcal{M} \propto G_{\chi,q} G_{\chi,q'} \]
\[\mathcal{M} \propto G_{\chi,q} G_{q,q'} \]

\[G_{q,q'} = \begin{cases}
\frac{g_q g_{q'}}{m_\mathcal{M}^2}, & s - \text{channel} \\
0, & t - \text{channel}
\end{cases} \]
Monojet analysis is not model-independent!

Contributing diagrams:

\[\mathcal{M} \propto g_S G_{\chi,q} \]

\[\mathcal{M} \propto G_{\chi,q} G_{\chi,q'} \]

\[G_{q,q'} = \begin{cases} \frac{g_q g_{q'}}{m^2_{\mathcal{M}}}, & s - \text{channel} \\ 0, & t - \text{channel} \end{cases} \]

Bound on \(\Lambda^2 \equiv 1/G_{\chi,q} \) depends on ratio \(g_\chi/g_q \)!
Monojet analysis is not model-independent!

Contributing diagrams:

\[\mathcal{M} \propto g_S G_{\chi,q} \]

\[\mathcal{M} \propto G_{\chi,q} G_{\chi,q'} \]

\[G_{q,q'} = \begin{cases} \frac{g_q g_{q'}}{m^2_{\mathcal{M}}}, & s - \text{channel} \\ 0, & t - \text{channel} \end{cases} \]

Bound on \(\Lambda^2 \equiv 1/G_{\chi,q} \) depends on ratio \(g_{\chi}/g_q \)!

For \(s \)–channel: bound on \(4q \) contact interaction stronger than bound from monojet searches, unless \(g_{\chi} \gg g_q \)!
Bounds on Λ

S. Belwal, MD, J.S. Kim, in preparation

95% CL limit on Lambda obtained as a function of WIMP mass

Lambda (GeV) vs WIMP mass (GeV)
Promising collider searches

Look for mediators!
Promising collider searches

Look for mediators!

$t-$channel: mediator carries color \Rightarrow can be pair-produced!

E.g. SUSY: $m_{\tilde{q}} \gtrsim 1.4$ TeV if $m_{\tilde{q}} \simeq m_{\tilde{g}}$ (for 1st, 2nd gen. squarks)
Promising collider searches

Look for mediators!

t–channel: mediator carries color \Rightarrow can be pair–produced!
E.g. SUSY: $m_{\tilde{q}} \gtrsim 1.4$ TeV if $m_{\tilde{q}} \simeq m_{\tilde{g}}$ (for 1st, 2nd gen. squarks)

s–channel: on–shell production of single mediator from $q\bar{q}$ annihilation! E.g. Z' searches; search for invisible Higgs decays in “Higgs portal” models.
Promising collider searches

Look for mediators!

$t-$channel: mediator carries color \Rightarrow can be pair-produced!
E.g. SUSY: $m_{\tilde{q}} \gtrsim 1.4$ TeV if $m_{\tilde{q}} \simeq m_{\tilde{g}}$ (for 1st, 2nd gen. squarks)

$s-$channel: on-shell production of single mediator from $q\bar{q}$ annihilation!
E.g. Z' searches; search for invisible Higgs decays in “Higgs portal” models.

For perturbative couplings: search for off-shell mediator $\rightarrow \chi\chi$ is hopeless!
E.g. SUSY: signal for $\tilde{\chi}\tilde{\chi} j$ is much smaller than $Z (\rightarrow \nu\bar{\nu}) j$ background, even for 100 GeV higgsino-like $\tilde{\chi}$

(Baer, Mustafayev, Tata, arXiv:1401.1162)
DM and Light (Gauge) Bosons

(At least) 3 kinds of WIMP models require light ($m \leq \text{few GeV}$) (gauge) bosons U:

- **MeV DM**: Suggested as explanation of 511 keV line (\Rightarrow slow e^+) excess from central region of our galaxy (Boehm et al., astro-ph/0309686). **Should have** $m_\chi \leq 10$ MeV (γ constraints)

 $\Rightarrow m_\chi \leq m_U \leq 200$ MeV to mediate $\chi\chi \rightarrow e^+e^-$; fixes $g_U\chi\chi g_{Ue^+e^-}/m_U^2$! (Unless $2m_\chi \simeq m_U$.)
DM and Light (Gauge) Bosons

(At least) 3 kinds of WIMP models require light \((m \leq \text{few GeV}) \) (gauge) bosons \(U \):

- **MeV DM**: Suggested as explanation of 511 keV line (\(\Rightarrow \) slow \(e^+ \)) excess from central region of our galaxy (Boehm et al., astro-ph/0309686). Should have \(m_\chi \leq 10 \text{ MeV} \) (\(\gamma \) constraints)
 \[\Rightarrow m_\chi \leq m_U \leq 200 \text{ MeV to mediate } \chi\chi \rightarrow e^+e^-; \text{ fixes } g_U \chi\chi g_U e^+e^-/m_U^2! \] (Unless \(2m_\chi \simeq m_U \).)

- **PAMELA/FermiLAT inspired TeV DM**: Needs light boson for Sommerfeld enhancement (e.g. Arkani-Hamed et al., arXiv:0810.0713(4)) \(\chi\chi \rightarrow UU \rightarrow 4l \) is also somewhat less constrained by \(\gamma \) spectrum than \(\chi\chi \rightarrow 2l \).
DAMA/CoGeNT inspired few GeV DM: Needs light mediator to achieve sufficiently large $\sigma_{\chi p}$. (2 different mediators for isospin violation to evade bounds: Cline, Frey, arXiv:1108.1391)
In all cases: U couplings to (most) SM particles must be $\ll 1$ to evade bounds! ($g_\mu - 2$, meson decays, ν cross sections, APV, . . .).
Light Gauge Bosons (cont’d)

In all cases: U couplings to (most) SM particles must be $\ll 1$ to evade bounds! ($g_\mu - 2$, meson decays, ν cross sections, APV, ...).

Possible explanation: kinetic mixing with γ/B boson! Is 1-loop effect \Rightarrow squared $U f \bar{f}$ coupling is $\mathcal{O}(\alpha^3)$.
In all cases: U couplings to (most) SM particles must be $\ll 1$ to evade bounds! ($g_\mu - 2$, meson decays, ν cross sections, APV, ...).

Possible explanation: kinetic mixing with γ/B boson! Is 1-loop effect \Rightarrow squared $U f \bar{f}$ coupling is $O(\alpha^3)$.

$U \chi \chi$ coupling may well be large.
Signatures of light gauge bosons

If $m_U > 2m_\chi$: $U \to \chi\chi$ dominant! Is invisible \Rightarrow need extra tag, e.g. $e^+e^- \to \gamma U \to \gamma +$ nothing.
Signatures of light gauge bosons

If $m_U > 2m_\chi$: $U \rightarrow \chi\chi$ dominant! Is invisible \Rightarrow need extra tag, e.g. $e^+e^- \rightarrow \gamma U \rightarrow \gamma +$ nothing.

Physics background $\propto s \Rightarrow$ lower energy is better!

Borodatchenko, Choudhury, MD, hep-ph/0510147
Signatures of light gauge bosons

If $m_U > 2m_\chi$: $U \rightarrow \chi\chi$ dominant! Is invisible \Rightarrow need extra tag, e.g. $e^+e^- \rightarrow \gamma U \rightarrow \gamma +$ nothing.

Physics background $\propto s \Rightarrow$ lower energy is better!

Instrumental backgrounds (not from e^+e^- annihilation) seem large

Borodatchenkova, Choudhury, MD, hep-ph/0510147
Sensitivity at $B-$factories (100 fb$^{-1}$)

Red, black: Regions allowed by Ω_χ, $\sigma(\chi\chi \rightarrow e^+e^-)$.
Signatures of light gauge bosons (cont.d)

If $m_U < 2m_\chi$: $U \rightarrow \ell^+ \ell^-$
Signatures of light gauge bosons (cont.d)

If $m_U < 2m_\chi$: $U \rightarrow \ell^+ \ell^-$

Sufficiently light U can even be produced in fixed–target experiments: $e^- N \rightarrow e^- e^+ e^- N$ (tridents), with peak in $M_{e^+ e^-}$
If $m_U < 2m_\chi$: $U \rightarrow \ell^+\ell^-$

Sufficiently light U can even be produced in fixed–target experiments: $e^- N \rightarrow e^- e^+ e^- N$ (tridents), with peak in $M_{e^+e^-}$

Signatures of light gauge bosons (cont.d)

If $m_U < 2m_\chi$: $U \rightarrow \ell^+\ell^-$

Sufficiently light U can even be produced in fixed–target experiments: $e^-N \rightarrow e^-e^+e^-N$ (tridents), with peak in $M_{e^+e^-}$

Also, KLOE-2 performed search, mostly for $\phi \rightarrow U\eta$: no signal. arXiv:1107.2531
A1 results
Saw above: WIMP searches at colliders not promising, *if* WIMP is only accessible new particle. Fortunately, in many cases the WIMP is the lightest of *many* new particles! True in SUSY. (Also in Little Higgs, UED.)
Saw above: WIMP searches at colliders not promising, \textit{if} WIMP is only accessible new particle. Fortunately, in many cases the WIMP is the lightest of \textit{many} new particles! True in SUSY. (Also in Little Higgs, UED.)

Recall: Primary motivation for SUSY \textit{not} related to DM!
SUSY DM and the LHC

Saw above: WIMP searches at colliders not promising, if WIMP is only accessible new particle. Fortunately, in many cases the WIMP is the lightest of many new particles! True in SUSY. (Also in Little Higgs, UED.)

Recall: Primary motivation for SUSY not related to DM!

- Stabilizes hierarchy $m_{\text{Higgs}}^2 \ll M_{\text{Planck}}^2$
SUSY DM and the LHC

Saw above: WIMP searches at colliders not promising, if WIMP is only accessible new particle. Fortunately, in many cases the WIMP is the lightest of many new particles! True in SUSY. (Also in Little Higgs, UED.)

Recall: Primary motivation for SUSY not related to DM!

- Stabilizes hierarchy $m^2_{\text{Higgs}} \ll M^2_{\text{Planck}}$
- Allows unification of gauge couplings
Saw above: WIMP searches at colliders not promising, *if* WIMP is only accessible new particle. Fortunately, in many cases the WIMP is the lightest of *many* new particles! True in SUSY. (Also in Little Higgs, UED.)

Recall: Primary motivation for SUSY *not* related to DM!

- Stabilizes hierarchy $m_{\text{Higgs}}^2 \ll M_{\text{Planck}}^2$
- Allows unification of gauge couplings
- In scenarios with unified Higgs masses: EWSB *requires* sizable hierarchy! (Not in NUHM2.)
Saw above: WIMP searches at colliders not promising, *if* WIMP is only accessible new particle. Fortunately, in many cases the WIMP is the lightest of *many* new particles! True in SUSY. (Also in Little Higgs, UED.)

Recall: Primary motivation for SUSY *not* related to DM!

- Stabilizes hierarchy $m_{\text{Higgs}}^2 \ll M_{\text{Planck}}^2$
- Allows unification of gauge couplings
- In scenarios with unified Higgs masses: EWSB *requires* sizable hierarchy! (Not in NUHM2.)
- HLS theorem, relation to superstrings: don’t single out weak scale.
Features of SUSY

- Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2
Features of SUSY

- Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2
- Need at least 2 Higgs doublets (anomalies, $m_t \cdot m_b \neq 0$)
Features of SUSY

- Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2
- Need at least 2 Higgs doublets (anomalies, $m_t \cdot m_b \neq 0$)
- SUSY implies equal masses for partners \implies SUSY must be broken
Features of SUSY

- Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2
- Need at least 2 Higgs doublets (anomalies, $m_t \cdot m_b \neq 0$)
- SUSY implies equal masses for partners \implies SUSY must be broken
- Naturalness: sparticle masses should be at weak scale (strictly true only for 3rd generation, elw gauginos)
Features of SUSY

- Need superpartner for each SM particle: Same rep. of gauge group, spin differs by 1/2
- Need at least 2 Higgs doublets (anomalies, $m_t \cdot m_b \neq 0$)
- SUSY implies equal masses for partners \implies SUSY must be broken
- Naturalness: sparticle masses should be at weak scale (strictly true only for 3rd generation, elw gauginos)
- In simplest, R–parity invariant scenario: lightest superparticle LSP is stable: satisfies one condition for DM candidate!
SUSY DM candidate: neutralino $\tilde{\chi}_1^0$

- Mixture of \tilde{B}, \tilde{W}_3, \tilde{h}_u^0, \tilde{h}_d^0
SUSY DM candidate: neutralino $\tilde{\chi}_1^0$

- Mixture of \tilde{B}, \tilde{W}_3, \tilde{h}_u, \tilde{h}_d

- In constrained models: often is lightest sparticle in visible sector! (Other possibility: lightest stau $\tilde{\tau}_1$)
SUSY DM candidate: neutralino $\tilde{\chi}_1^0$

- Mixture of \tilde{B}, \tilde{W}_3, \tilde{h}_u^0, \tilde{h}_d^0

- In constrained models: often is lightest sparticle in visible sector! (Other possibility: lightest stau $\tilde{\tau}_1$)

- In “most” of parameter space: $\tilde{\chi}_1^0 \simeq \tilde{B}$, and predicted $\Omega_{\tilde{\chi}_1^0} h^2$ too large! $\mathcal{O}(1 \text{ to } 10)$ rather than $\mathcal{O}(0.1)$ in standard cosmology,
SUSY DM candidate: neutralino $\tilde{\chi}^0_1$

- Mixture of \tilde{B}, \tilde{W}_3, \tilde{h}^0_u, \tilde{h}^0_d

- In constrained models: often is lightest sparticle in visible sector! (Other possibility: lightest stau $\tilde{\tau}_1$)

- In “most” of parameter space: $\tilde{\chi}^0_1 \simeq \tilde{B}$, and predicted $\Omega_{\tilde{\chi}^0_1} h^2$ too large! $\mathcal{O}(1 \text{ to } 10)$ rather than $\mathcal{O}(0.1)$ in standard cosmology,

- but DM–allowed regions of parameter space do exist even in constrained models!
Regions with correct $\Omega_{\tilde{\chi}_1} h^2$

- Co–annihilation region: $m_{\tilde{\chi}_1} \simeq m_{\tilde{\tau}_1}$
Regions with correct $\Omega_{\tilde{\chi}_1^0} h^2$

- Co–annihilation region: $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$
- Higgs funnel(s): $m_{\tilde{\chi}_1^0} \simeq m_h/2, m_A/2$
Regions with correct $\Omega_{\tilde{\chi}_1^0} h^2$

- Co–annihilation region: $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$
- Higgs funnel(s): $m_{\tilde{\chi}_1^0} \simeq m_h/2, m_A/2$
- Well–tempered neutralino: $\mu - M_1 \leq M_Z \implies \tilde{\chi}_1^0$ is $\tilde{B} - \tilde{h}^0$ mixture. (Requires $m_{\tilde{q}} \gg m_{\tilde{g}}$ in cMSSM; can be arranged “anywhere” in NUHM.)
Regions with correct $\Omega_{\tilde{\chi}_1^0} h^2$

- Co–annihilation region: $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$
- Higgs funnel(s): $m_{\tilde{\chi}_1^0} \simeq m_h/2, \ m_A/2$
- Well–tempered neutralino: $\mu - M_1 \leq M_Z \implies \tilde{\chi}_1^0$ is $\tilde{B} - \tilde{h}_0$ mixture. (Requires $m_{\tilde{q}} \gg m_{\tilde{g}}$ in cMSSM; can be arranged “anywhere” in NUHM.)
- Heavy higgsino: Needs $|\mu| \simeq 1.1 \text{ TeV}$: naturalness? Can be arranged in cMSSM.
Regions with correct $\Omega_{\tilde{\chi}_1^0} h^2$

- Co–annihilation region: $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$
- Higgs funnel(s): $m_{\tilde{\chi}_1^0} \simeq m_h/2, m_A/2$
- Well–tempered neutralino: $\mu - M_1 \leq M_Z \implies \tilde{\chi}_1^0$ is $\tilde{B} - \tilde{h}^0$ mixture. (Requires $m_{\tilde{q}} \gg m_{\tilde{g}}$ in cMSSM; can be arranged “anywhere” in NUHM.)
- Heavy higgsino: Needs $|\mu| \simeq 1.1$ TeV: naturalness? Can be arranged in cMSSM.
- Very heavy wino: Needs $|M_2| \simeq 3$ TeV: naturalness??? Not possible in cMSSM.
Regions with correct $\Omega_{\tilde{\chi}_1}^0 h^2$

- Co–annihilation region: $m_{\tilde{\chi}_1}^0 \simeq m_{\tilde{\tau}_1}$

- Higgs funnel(s): $m_{\tilde{\chi}_1}^0 \simeq m_h/2, \ m_A/2$

- Well–tempered neutralino: $\mu - M_1 \leq M_Z \implies \tilde{\chi}_1^0$ is $\tilde{B} - \tilde{h}^0$ mixture. (Requires $m_{\tilde{q}} \gg m_{\tilde{g}}$ in cMSSM; can be arranged “anywhere” in NUHM.)

- Heavy higgsino: Needs $|\mu| \simeq 1.1 \text{ TeV}$: naturalness? Can be arranged in cMSSM.

- Very heavy wino: Needs $|M_2| \simeq 3 \text{ TeV}$: naturalness?? Not possible in cMSSM.

- Note: DM–allowed region of $\left(m_0, m_{1/2}\right)$ plane of cMSSM depends on $A_0, \tan \beta$!
Generic SUSY searches at LHC

Strongly interacting sparticles have biggest cross sections; may decay via long decay “cascades”. Example:

\[gg \rightarrow \tilde{g}\tilde{g} \rightarrow (\tilde{b}_1 \bar{b}) (\tilde{u}_L \bar{u}) \]
\[\rightarrow (\tilde{\chi}^0_2 b\bar{b}) (\tilde{\chi}^+_1 d\bar{u}) \]
\[\rightarrow (\tilde{\chi}^0_1 e^+ e^- b\bar{b}) (\tilde{\chi}^0_1 c\bar{s}d\bar{u}) \]
Generic SUSY searches at LHC

Strongly interacting sparticles have biggest cross sections; may decay via long decay “cascades”. Example:

\[gg \rightarrow \tilde{g}\tilde{g} \rightarrow (\tilde{b}_1 \bar{b}) (\tilde{u}_L \bar{u}) \]
\[\rightarrow (\tilde{\chi}^0_2 b\bar{b}) (\tilde{\chi}^+_1 d\bar{d}) \]
\[\rightarrow (\tilde{\chi}^0_1 e^+ e^- b\bar{b}) (\tilde{\chi}^0_1 c\bar{s}d\bar{u}) \]

Always contains two \(\tilde{\chi}^0_1 \), i.e. always contains missing \(E_T \)!
Generic SUSY searches at LHC

Strongly interacting sparticles have biggest cross sections; may decay via long decay “cascades”. Example:

\[gg \rightarrow \tilde{g}\tilde{g} \rightarrow (\tilde{b}_1 \bar{b}) (\tilde{u}_L \bar{u}) \]
\[\rightarrow (\tilde{\chi}_2^0 b \bar{b}) (\tilde{\chi}_1^+ d \bar{u}) \]
\[\rightarrow (\tilde{\chi}_1^0 e^+ e^- b \bar{b}) (\tilde{\chi}_1^0 c \bar{s} d \bar{u}) \]

Always contains two \(\tilde{\chi}_1^0 \), i.e. always contains missing \(E_T \)!

In addition, can contain jets (w/ or w/o \(b \)-tag), leptons, reconstructed gauge or Higgs bosons, photons
Generic SUSY searches at LHC

Strongly interacting sparticles have biggest cross sections; may decay via long decay “cascades”. Example:

\[gg \rightarrow \tilde{g}\tilde{g} \rightarrow (\tilde{b}_1 \bar{b}) (\tilde{u}_L \bar{u}) \]
\[\quad \rightarrow (\tilde{\chi}_2^0 b \bar{b}) (\tilde{\chi}_1^+ d \bar{u}) \]
\[\quad \rightarrow (\tilde{\chi}_0^0 e^+ e^- b \bar{b}) (\tilde{\chi}_1^0 c \bar{s} d \bar{u}) \]

Always contains two \(\tilde{\chi}_1^0 \), i.e. always contains missing \(E_T \)!

In addition, can contain jets (w/ or w/o \(b \)–tag), leptons, reconstructed gauge or Higgs bosons, photons

\(\mathcal{O}(100) \) searches have been performed, but no signal has been found.
Impact of LHC searches

Is model dependent: mostly probe \tilde{g}, \tilde{q} sector so far! Here: Assume cMSSM for definiteness.
Impact of LHC searches

Is model dependent: mostly probe \tilde{g}, \tilde{q} sector so far! Here: Assume cMSSM for definiteness.

- Well–tempered neutralino, A–pole need large $m_{\tilde{q}}$:

 $m_{\tilde{g}} \geq 1.1$ TeV
Impact of LHC searches

Is model dependent: mostly probe \tilde{g}, \tilde{q} sector so far! Here: Assume cMSSM for definiteness.

- Well–tempered neutralino, A–pole need large $m_{\tilde{q}}$: $m_{\tilde{g}} \geq 1.1$ TeV

- $\tilde{\tau}_1$ co–annihilation requires $m_{\tilde{q}} \leq m_{\tilde{g}}$: good for LHC searches; still plenty of allowed region left: $m_{\tilde{\tau}_1} \geq 340$ GeV (Buchmueller et al., arXiv:1312.5250)
Impact of LHC searches

Is model dependent: mostly probe \tilde{g}, \tilde{q} sector so far! Here: Assume cMSSM for definiteness.

- **Well–tempered neutralino, A–pole need large $m_{\tilde{q}}$:**

 $$m_{\tilde{g}} \geq 1.1 \text{ TeV}$$

- $\tilde{\tau}_1$ co–annihilation requires $m_{\tilde{q}} \leq m_{\tilde{g}}$: good for LHC searches; still plenty of allowed region left: $m_{\tilde{\tau}_1} \geq 340 \text{ GeV}$ (Buchmueller et al., arXiv:1312.5250)

- **In pMSSM10: $m_{\tilde{\chi}_1^0} \simeq 50 \text{ GeV still ok!}$** de Vries et al., arXiv:1504.03260
Impact of direct WIMP Searches

- LUX probes much of well–tempered neutralino
Impact of direct WIMP Searches

- LUX probes much of well-tempered neutralino
- Signals in other regions very small
Impact of Future WIMP Discovery at Collider

Generically: could determine:

- **WIMP mass**: Very useful for indirect searches (greatly reduced “look elsewhere” problem); less so for direct searches, once $m_\chi \geq m_N$
Impact of Future WIMP Discovery at Collider

Generically: could determine:

- **WIMP mass**: Very useful for indirect searches (greatly reduced “look elsewhere” problem); less so for direct searches, once $m_\chi \geq m_N$

- **WIMP couplings**: Determine cross sections and final states in indirect searches; determine cross sections in direct searches
Generically: could determine:

- **WIMP mass**: Very useful for indirect searches (greatly reduced “look elsewhere” problem); less so for direct searches, once $m_\chi \geq m_N$

- **WIMP couplings**: Determine cross sections and final states in indirect searches; determine cross sections in direct searches

- **Most interesting to me**: Predict $\Omega_\chi h^2$, compare with observation: Constrain very early universe!
“Model independent approach” not usefully applicable to most models!
Summary

- "Model independent approach" not usefully applicable to most models!
- Direct WIMP searches ("mono-X") not promising for weakly coupled WIMPs
Summary

- “Model independent approach” not usefully applicable to most models!
- Direct WIMP searches (“mono-X”) not promising for weakly coupled WIMPs
- Searches for mediators are promising at colliders!
Summary

- “Model independent approach” not usefully applicable to most models!
- Direct WIMP searches (“mono-X”) not promising for weakly coupled WIMPs
- Searches for mediators are promising at colliders!
- Scenarios with new light gauge bosons with suppressed couplings to SM fermions are now being probed at low-E colliders, fixed-target expts.
Summary

- "Model independent approach" not usefully applicable to most models!

- Direct WIMP searches ("mono-X") not promising for weakly coupled WIMPs

- Searches for mediators are promising at colliders!

- Scenarios with new light gauge bosons with suppressed couplings to SM fermions are now being probed at low-E colliders, fixed-target expts.

- Absence of missing E_T signal at LHC is disappointing, but plenty of parameter space in reasonably well motivated WIMP models left to explore