

Track classification in hadronic tau decay and analysis preparation of the Standard Model H->tau tau signal extraction with LHC-Run2 in ATLAS collaboration

Mohamad Kassem Ayoub

LAL-Orsay-France

Supervisor: Luc Poggioli

Table of contents

- General introduction
- ATLAS detector
- Standard Model (SM) Higgs Boson production and decay
- Introduction to the Higgs decaying into di-lepton tau channel
- The reconstruction of hadronic tau in ATLAS
 - Reconstruction algorithms and strategy
 - Photon conversion in hadronic tau decay
 - Tagging of photon conversion tracks
- Preparation for H->tautau Run2 analysis
- Conclusion

General introduction

- In second year PhD in ATLAS group at LAL
- Member of Higgs->ττ group
- Research domain of my PhD:
 - Participated to the improvement of reconstruction of hadronic tau decay in ATLAS
 - First PhD year
 - Currently working on the preparation of Higgs physics analysis in the di-lepton tau decay channel
 - Analysis will be based on data from the new Run of LHC (Run2)

ATLAS detector

- Overall length = 42 m, diameter = 22 m, weight = 7000 tons
- Components were constructed in over 35 countries around the world

Higgs boson production

Higgs decay modes

@ 125 GeV, dominant modes are: bb & ττ

Higgs discovery and searches

- The Higgs boson has been discovered in 2012 by ATLAS and CMS
- It has been seen in bosonic decay channels
 - γγ, WW and ZZ
- Activity:
 - Measure Precisely the properties of the Higgs Boson
 - Higgs Spin/CP measurement
 - Precise mesearement of production modes and couplings
 - Evidence has been observed in the ditau channel in Run 1 analysis
 - To be confirmed as a standalone discovery channel

$H \rightarrow \tau^+ \tau^-$ channel (1)

- Coupling of the new discovered particle to fermions:
 - 1. Quarks:
 - bbar: No evidence yet
 - ttbar: Indirect evidence from gg fusion through top loop
 - 2. Leptons:
 - μμ: Low statistic
 - $H \rightarrow \tau \tau$ has one of the largest branching ratios for low mass Higgs

Branching ratios at 125 GeV:					
bb:	57.7%	ZZ:	2.6%		
WW:	21.5%	<i>γγ</i> =	0.23%		
ττ:	6.3 %	- *			

Mohamad Ayoub - Cracow Summer Schoo

$H \rightarrow \tau^+ \tau^-$ channel (2)

- Search strategy:
 - > Gluon (ggF) fusion is the dominant Higgs production mecanism
 - Vector boson fusion is the most sensitive mode
 - Background can be reduced by requiring presence of additional forward jets or high pT tau-tau system:
 - 2 additional jets (VBF events)
 - Boosted Higgs category (p_T^H >100GeV)

Decay modes

$H \rightarrow \tau^+ \tau^-$ channel (3)

- Analysis channel at LAL: $\tau_{lep} \tau_{had}$
- Background:

> Z-> $\tau\tau$: irreducible background (estimated using embedding technique)

➢ Fakes: QCD, W+jet, Z+jet

Others: Z->II, WW, ZZ, top ...

- Analysis method: Boosted decision tree (cut based analysis has been also done)
- Accurate treatment of systematics
- Mass calculation method: "MMC" (missing mass calculator)
- Final significance results: 4.5σ (observed) , 3.4σ (expected)

Hadronic tau decay

- Tau is the only massive lepton to decay hadronically
- 65 % of tau decay is hadronic
 - > 1-prong (50%): 1 charged pions in the final state
 - > 3-prong (15%): 3 charged pions in the final state
 - ➢ In ~41% of cases, at least 1 neutral pion
- Reconstruction of hadronic tau is a very important issue
 - > Improve identification of hadronic tau against huge QCD background

 \succ Improve the reconstruction of $\tau\tau$ invariant mass

Tau signature

Photon conversion in hadronic tau decay

- We have photons from π^0 decay
- Interactions photon-detector material → e⁺- e⁻ pairs production (photon conversion)
- Additional charged tracks are reconstructed as pions from tau decay

 τ^+ τ^+ τ^0 γ e^+ e^+

In run 1: 1prong + 1 electron => 2 prong => rejected

1-prong decay with photon conversion

• Need photon conversion tagging to avoid misidentification $e-\pi$

Conversion taggers in ATLAS

- Two conversion taggers in Tau software
 - 1. Single track conversion tagger S.T.T.
 - Tag conversions track by track
 - Use variables in the inner detector: Rconv, nbLayer, TRT
 - Combine these variables in a 2 dimension plot and use a simple cut to select conversions
 - 2. Double track conversion tagger D.T.T.
 - Tag conversion vertex (double track)
 - Enumerate each pair of opposite charged tracks pairs
 - Fit a conversion vertex for each pair using tuned parameters

Performance results

Single track tagger		Double track tagger	
Conversion efficiency (%)	66 ± 1.4	Conversion efficiency (%)	65 ± 5
Fake rate (%)	5 ± 0.2	Fake rate (%)	5 ± 1

- The 2 algorithms show a comparable performance by running on 13 TeV simulation samples
- The single track tagger is faster in term of running time
- S.T.T. Is the default tagger now is Tau reconstruction ATLAS software
- It has been implemented in the new software for Run2 analysis
- All this is one ingredient of the overall tau identification in ATLAS

Current reconstruction efficiency

Preparation of Η->ττ analysis for Run2

First proton beams collision at 13 TeV ③

From 8 TeV to 13 TeV

• Gain

S (Run2) = S (Run1) * 2.2 B (Run2) = B (Run1) * 1.7 $= \sqrt{2} \times S/\sqrt{B}$ (Run2) = $\sqrt{2} \times S/\sqrt{B}$ (Run1)

• Luminosity

25 fb⁻¹ (Run1) \rightarrow 100 fb⁻¹ (Run2 2015-2018) =>

factor
$$\sqrt{4} = 2$$

• Higher luminosity vs Pileup ?

 \rightarrow Idea is to run with 25ns Bunch Crossing

• Detector improved (IBL for primary & secondary vertex)

Events file production for Run2 analysis

- Simulated events files have to be produced for 13 TeV energy collision
 - Background estimation
 - Signal prediction
 - Comparison prediction with real ATLAS data
 - H->tautau signal extraction
- A new production framework is used now by many H->tautau analysis groups
 - Standard Model H->tautau channels, BSM, HCP,...
 - Lal group: implementation and production of lepton-hadron channel
- Fisrt production has been done for the H-> tautau lephad channel

Some output variables

Physics analysis

- Goals:
 - Access the discovery (5σ)
 - Study Higgs properties in ditau channel with Run 2
 - (CP, Coupling, Production)
 - Aim to have public results for Moriond 2016
- Various H->ττ ATLAS groups will be involved in this analysis (LAL-Orsay, Melbourne, Goettingen, Bonn,...)

Conclusion

- The Standard Model H->ττ search is a very important channel for Higgs boson physics
 - Only observable mode of coupling to leptons
- Evidence has been seen already from Run1 analysis
 - Very promising analysis with the Run2 energy to improve sensitivity for this channel
- Improvement of hadronic tau reconstruction is ongoing
- Start collecting data with the new LHC energy (13 TeV)
- Analysis preparation for H->ττ Run2 searches has been started and aiming for results in few months

Back up

Conversion tagging

Single track tagger(1)

 Use 3 variables from the inner detector: nBlayer Hits, Rconv and TRT High threshold ratio

Mohamad Ayoub - Cracow Summer School

Inner detector

- r =1.15 m, length = 7 m
- 2T solenoidale magnetic field
- Pixel detector: 3 layers with high granulariry
- SCT (semiconductor tracker): 4 layers of silicon microstrip detectors
- TRT (Transition radiation tracker): 36 layers with xenon gas between

Performance definitions

- The 2 algorithms produce the same type of output (flag per each track)
- Same output => straightforward comparison between 2 taggers
- To examine the performance of each tagger, we define:
 - Efficiency of tagging a conversion track:

 $\mathsf{Eff} = \frac{Tracks \ matched \ to \ true \ conversion \ flagged \ by \ the \ tagger}{Total \ tracks \ matched \ to \ true \ conversion}$

• Mis-identification rate:

Fake = $\frac{Tracks matched to true pion (pileup or UE) flagged by the tagger}{Total tracks matched to true pions (pileup or UE)}$