# Simulations for the Heavy Flavor Tracker at the STAR experiment

#### Miroslav Simko

for STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

#### 13 June 2014







M. Simko

# Experiment STAR at RHIC



- STAR experiment at RHIC
  - Heavy ion collider experiment
- Its main goal is to study the properties of Quark Gluon Plasma and the QCD phase diagram



## Physics motivation

#### • Heavy flavor – Good probe to QGP

- *m<sub>b,c</sub>* >> *T<sub>C</sub>*, Λ<sub>QCD</sub>, *m<sub>u,d,s</sub>*
- Is produced in initial hard scatterings
- However very difficult to study
  - Low yields compared to light flavor particles
  - Large combinatorial background for open heavy flavor particles
- A precision secondary vertex finder is an important tool to study HF physics

## Physics motivation

#### • Heavy flavor – Good probe to QGP

- $m_{b,c} >> T_C, \Lambda_{QCD}, m_{u,d,s}$
- Is produced in initial hard scatterings
- However very difficult to study
  - · Low yields compared to light flavor particles
  - Large combinatorial background for open heavy flavor particles
- A precision secondary vertex finder is an important tool to study HF physics

## Physics motivation

- Heavy flavor Good probe to QGP
  - $m_{b,c} >> T_C, \Lambda_{QCD}, m_{u,d,s}$
  - Is produced in initial hard scatterings
- However very difficult to study
  - · Low yields compared to light flavor particles
  - Large combinatorial background for open heavy flavor particles
- A precision secondary vertex finder is an important tool to study HF physics

### How Heavy Flavor Tracker helps

- Examples of displaced decay vertices
  - $\mathsf{D}^0 
    ightarrow \mathsf{K}^- \pi^+$   $\mathsf{BR} = 3.83~\%$   $c au \sim 120~\mu \mathrm{m}$

• 
$$\Lambda_c^+ \rightarrow p \ K^- \pi^+$$
 BR = 5.0 %  $c\tau \sim 60 \ \mu m$ 

• B mesons  $\rightarrow$  J/ $\psi$  + X or e + X  $c\tau \sim$  500  $\mu$ m



## STAR Detector



# HFT design

• The task of the SSD and IST is to guide the tracks from TPC to PXL



#### Silicon Strip Detector



- Existing detector with faster electronics
- Double sided strip with 95  $\mu$ m pitch
- $\sigma_{r\phi}$ : 20  $\mu$ m,  $\sigma_z$ : 740  $\mu$ m

#### Intermediate Silicon Tracker



- Single sided double metal strip parallel to the beam pipe with pitch 600  $\mu$ m  $\times$  6 mm
- $\sigma_{r\phi}$ : 170  $\mu$ m,  $\sigma_z$ : 1800  $\mu$ m

# Design of the Pixel detector





- First Monolithic Active Pixel Sensors (MAPS) used in a collider experiment
- 10 sectors  $\times$  4 ladders  $\times$  (1 inner, 3 outer)  $\times$  10 sensors
- Light carbon fiber support
- Hit resolution in the wafer  $\sigma$ : 7.8  $\mu$ m
- Radius: 8.2 and 2.8 cm (very close to the beam pipe)
- Very fast insertion mechanism
- 2 sets of pixels were made to replace damaged detector when needed

# Monolithic Active Pixel Sensors



Photo of a sensor



- Sensors 2  $\times$  2 cm with 928  $\times$  960 pixels
- Depleted region with p and n wells
- Epitaxial layer with low doping
- Electron cloud is created in epitaxial layer
- Usually multiple pixels pick up signal ⇒ better resolution

## HFT status



a cosmic event



a Au+Au 200 GeV event

- The whole HFT has been installed for RHIC 2014 running
- Cosmic data for calibration of the detector, 14.5 GeV and 200 GeV Au + Au
- SSD under commissioning (its role taken by the IST)
- HFT is running as expected with pointing resolution for the reconstructed vertices  $\sim$  30  $\mu m$

# **Pixel simulations**

- A part of every analysis is an efficiency study
- To produce them, detailed simulations are needed
- Simulation of energy deposition in MAPS is not trivial (GEANT does not describe thin silicon well)
- The energy distribution can be approximated by Landau Distribution



Landau distribution

# Simulation tool DIGMAPS

- Simulation tool DIGMAPS was developed at IPHC – CNRS – Université de Strasbourg – A. Besson et Al.
- It describes the behavior of the pixel sensors
  - 1. Particle deposits energy in the epitaxial layer (Landau distribution)
  - 2. An electron cloud is created
  - 3. Collected charge (vs distance) is simulated by sum of Lorentzian and Gaussian
  - 4. ADC threshold is applied (low electron yields are not used)







# Comparison of the simulations to the test beam data



- Electron cloud created by an ionizing particle usually fires more than one pixel
- The best way to compare simulation to the measured data: number of pixels fired (cluster multiplicity)
- Test beam in Desy (e<sup>+</sup>, e<sup>-</sup> beam) in 2012 by IPHC
- DIGMAPS was tuned on this data by the Strasbourg group

## Cosmic data from 2014

- Test if the simulation is accurate enough with the tuning from test beam
- Done for several angles
- Signal had to be cleared from the noise (signal to noise  $\sim 1/400)$  without the use of TPC
- Simulations describe data well enough



Simulated cluster multiplicity with ADC threshold 6.2 mV at 5 deg

# Summary

- State-of-art MAPS technology has been used for the first time in a collider experiment
- All three subdetectors (PXL, SDD, IST) are successfully installed in STAR
- HFT is fully functional and taking data
- Slow simulator has been completed
- It describes cosmic data well
- More thorough comparison with Au+Au 200 GeV data is being currently produced

## Thank you for your attention