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What we need

Averaged over Universe: ΩDMh2 = 0.1188 ± 0.0010 (Planck
2015)
Since h2 ≃ 0.5: Need ∼ 20% of critical density in

Matter (with negligible pressure, w ≡ p/E ≃ 0)

which still survives today (lifetime τ ≫ 1010 yrs)

and does not couple to elm radiation
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Need for non–baryonic DM

Total baryon density is determined by:

Big Bang Nucleosynthesis

Analyses of CMB data

Consistent result: Ωbarh
2 ≃ 0.02

=⇒ Need non–baryonic DM!
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Need for exotic particles

Only possible non–baryonic particle DM in SM: Neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 ≤ 0.003

=⇒ Need exotic particles as DM!

Possible loophole: primordial black holes; not easy to make
in sufficient quantity sufficiently early.
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Remarks
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assumption of “standard cosmology”, including
assumption of nearly scale–invariant primordial
spectrum of density perturbations: almost assumes
inflation!
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Remarks

Precise “Planck” determination of DM density hinges on
assumption of “standard cosmology”, including
assumption of nearly scale–invariant primordial
spectrum of density perturbations: almost assumes
inflation!

Evidence for ΩDM >∼ 0.2 much more robust than that!
(Does, however, assume standard law of gravitation.)

No known model of gravity can explain early structure
formation w/o introducing some sort of Dark Matter!
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Particle DM: Possibilities

Theorist’s tasks:

Introduce right kind of particle (stable, neutral,
non–relativistic)

Make enough (but not too much) of it in early universe

There are many possible ways to solve these tasks!

=⇒ Use theoretical “prejudice” as guideline: Model should
be simple and/or should solve some other problem!
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Classes of Candidates 1

ALPs (Axion–like particles): Very light
pseudo–Goldstone bosons. Example: QCD axion:

Introduced to solve strong CP problem

Mass ma <∼ 10−3 eV

Direct detection difficult, but possible

WIMPs (Weakly Interacting Massive Particles).
Example: lightest neutralino

Required in supersymmetrized SM
10 GeV <∼ mχ̃ <∼ 1 TeV

Direct detection probably difficult, but possible

Proliferation of WIMP candidates in recent years
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Serve no purpose other than DM
Wide range of masses possible
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couplings

Gravitino G̃: Majorana spin–3/2 fermion
Required in supersymmetrized theory of gravity
100 eV <∼ mG̃

<∼ 1 TeV

Dark Matter Candidates – p. 9/33



Particle Candidates 2

FIMPs (Feebly Interacting Massive Particles):
Interactions with SM particles much weaker than usual
weak interactions

Serve no purpose other than DM
Wide range of masses possible
Basically not detectable, due to extremely small
couplings

Gravitino G̃: Majorana spin–3/2 fermion
Required in supersymmetrized theory of gravity
100 eV <∼ mG̃

<∼ 1 TeV

Direct detection is virtually impossible
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Making DM

Principal possibilities:

DM was in thermal equilibrium:
Implies lower bounds on temperature TR and on χ
production cross section
ΩDM depends on particle physics and expansion
history [Hubble parameter H(T ) ]
Example: WIMP χ with TR > 0.1mχ

DM production from thermal plasma:

Thermal equilibrium may never have been achieved
(low TR and/or low interaction rate)
ΩDM depends on particle physics, H(T ) (and TR)

Examples: Gravitino G̃ with mG̃ > 0.1 keV; FIMP
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Making DM (cont.’d)

Non–thermal production:

From decay of heavier particle (WIMP, FIMP, G̃)
During phase transition (axion a)
During (p)reheating at end of inflation (WIMP)
Depends strongly on details of particle physics and
cosmology

Via particle–antiparticle asymmetry:
Assume symmetric contribution annihilates away:
only “particles” left (see: baryons): WIMPs
If same mechanism generates baryon asymmetry:
“Naturally” explains ΩDM ≃ 5Ωbaryon, if mχ ≃ 5mp

For WIMPs: Order of magnitude of ΩDM is
understood; Ωbaryon isn’t
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Thermal history of the Universe

Currently: Universe dominated by dark energy (∼ 70%)
and non–relativistic matter (∼ 30%); Ωrad ∼ 10−4.
(Radiation ≡ relativistic particles.)
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Thermal history of the Universe

Currently: Universe dominated by dark energy (∼ 70%)
and non–relativistic matter (∼ 30%); Ωrad ∼ 10−4.
(Radiation ≡ relativistic particles.)

Dependence on scale factor R: ρm ∝ R−3, ρrad ∝ R−4

ρ: energy density, units GeV4

Implies ρrad > ρm for R < 5 · 10−4R0, i.e. T >∼ 1 eV

Early Universe was dominated by radiation! (Except in
some extreme ‘quintessence’ or ‘brane cosmology’
models.)
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Thermal DM production

Let χ be a generic DM particle, nχ its number density (unit:
GeV3). Assume χ = χ̄, i.e. χχ ↔SM particles is possible,
but single production of χ is forbidden by some symmetry.
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Thermal DM production

Let χ be a generic DM particle, nχ its number density (unit:
GeV3). Assume χ = χ̄, i.e. χχ ↔SM particles is possible,
but single production of χ is forbidden by some symmetry.

Evolution of nχ determined by Boltzmann equation:

dnχ

dt
+ 3Hnχ = −〈σannv〉

(

n2
χ − n2

χ, eq

)

H = Ṙ/R : Hubble parameter
〈. . . 〉 : Thermal averaging
σann = σ(χχ → SM particles)
v : relative velocity between χ’s in their cms
nχ, eq : χ density in full equilibrium
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dnχ

dt + 3Hnχ = −〈σannv〉
(

n2
χ − n2

χ, eq

)

2nd lhs term: Describes χ dilution by expansion of Universe:
dR−3

dt = −3R−4Ṙ = −3HR−3

Dark Matter Candidates – p. 14/33



dnχ

dt + 3Hnχ = −〈σannv〉
(

n2
χ − n2

χ, eq

)

2nd lhs term: Describes χ dilution by expansion of Universe:
dR−3

dt = −3R−4Ṙ = −3HR−3

1st rhs term: describes χ pair annihilation; assumes shape
of nχ same as that of nχ, eq: reactions χ + f ↔ χ + f are
very fast (f : some SM particle).
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dnχ

dt + 3Hnχ = −〈σannv〉
(

n2
χ − n2

χ, eq

)

2nd lhs term: Describes χ dilution by expansion of Universe:
dR−3

dt = −3R−4Ṙ = −3HR−3

1st rhs term: describes χ pair annihilation; assumes shape
of nχ same as that of nχ, eq: reactions χ + f ↔ χ + f are
very fast (f : some SM particle).

2nd rhs term: describes χ pair production
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dnχ

dt + 3Hnχ = −〈σannv〉
(

n2
χ − n2

χ, eq

)

2nd lhs term: Describes χ dilution by expansion of Universe:
dR−3

dt = −3R−4Ṙ = −3HR−3

1st rhs term: describes χ pair annihilation; assumes shape
of nχ same as that of nχ, eq: reactions χ + f ↔ χ + f are
very fast (f : some SM particle).

2nd rhs term: describes χ pair production

Check: creation and annihilation balance iff nχ = nχ, eq.
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Rewriting the Boltzmann equation

In order to get rid of the 3Hnχ term: introduce
Yχ ≡ nχ

s (s: entropy density)
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Rewriting the Boltzmann equation

In order to get rid of the 3Hnχ term: introduce
Yχ ≡ nχ

s (s: entropy density)

For adiabatic expansion of the Universe: ds
dt = −3Hs

dYχ

dt = 1
s

dnχ

dt − nχ

s2
ds
dt
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Rewriting the Boltzmann equation

In order to get rid of the 3Hnχ term: introduce
Yχ ≡ nχ

s (s: entropy density)

For adiabatic expansion of the Universe: ds
dt = −3Hs

dYχ

dt = 1
s

dnχ

dt − nχ

s2
ds
dt

= 1
s

[

−3Hnχ − 〈σannv〉
(

n2
χ − n2

χ, eq

)]

+ nχ

s2 3Hs
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Rewriting the Boltzmann equation

In order to get rid of the 3Hnχ term: introduce
Yχ ≡ nχ

s (s: entropy density)

For adiabatic expansion of the Universe: ds
dt = −3Hs

dYχ

dt = 1
s

dnχ

dt − nχ

s2
ds
dt

= 1
s

[

−3Hnχ − 〈σannv〉
(

n2
χ − n2

χ, eq

)]

+ nχ

s2 3Hs

= −s〈σannv〉
(

Y 2
χ − Y 2

χ, eq.

)

s = 2π2

45 g∗T 3 (g∗ : no. of relativistic d.o.f.)
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Rewriting the Boltzmann equation

In order to get rid of the 3Hnχ term: introduce
Yχ ≡ nχ

s (s: entropy density)

For adiabatic expansion of the Universe: ds
dt = −3Hs

dYχ

dt = 1
s

dnχ

dt − nχ

s2
ds
dt

= 1
s

[

−3Hnχ − 〈σannv〉
(

n2
χ − n2

χ, eq

)]

+ nχ

s2 3Hs

= −s〈σannv〉
(

Y 2
χ − Y 2

χ, eq.

)

s = 2π2

45 g∗T 3 (g∗ : no. of relativistic d.o.f.)

If interactions are negligible: Yχ → const., i.e. χ density in
co–moving volume is unchanged (χ has decoupled)
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Rewriting the Boltzmann equation (cont’d)

Write lhs entirely in terms of dimensionless quantities:
introduce x = mχ

T .
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Rewriting the Boltzmann equation (cont’d)

Write lhs entirely in terms of dimensionless quantities:
introduce x = mχ

T .

=⇒ dYχ

dx = −4π
√

g∗√
90

mχMP

x2 〈σannv〉
(

Y 2
χ − Y 2

χ, eq

)
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Rewriting the Boltzmann equation (cont’d)

Write lhs entirely in terms of dimensionless quantities:
introduce x = mχ

T .

=⇒ dYχ

dx = −4π
√

g∗√
90

mχMP

x2 〈σannv〉
(

Y 2
χ − Y 2

χ, eq

)

For T >∼ 200 MeV: 10 <∼
4π

√
g∗√

90
<∼ 20 (SM, MSSM)

Dark Matter Candidates – p. 16/33



Condition for thermal equilibrium

nχ〈σannv〉 > H for some T !
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T ∼ mχ =⇒

〈σannv〉(T ≃ mχ) >
1

mχMP

(See: freeze–in).
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Condition for thermal equilibrium

nχ〈σannv〉 > H for some T !

For renormalizable interactions: easiest to satisfy for
T ∼ mχ =⇒

〈σannv〉(T ≃ mχ) >
1

mχMP

(See: freeze–in).

For non–renormalizable interactions: easiest to satisfy
at maximal temperature, T ≃ TR. (See: G̃)

For TR < mχ: Easiest to satisfy for T ≃ TR (see: WIMP
at low TR).
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Example 1: WIMP

Decouple (freeze out) at temperature T ≪ mχ (see below).
(N.B. Means χ makes cold DM!)
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Example 1: WIMP

Decouple (freeze out) at temperature T ≪ mχ (see below).
(N.B. Means χ makes cold DM!)

χ’s are non–relativistic: two consequences

1) nχ ≃ gχ

(

mχT
2π

)3/2
e−x

〈σannv〉 ≃ x3/2

2
√

π

∫ ∞
0 dv v2(σannv)e−xv2/4
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Example 1: WIMP

Decouple (freeze out) at temperature T ≪ mχ (see below).
(N.B. Means χ makes cold DM!)

χ’s are non–relativistic: two consequences

1) nχ ≃ gχ

(

mχT
2π

)3/2
e−x

〈σannv〉 ≃ x3/2

2
√

π

∫ ∞
0 dv v2(σannv)e−xv2/4

2) Most of the time: can expand cross section in χ velocity:

σannv = a + bv2 + . . . =⇒ 〈σannv〉 = a + 6 b
x + . . .
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Example 1: WIMP

Decouple (freeze out) at temperature T ≪ mχ (see below).
(N.B. Means χ makes cold DM!)

χ’s are non–relativistic: two consequences

1) nχ ≃ gχ

(

mχT
2π

)3/2
e−x

〈σannv〉 ≃ x3/2

2
√

π

∫ ∞
0 dv v2(σannv)e−xv2/4

2) Most of the time: can expand cross section in χ velocity:

σannv = a + bv2 + . . . =⇒ 〈σannv〉 = a + 6 b
x + . . .

Typically, a, b <∼
α2

m2
χ
, α2 ∼ 10−3, unless a is suppressed by

some symmetry; e.g. for χ̃χ̃ → ff̄ : a ∝ m2
f .
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Case 1: Low reheat temperature

Let TR be the highest temperature of the
radiation–dominated universe (after inflation).

Dark Matter Candidates – p. 19/33



Case 1: Low reheat temperature

Let TR be the highest temperature of the
radiation–dominated universe (after inflation).

Boundary condition: nχ(TR) = 0 (??)
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Case 1: Low reheat temperature

Let TR be the highest temperature of the
radiation–dominated universe (after inflation).

Boundary condition: nχ(TR) = 0 (??)

Assume TR < mχ/20 =⇒ χ annihilation is negligible (see
below): ignore 1st rhs term in Boltzmann equation!
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Case 1: Low reheat temperature

Let TR be the highest temperature of the
radiation–dominated universe (after inflation).

Boundary condition: nχ(TR) = 0 (??)

Assume TR < mχ/20 =⇒ χ annihilation is negligible (see
below): ignore 1st rhs term in Boltzmann equation!

=⇒ dYχ

dx =
4π

√
g∗√

90

mχMP

x2

(

a + 6b
x

)

Y 2
χ, eq.
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Case 1: Low reheat temperature

Let TR be the highest temperature of the
radiation–dominated universe (after inflation).

Boundary condition: nχ(TR) = 0 (??)

Assume TR < mχ/20 =⇒ χ annihilation is negligible (see
below): ignore 1st rhs term in Boltzmann equation!

=⇒ dYχ

dx =
4π

√
g∗√

90

mχMP

x2

(

a + 6b
x

)

Y 2
χ, eq.

=
4π

√
g∗√

90

mχMP

x2

(

a + 6b
x

) m6
χ

(2π)3x3 e
−2x 452x6

(2π2)2g2
∗m6

χ
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Case 1: Low reheat temperature

Let TR be the highest temperature of the
radiation–dominated universe (after inflation).

Boundary condition: nχ(TR) = 0 (??)

Assume TR < mχ/20 =⇒ χ annihilation is negligible (see
below): ignore 1st rhs term in Boltzmann equation!

=⇒ dYχ

dx =
4π

√
g∗√

90

mχMP

x2

(

a + 6b
x

)

Y 2
χ, eq.

=
4π

√
g∗√

90

mχMP

x2

(

a + 6b
x

) m6
χ

(2π)3x3 e
−2x 452x6

(2π2)2g2
∗m6

χ

= 452

8
√

90g
3/2
∗ π6

g2
χmχMP (ax + 6b)e−2x.
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Case 1: Low reheat temperature

Let TR be the highest temperature of the
radiation–dominated universe (after inflation).

Boundary condition: nχ(TR) = 0 (??)

Assume TR < mχ/20 =⇒ χ annihilation is negligible (see
below): ignore 1st rhs term in Boltzmann equation!

=⇒ dYχ

dx =
4π

√
g∗√

90

mχMP

x2

(

a + 6b
x

)

Y 2
χ, eq.

=
4π

√
g∗√

90

mχMP

x2

(

a + 6b
x

) m6
χ

(2π)3x3 e
−2x 452x6

(2π2)2g2
∗m6

χ

= 452

8
√

90g
3/2
∗ π6

g2
χmχMP (ax + 6b)e−2x.

=⇒ Yχ(x ≫ xR) =
452g2

χ

8
√

90g
3/2
∗ π6

mχMP · e−2xR
[

a
2

(

xR − 1
2

)

+ 3b
]

.
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To get current Ωχh
2

Saw: Yχ → Yχ,0 = const. for x ≫ xR.
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To get current Ωχh
2

Saw: Yχ → Yχ,0 = const. for x ≫ xR.

=⇒ Ωχh2 = ρχ

ρcrit.
h2 = nχmχ

3H2
0M2

P

H2
0

(100 kmMpc−1 sec−1)2
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To get current Ωχh
2

Saw: Yχ → Yχ,0 = const. for x ≫ xR.

=⇒ Ωχh2 = ρχ

ρcrit.
h2 = nχmχ

3H2
0M2

P

H2
0

(100 kmMpc−1 sec−1)2

= Yχ,0s0mχ

3M2
P (100 kmMpc−1 sec−1)2
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To get current Ωχh
2

Saw: Yχ → Yχ,0 = const. for x ≫ xR.

=⇒ Ωχh2 = ρχ

ρcrit.
h2 = nχmχ

3H2
0M2

P

H2
0

(100 kmMpc−1 sec−1)2

= Yχ,0s0mχ

3M2
P (100 kmMpc−1 sec−1)2

Use 1 Mpc = 3.09 · 1019 km, 1 sec−1 = 6.6 · 10−25 GeV,
s0 = 2.9 · 103 cm−3 = 2.2 · 10−38 GeV3, and introduce
dimensionless quantities â = am2

χ, b̂ = bm2

χ

Dark Matter Candidates – p. 20/33



To get current Ωχh
2

Saw: Yχ → Yχ,0 = const. for x ≫ xR.

=⇒ Ωχh2 = ρχ

ρcrit.
h2 = nχmχ

3H2
0M2

P

H2
0

(100 kmMpc−1 sec−1)2

= Yχ,0s0mχ

3M2
P (100 kmMpc−1 sec−1)2

Use 1 Mpc = 3.09 · 1019 km, 1 sec−1 = 6.6 · 10−25 GeV,
s0 = 2.9 · 103 cm−3 = 2.2 · 10−38 GeV3, and introduce
dimensionless quantities â = am2

χ, b̂ = bm2

χ

=⇒ Ωχh2 = mχYχ,0 2.8 · 108 GeV−1
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To get current Ωχh
2

Saw: Yχ → Yχ,0 = const. for x ≫ xR.

=⇒ Ωχh2 = ρχ

ρcrit.
h2 = nχmχ

3H2
0M2

P

H2
0

(100 kmMpc−1 sec−1)2

= Yχ,0s0mχ

3M2
P (100 kmMpc−1 sec−1)2

Use 1 Mpc = 3.09 · 1019 km, 1 sec−1 = 6.6 · 10−25 GeV,
s0 = 2.9 · 103 cm−3 = 2.2 · 10−38 GeV3, and introduce
dimensionless quantities â = am2

χ, b̂ = bm2

χ

=⇒ Ωχh2 = mχYχ,0 2.8 · 108 GeV−1

=⇒ Ωχh2 = 0.9 · 1023 e−2mχ/TR

[

â
2

(

mχ

TR
− 1

2

)

+ 3b̂
]
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To get current Ωχh
2

Saw: Yχ → Yχ,0 = const. for x ≫ xR.

=⇒ Ωχh2 = ρχ

ρcrit.
h2 = nχmχ

3H2
0M2

P

H2
0

(100 kmMpc−1 sec−1)2

= Yχ,0s0mχ

3M2
P (100 kmMpc−1 sec−1)2

Use 1 Mpc = 3.09 · 1019 km, 1 sec−1 = 6.6 · 10−25 GeV,
s0 = 2.9 · 103 cm−3 = 2.2 · 10−38 GeV3, and introduce
dimensionless quantities â = am2

χ, b̂ = bm2

χ

=⇒ Ωχh2 = mχYχ,0 2.8 · 108 GeV−1

=⇒ Ωχh2 = 0.9 · 1023 e−2mχ/TR

[

â
2

(

mχ

TR
− 1

2

)

+ 3b̂
]

Example: â = 0, b̂ = 10−4 =⇒ need TR ≃ 0.04mχ
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Case 2: Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Dark Matter Candidates – p. 21/33



Case 2: Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H
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Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H

For T < mχ : nχ ≃ nχ, eq ∝ T 3/2e−mχ/T , H ∝ T 2
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Case 2: Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H

For T < mχ : nχ ≃ nχ, eq ∝ T 3/2e−mχ/T , H ∝ T 2

Inequality cannot be true for arbitrarily small T ; point where
inequality becomes (approximate) equality defines
decoupling (freeze–out) temperature TF .
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Case 2: Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H

For T < mχ : nχ ≃ nχ, eq ∝ T 3/2e−mχ/T , H ∝ T 2

Inequality cannot be true for arbitrarily small T ; point where
inequality becomes (approximate) equality defines
decoupling (freeze–out) temperature TF .

For T < TF : WIMP production negligible, only annihilation
relevant in Boltzmann equation.
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Thermal WIMP: solution of Boltzmann eq.

Ωχh2 ≃ 8.7·10−11 GeV−2

√
g∗J(xF )

J(xF ) =
∫ ∞
xF

dx〈σv〉/x2 “annihilation integral”.
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Thermal WIMP: solution of Boltzmann eq.

Ωχh2 ≃ 8.7·10−11 GeV−2

√
g∗J(xF )

J(xF ) =
∫ ∞
xF

dx〈σv〉/x2 “annihilation integral”.

Typically, xF ≃ 22; depends only logarithmically on σann.

Dark Matter Candidates – p. 22/33



Thermal WIMP: solution of Boltzmann eq.

Ωχh2 ≃ 8.7·10−11 GeV−2

√
g∗J(xF )

J(xF ) =
∫ ∞
xF

dx〈σv〉/x2 “annihilation integral”.

Typically, xF ≃ 22; depends only logarithmically on σann.

Non-relativistic expansion: J(xF ) = a
xF

+ 3b
x2

F
. . .
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Ωχh
2 ≃ 8.7·10−11 GeV−2

√
g∗J(xF )

Solution validated numerically.
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Ωχh
2 ≃ 8.7·10−11 GeV−2

√
g∗J(xF )

Solution validated numerically.

Density has no explicit dependence on mχ.
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Ωχh
2 ≃ 8.7·10−11 GeV−2

√
g∗J(xF )

Solution validated numerically.

Density has no explicit dependence on mχ.

Density has no dependence on reheat temperature TR,
if TR > TF .
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Ωχh
2 ≃ 8.7·10−11 GeV−2

√
g∗J(xF )

Solution validated numerically.

Density has no explicit dependence on mχ.

Density has no dependence on reheat temperature TR,
if TR > TF .

Density scales like inverse of annihilation cross section:
The stronger the WIMPs annihilate, the fewer are left.
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Ωχh
2 ≃ 8.7·10−11 GeV−2

√
g∗J(xF )

Solution validated numerically.

Density has no explicit dependence on mχ.

Density has no dependence on reheat temperature TR,
if TR > TF .

Density scales like inverse of annihilation cross section:
The stronger the WIMPs annihilate, the fewer are left.

Smooth transition to previous case (TR < TF ): MD,
Iminniyaz, Kakizaki, hep-ph/0603165
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Recent numerical analysis (b = 0)

MD, F. Hajkarim, E. Rossi Schmitz, arXiv:1503.03513
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Co–annihilation

Is important for SUSY scenarios with small mass splitting
between LSP and NLSP: δm ≡ mχ̃′ − mχ̃ ≪ mχ̃
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Co–annihilation

Is important for SUSY scenarios with small mass splitting
between LSP and NLSP: δm ≡ mχ̃′ − mχ̃ ≪ mχ̃

Rate (χ̃ + f ↔ χ̃′ + f ′) ≫ Rate(χ̃χ̃ ↔ ff ), by factor
∝ e(2mχ̃−mχ̃′)/T (f, f ′ : SM particles)
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Is important for SUSY scenarios with small mass splitting
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Rate (χ̃ + f ↔ χ̃′ + f ′) ≫ Rate(χ̃χ̃ ↔ ff ), by factor
∝ e(2mχ̃−mχ̃′)/T (f, f ′ : SM particles)

χ̃, χ̃′ retain relative equilibrium well after sparticles
decouple from SM particles: nχ̃′ = nχ̃e−δm/T
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Co–annihilation

Is important for SUSY scenarios with small mass splitting
between LSP and NLSP: δm ≡ mχ̃′ − mχ̃ ≪ mχ̃

Rate (χ̃ + f ↔ χ̃′ + f ′) ≫ Rate(χ̃χ̃ ↔ ff ), by factor
∝ e(2mχ̃−mχ̃′)/T (f, f ′ : SM particles)

χ̃, χ̃′ retain relative equilibrium well after sparticles
decouple from SM particles: nχ̃′ = nχ̃e−δm/T

Previous treatment still applies, with replacement:

σann → σeff ∼ σann + fBσ(χ̃χ̃′ → SM) + f2
Bσ(χ̃′χ̃′ → SM)

fB : relative Boltzmann factor =
(

1 + δm
mχ̃

)3/2
e−δm/T
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Co–annihilation

Is important for SUSY scenarios with small mass splitting
between LSP and NLSP: δm ≡ mχ̃′ − mχ̃ ≪ mχ̃

Rate (χ̃ + f ↔ χ̃′ + f ′) ≫ Rate(χ̃χ̃ ↔ ff ), by factor
∝ e(2mχ̃−mχ̃′)/T (f, f ′ : SM particles)

χ̃, χ̃′ retain relative equilibrium well after sparticles
decouple from SM particles: nχ̃′ = nχ̃e−δm/T

Previous treatment still applies, with replacement:

σann → σeff ∼ σann + fBσ(χ̃χ̃′ → SM) + f2
Bσ(χ̃′χ̃′ → SM)

fB : relative Boltzmann factor =
(

1 + δm
mχ̃

)3/2
e−δm/T

σ(χ̃χ̃′), σ(χ̃′χ̃′) ≫ σ(χ̃χ̃) possible!
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Case 3: Freeze–in

Hall et al., arXiv:0911.1120

Assume very weak, renormalizable interaction (Feebly
Interacting Massive Particle, FIMP): never achieved
thermal equilibrium
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Case 3: Freeze–in

Hall et al., arXiv:0911.1120

Assume very weak, renormalizable interaction (Feebly
Interacting Massive Particle, FIMP): never achieved
thermal equilibrium

χ pair production dominated by reactions at T ∼ mχ:
independent of TR as long as TR ≫ mχ
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Case 3: Freeze–in

Hall et al., arXiv:0911.1120

Assume very weak, renormalizable interaction (Feebly
Interacting Massive Particle, FIMP): never achieved
thermal equilibrium

χ pair production dominated by reactions at T ∼ mχ:
independent of TR as long as TR ≫ mχ

Final relic density proportional to cross section,
independent of FIMP mass
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Case 3: Freeze–in

Hall et al., arXiv:0911.1120

Assume very weak, renormalizable interaction (Feebly
Interacting Massive Particle, FIMP): never achieved
thermal equilibrium

χ pair production dominated by reactions at T ∼ mχ:
independent of TR as long as TR ≫ mχ

Final relic density proportional to cross section,
independent of FIMP mass

Needs small couplings: α2 < mχ

MP
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Thermal WIMPs, FIMPs: Assumptions

χ is effectively stable, τχ ≫ τU: partly testable at
colliders
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Thermal WIMPs, FIMPs: Assumptions

χ is effectively stable, τχ ≫ τU: partly testable at
colliders

No entropy production after χ decoupled: Not testable
at colliders
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Thermal WIMPs, FIMPs: Assumptions

χ is effectively stable, τχ ≫ τU: partly testable at
colliders

No entropy production after χ decoupled: Not testable
at colliders

H at time of χ decoupling is known: partly testable at
colliders
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Thermal Gravitino Dark Matter

Each gravitino coupling gives factor msparticles
mG̃MP

in cross

section, if mG̃ ≪ √
s, msparticle

Dark Matter Candidates – p. 28/33



Thermal Gravitino Dark Matter

Each gravitino coupling gives factor msparticles
mG̃MP

in cross

section, if mG̃ ≪ √
s, msparticle

=⇒ Most important G̃ production mechanism for mG̃
>∼

MeV: associated production with other sparticle!

σG̃ ≃ 1
24π(mG̃MP )2

(

26g2
sM

2
g̃ + . . .

)
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Thermal Gravitino Dark Matter

Each gravitino coupling gives factor msparticles
mG̃MP

in cross

section, if mG̃ ≪ √
s, msparticle

=⇒ Most important G̃ production mechanism for mG̃
>∼

MeV: associated production with other sparticle!

σG̃ ≃ 1
24π(mG̃MP )2

(

26g2
sM

2
g̃ + . . .

)

G̃ annihilation can be ignored; write Boltzmann eq. for
ỸG̃ ≡ nG̃/nγ:

dỸG̃

dT = − nγσG̃

4TH(T )
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Gravitino DM (cont.’d)

Solution of Boltzmann eq.:

ỸG̃,0 =
4nγ(TR)σG̃

4H(TR) ∝ TR (assuming ỸG̃(TR) = 0)
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Gravitino DM (cont.’d)

Solution of Boltzmann eq.:

ỸG̃,0 =
4nγ(TR)σG̃

4H(TR) ∝ TR (assuming ỸG̃(TR) = 0)

=⇒ ΩG̃h2 ≃ 0.1
(

Mg̃

1 TeV

)2
1 GeV

mG̃

TR

2.4·107 GeV
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Gravitino DM (cont.’d)

Solution of Boltzmann eq.:

ỸG̃,0 =
4nγ(TR)σG̃

4H(TR) ∝ TR (assuming ỸG̃(TR) = 0)

=⇒ ΩG̃h2 ≃ 0.1
(

Mg̃

1 TeV

)2
1 GeV

mG̃

TR

2.4·107 GeV

Inclusion of thermal corrections: e.g. Pradler & Steffen,
hep-ph/0612291
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Gravitino DM (cont.’d)

Solution of Boltzmann eq.:

ỸG̃,0 =
4nγ(TR)σG̃

4H(TR) ∝ TR (assuming ỸG̃(TR) = 0)

=⇒ ΩG̃h2 ≃ 0.1
(

Mg̃

1 TeV

)2
1 GeV

mG̃

TR

2.4·107 GeV

Inclusion of thermal corrections: e.g. Pradler & Steffen,
hep-ph/0612291
In general, have to add ΩNLSP

mG̃

mNLSP
from (late) decays of

NLSPs. (BBN!)
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DM Production from Inflaton Decay

Only consider perturbative decays here.
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DM Production from Inflaton Decay

Only consider perturbative decays here.

χ : DM particle; φ : inflaton
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DM Production from Inflaton Decay

Only consider perturbative decays here.

χ : DM particle; φ : inflaton

B(φ → χ) : Average number of χ particles produced per φ
decay
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DM Production from Inflaton Decay

Only consider perturbative decays here.

χ : DM particle; φ : inflaton

B(φ → χ) : Average number of χ particles produced per φ
decay

Instantaneous φ decay approximation: all inflatons decay at
T = TR.

Dark Matter Candidates – p. 30/33



DM Production from Inflaton Decay

Only consider perturbative decays here.

χ : DM particle; φ : inflaton

B(φ → χ) : Average number of χ particles produced per φ
decay

Instantaneous φ decay approximation: all inflatons decay at
T = TR.

Inflatons are non–relativistic when they decay.
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DM Production from Inflaton Decay (cont.’d)

Energy conserved during φ decay

=⇒ nφmφ = ρrad(TR) = π2

30g∗T 4
R
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DM Production from Inflaton Decay (cont.’d)

Energy conserved during φ decay

=⇒ nφmφ = ρrad(TR) = π2

30g∗T 4
R

=⇒ Yχ(TR) = nχ(TR)
s(TR) = B(φ→χ)nφ(TR)

s(TR)
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DM Production from Inflaton Decay (cont.’d)

Energy conserved during φ decay

=⇒ nφmφ = ρrad(TR) = π2

30g∗T 4
R

=⇒ Yχ(TR) = nχ(TR)
s(TR) = B(φ→χ)nφ(TR)

s(TR)

= B(φ→χ)ρrad(TR)
mφs(TR)
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DM Production from Inflaton Decay (cont.’d)

Energy conserved during φ decay

=⇒ nφmφ = ρrad(TR) = π2

30g∗T 4
R

=⇒ Yχ(TR) = nχ(TR)
s(TR) = B(φ→χ)nφ(TR)

s(TR)

= B(φ→χ)ρrad(TR)
mφs(TR)

= 3
4

TR

mφ
B(φ → χ)
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DM Production from Inflaton Decay (cont.’d)

Energy conserved during φ decay

=⇒ nφmφ = ρrad(TR) = π2

30g∗T 4
R

=⇒ Yχ(TR) = nχ(TR)
s(TR) = B(φ→χ)nφ(TR)

s(TR)

= B(φ→χ)ρrad(TR)
mφs(TR)

= 3
4

TR

mφ
B(φ → χ)

If χ production and annihilation at T < TR is negligible,
universe evolves adiabatically:

=⇒ Ωχh2 = 2.1 · 108 mχ

mφ

TR

1 GeVB(φ → χ)
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Possibilities forB(φ → χ)

If χ = LSP: expect B(φ → χ) ≃ 1: Excludes charged
LSP for mφ > 2mχ, TR >∼ 1 MeV!
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Possibilities forB(φ → χ)

If χ = LSP: expect B(φ → χ) ≃ 1: Excludes charged
LSP for mφ > 2mχ, TR >∼ 1 MeV!

“Democratic” coupling: B(φ → χ) ≃ gχ/g∗ ∼ 10−2.
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Possibilities forB(φ → χ)

If χ = LSP: expect B(φ → χ) ≃ 1: Excludes charged
LSP for mφ > 2mχ, TR >∼ 1 MeV!

“Democratic” coupling: B(φ → χ) ≃ gχ/g∗ ∼ 10−2.

φ → ff̄χχ (4–body):

B(φ → χ) ∼ α2
χ

96π3

(

1 − 4m2
χ

m2
φ

)2 (

1 − 2mχ

mφ

)5/2

(Assumes σ(χχ ↔ ff̄) ∼ α2
χ

m2
χ
, φ → ff̄ dominates.)
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Possibilities forB(φ → χ)

If χ = LSP: expect B(φ → χ) ≃ 1: Excludes charged
LSP for mφ > 2mχ, TR >∼ 1 MeV!

“Democratic” coupling: B(φ → χ) ≃ gχ/g∗ ∼ 10−2.

φ → ff̄χχ (4–body):

B(φ → χ) ∼ α2
χ

96π3

(

1 − 4m2
χ

m2
φ

)2 (

1 − 2mχ

mφ

)5/2

(Assumes σ(χχ ↔ ff̄) ∼ α2
χ

m2
χ
, φ → ff̄ dominates.)

Can be most important production mechanism for
superheavy Dark Matter (mχ ∼ 1012 GeV) in chaotic
inflation (mφ ∼ 1013 GeV); for LSP if TR <∼ 0.03mχ; . . .
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Summary

Different production mechanisms give very different
results for Ωχh2:

Dark Matter Candidates – p. 33/33



Summary

Different production mechanisms give very different
results for Ωχh2:

Thermal WIMP: Ωχh2 ∝ 1
〈σeffv〉 , independent of TR: most

frequently studied case; needs TR >∼ 0.05mχ.

Dark Matter Candidates – p. 33/33



Summary

Different production mechanisms give very different
results for Ωχh2:

Thermal WIMP: Ωχh2 ∝ 1
〈σeffv〉 , independent of TR: most

frequently studied case; needs TR >∼ 0.05mχ.

WIMP that never was in equilibrium:
Ωχh2 ∝ e−2mχ/TRm2

χ〈σannv〉

Dark Matter Candidates – p. 33/33



Summary

Different production mechanisms give very different
results for Ωχh2:

Thermal WIMP: Ωχh2 ∝ 1
〈σeffv〉 , independent of TR: most

frequently studied case; needs TR >∼ 0.05mχ.

WIMP that never was in equilibrium:
Ωχh2 ∝ e−2mχ/TRm2

χ〈σannv〉

Thermal gravitino production: ΩG̃h2 ∝ TR

mG̃
.

Dark Matter Candidates – p. 33/33



Summary

Different production mechanisms give very different
results for Ωχh2:

Thermal WIMP: Ωχh2 ∝ 1
〈σeffv〉 , independent of TR: most

frequently studied case; needs TR >∼ 0.05mχ.

WIMP that never was in equilibrium:
Ωχh2 ∝ e−2mχ/TRm2

χ〈σannv〉

Thermal gravitino production: ΩG̃h2 ∝ TR

mG̃
.

Production from inflaton decay: Ωχh2 ∝ mχTRB(φ→χ)
mφ

.

Dark Matter Candidates – p. 33/33



Summary

Different production mechanisms give very different
results for Ωχh2:

Thermal WIMP: Ωχh2 ∝ 1
〈σeffv〉 , independent of TR: most

frequently studied case; needs TR >∼ 0.05mχ.

WIMP that never was in equilibrium:
Ωχh2 ∝ e−2mχ/TRm2

χ〈σannv〉

Thermal gravitino production: ΩG̃h2 ∝ TR

mG̃
.

Production from inflaton decay: Ωχh2 ∝ mχTRB(φ→χ)
mφ

.

Only the thermal WIMP scenario can be tested using
collider data and results from WIMP search
experiments. Other scenarios can only be tested with
additional input to constrain cosmology (TR, . . . ).
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