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General Concepts



Running of QCD Coupling Constant
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For short distances x < 0.2 fm, or, equivalently, large momenta k > 1 GeV
the QCD coupling is small o << 1 and interactions are weak.



i A Question

= Can we understand, qualitatively or even
quantitatively, the structure of hadrons and their
interactions in High Energy Collisions?

What are the total cross sections?

What are the multiplicities and production cross sections?
= Diffractive cross sections.

Particle correlations.



What sets the scale of running QCD
i coupling in high energy collisions?

= "String theorist”: a, = o (\E ) <<

(not even wrong)

~1 we simply can not

= Pessimist: ¢, =055(AQCD)

tackle high energy scattering in QCD.

= pQCD expert: only study high-p; particles such that

Ug = aS(pT)<<1

But: what about total cross section? bulk of particles?



What sets the scale of running QCD
i coupling in high energy collisions?

= Saturation physics is based on the existence of a
large internal momentum scale Q¢ which grows with
both energy s and nuclear atomic number A

Qé N A1/3 Sﬂ,

suchthat  |g =g, (Qs) |

and we can calculate total cross sections, particle
spectra and multiplicities, etc, from first principles.




The main principle

e Saturation physics is based on the existence of a large internal
transverse momentum scale Q. which grows with both
decreasing Bjorken x and with increasing nuclear atomic

number A A
QQ NAI/B <l>

X

such that

U =aS(QS) <<l

and we can use perturbation theory to calculate total cross
sections, particle spectra and multiplicities, correlations, etc,
from first principles.



Classical Fields



Kinematics of DIS

proton
or

nucleus

P

photon

Xgi P o

/ electron

S

UWW

quarks mesons
and —— and
gluons baryons

» Photon carries 4-momentum g, , its virtuality is
2 _ v
Q° = —quq

> Photon hits a quark in the proton carrying momentum Xz p
with p being the proton’ s momentum. Parameter x5 ; is
called Bjorken x variable.



Physical Meaning of Q

Uncertainty principle teaches us
that ‘e ~1 fm%‘

ApAl = h

which means that the photon
probes the proton at the
distances of the order (h=1)

AL~ +

Q Proton o

Large Momentum Q = Short Distances Probed



Physical Meaning of Bjorken x

In the rest frame of the electron electron
the momentum of the struck : > /
quark is equal to some typical ; photon
hadronic scale m:
Xpg; P
xBj p ~m proton p
L :\)’\/\/\/\/
Then the energy of the collision nucleus SENGENGENGZN
1
E Y p N ——
ZCBj

High Energy = Small x



What have we learned at HERA?

Distribution functions xq(x,Qz) and xG(x,Qz) count the number of quarks
and gluons with sizes = 1/Q and carrying the fraction x of the proton’s

momentum.
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What have we learned at HERA?

= There is a huge number of quarks, anti-quarks
and gluons at small-x !

= How do we reconcile this
result with the picture

of protons made up of three
valence quarks?

= Qualitatively we
understand that these extra N

quarks and gluons are U

emitted by the original three
valence quarks in the
proton.




A. MclLerran-Venugopalan Model



McLerran-Venugopalan Model

o The wave function of a single nucleus has many
small-x quarks and gluons in it.

o In the transverse plane the nucleus is densely packed
with gluons and quarks.

<-----__sea gluons
-~ and quarks

nuclens

Large occupation number = Classical Field ‘




Color Charge Density

1/3
~ A nucleons S| 1
Small-x gluon “sees” the whole nucleus coherently /

in the longitudinal direction! It “sees” many color charges
which form a net effective color charge Q = g (# charges)'?, such that Q?
= g2 #charges (random walk).

Define color charge density McLerran

2 2
charges A
Iu2 _ Q_ _ 9 # g ~ g2 AL/ ,Venu,gopalan
such that for a large nucleus (A>>1)

W o Apep AYP > Ao = as(p?) < 1

Nuclear small-x wave function is perturbative!!l # = Qs



McLerran-Venugopalan Model

-
7

Large parton density gives a large momentum scale Q, (the
saturation scale): Q. ~ # partons per unit transverse area.

For Q, >> Aqcp, g€t a theory at weak coupling (s (Q?) < 1

The leading gluon field is classical.




Saturation Scale

To argue that sz, ~ A3 et us consider an example of a
particle scattering on a nucleus. As it travels through the nucleus it

bumps into nucleons. Along a straight line trajectory i1t encounters
~ R ~ A3 nucleons, with R the nuclear radius and A the atomic

Q O probe
The particle receives ~ A3 Q\ OQ\ Q | y/’/

random kicks. Its momentum

number of the nucleus.

gets broadened by
Ak ~ VA3 = (Ak)? ~ AL/3

nucleons
Saturation scale, as a feature of a collective field

of the whole nucleus also scales ~ A1/3, nucleus



McLerran-Venugopalan Model

o To find the classical gluon field A, of the nucleus one has
to solve the non-linear analogue of Maxwell equations -

the Yang-Mills equations, with the nucleus as a source of
the color charge:

D,/F'W/:J'u Ap-? — =

nucleus is Lorentz contacted into a pancake

Yu. K. '96; J. Jalilian-Marian et al, ‘96



Classical Field of a Nucleus

nucleus nucleons

non-Abelian Weizszi'cker-Williani/s
field

Here’ s one of the diagrams showing the non-Abelian

gluon field of a large nucleus.

The resummation parameter is ag? A3, corresponding to
two gluons per nucleon approximation.



Classical Gluon Field of a Nucleus

Using the obtained classical
gluon field one can construct
corresponding gluon distribution

function ¢A(x,k2)~<4(—k)°é(k)>
with the field in the A*=0 gauge

2 1 )
ety = G [P e [y (A2, 1)

Qg T T4 1 r) A/

J. Jalilian-Marian et al, " 97; Yu. K. and A. Mueller, ‘98

. _ 2 Al/3
= Qg=u is the saturation scale Og ~
= Note that ¢~<A, A >~1/a such that A ~1/g, which is what
one would expect for a classical field.




2 | 2 2 1\
da(z,k7) = Yr /d iL Fled [1 — exp (—xL O In >

Qg T T 4 x, A
<h ~In Q/k
AN n Qe
= In the UV limit of k— =,
X1 IS small and one obtains
. 1 2
2 2 tk-x N2 Xs
da(x, k7) /d T e "l ln:pLA X k%
which is the usual LO result.

>kT

Moo Qs
= In the IR limit of small k,
X IS large and we get

e SATURATION !
dalx, k7) ~ ¢ / d:l:i e BT lng—;

1/Qs Divergence is regularized.

Qg T



Classical Gluon Distribution

K1 da(X, kz) A most partons
. P " are here
A good object to plotis |~k In Qg/k ~
the classical gluon ok
distribution multiplied by X
the phase space ki \ -
| ag <<1

> Kk

- |
O‘i ’;’91 - Agep Qs know how to do physics here

= Most gluons in the nuclear wave function have transverse
momentum of the order of k; ~ Qsand Qf ~ A"

= We have a small coupling description of the whole wave
function in the classical approximation.



B. Glauber-Mueller Rescatterings



Dipole picture of DIS

In the dipole picture of DIS the virtual photon splits into a
guark-antiquark pair, which then interacts with the target.

The total DIS cross section and structure functions are
calculated via:




Dipole Amplitude

* The total DIS cross section is expressed in terms of the (Im
part of the) forward quark dipole amplitude N:
1

* dQCC dZ * — —
N = d?b U7 ) N(ZLL b, Y
Otot / 9 €L / Z(l —Z) ‘ (CEJ_,Z)| (QfJ_, 1 )

0

b, Y

with rapidity Y=In(1/x)



DIS in the Classical Approximation

The DIS process in the rest frame of the target is shown below.
It factorizes into

“nucleons in the nucleus

o Mg, Q%) = |02 @ N(x,,Y =Inl/zp;)

with rapidity Y=In(1/x)



Dipole Amplitude
The quark dipole amplitude is defined by

N(2y2) =1 o (o [Viz) Vi)

Here we use the Wilson lines along the light-cone direction

V(z) = Pexp {z’g / det A (2", 2~ = 0,:(:)]

In the classical Glauber-Mueller/McLerran-Venugopalan
approach the dipole amplitude resums multiple rescatterings:




Quasi-classical dipole amplitude

A.H. Mueller, ‘90

g g g g

Lowest-order interaction with each nucleon — two gluon exchange — the same
resummation parameter as in the MV model: 9 1/3
ai A

fi -1




Quasi-classical dipole amplitude

* To resum multiple rescatterings, note that the nucleons are independent
of each other and rescatterings on the nucleons are also independent.

* One then writes an equation (Mueller ‘90)

Q-0
L ¥

7% Q? 1
N(z,,Y)=1—exp [— L4 - lnxLA]

Each scattering!




DIS in the Classical Approximation

The dipole-nucleus amplitude in
the classical approximation is

2 Q2 1
Nz, ,Y)=1—exp|— L4Q In A
NA A.H. Mueller, ‘90
1 4/ Black disk
A limit,
saturation i )
| O, 6 < 27T R
O <<1 i
Color — — x,
1/Qq 1/A

transparency



Black Disk Limit

Start with basic scattering theory: the final and initial states are related by
the S-matrix operator,

r) = S [ei)
witeitas [y) = |y) + [ — 1] )

The total cross section is

@mm|ﬁ—l}W0

2

—2- 8- 8

where the forward matrix element of the S-matrix operator is

S = (il S |v)

and we have used unitarity of the S-matrix

SSt=1



Black Disk Limit
Now,since [1/7) = [ofs) + | — 1] [uh)

the elastic cross section is
(V] {S — 1} Vi)
The inelastic cross section can be found via

Otot = Oinel T Oel
In the end, for scattering with impact parameter b we write

oot = 2 / 2b[1 — Re S(b)]
Ool = /d%u — S(b)?
s = [ @b [1-1S0)

2

=1-5)?

Oel X



Unitarity Limit

e Unitarity implies that

1= (5] S ST [yhi) = (] S| X) (X|ST ) > |5
* Therefore ’SX| <1

leading to the unitarity bound on the total cross section
Otot — 2/d2b [1 — RGS([))] S 4/d2b = 47TR2
* Notice that when S=-1 the inelastic cross section is zero and

_ 2 __
Ttot = 2 / d2b[1 — Re S(b)] Otot = 4TR” = 0¢
Oe] = /de 11— S(b)|2 This limit is realized in low-energy scattering!

s = [ @b [1-1S0)



Black Disk Limit

At high energy inelastic processes dominate over elastic. Imposing

Oinel = Oel

we get ReS >0

The bound on the total cross section is (aka the black disk limit)
Oror = 2/d25[1 —Re S < Q/d% = 21 R’

The inelastic and elastic cross sections at the black disk limit are
Oinel = Ol = TR? o, =9 /d2b 11— Re S(b)]
Tel = /d2b|1 — S(b)*
s = [ @b[1= SO



Notation

e At high energies Im S ~ O

while the dipole amplitude N is the imaginary part of the T-matrix

(S=1+iT), such that
ReS=1—-—N

* The cross sections are

Oror = Q/deN(a:L,bL)
Oel — /d2bN2(CUJ_,bJ_)
Tinel = /d% 2N(z1,b1)— N*(xy,by)]

* We see that N=1 is the black disk limit. Hence [\ < ] as we saw above.



DIS in the Classical Approximation

The dipole-nucleus amplitude in
the classical approximation is

2 Q2 1
Nz, ,Y)=1—exp|— L4Q In A
NA A.H. Mueller, ‘90
1 4/ Black disk
A limit,
saturation i )
| O, 6 < 27T R
O <<1 i
Color — — x,
1/Qq 1/A

transparency



Summary

We have reviewed the McLerran-Venugopalan model for the
small-x wave function of a large nucleus.

We saw the onset of gluon saturation and the appearance of
a large transverse momentum scale — the saturation scale:

QQ -~ A1/3

We applied the quasi-classical approach to DIS, obtaining
Glauber-Mueller formula for multiple rescatterings of a dipole
in a nucleus.

We saw that onset of saturation insures that unitarity (the
black disk limit) is not violated. Saturation is a consequence of
unitarity!



Quantum Small-x Evolution



A. Birds-Eye View



Why Evolve?

* No energy or rapidity dependence in classical field
and resulting cross sections.

e Energy/rapidity-dependence comes in through
guantum corrections.

* Quantum corrections are included through
“evolution equations”.



BFKL Equation

Balitsky, Fadin, Kuraev, Lipatov ‘78

Start with N particles in the proton’ s wave function. As we increase
the energy a new particle can be emitted by either one of the N
particles. The number of newly emitted particles is proportional to N.

new parton is emitted as energy increases
proton

R R =

N partons it could be emitted off anyone of the N partons

The BFKL equation for the number of partons N reads:

)
9 1n(1/ x)

N(xan) = O K pry; ®N(X:Q2)



BFKL Equation as a High Density Machine

Lower Energy Higher Energy
X >~ X
—_—
parton "~ high density
Proton Al=17Q Proton region where
(X0, Q%) (x, Q%) partons overlap

# BaasiPairerracesiBEL sy qbriRmegHGRAFFRIBETBRfiHIY!Y Of
ERRABTE 7 end LRBILERTMEHSP fRpElepiner creating areas of very

> Nigpﬁeé}gité/Xists a black disk limit for cross sections, which we know
* Hom e sasyMERaARES fatangcatterifyreAPY RIERD ErasREERIERS total

grossssestiopds/boahdedoy
o1l 31 R

4

)

(R)
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Nonlinear Equation

At very high energy parton recombination becomes important. Partons not
only split into more partons, but also recombine. Recombination reduces
the number of partons in the wave function.

new parton is emitted as energy increases

it could be emitted off anyone of the N partons

N partons any two partons can recombine into one
6 2 2 2\12
O N@.k3) = o Kprxs @ N(o, k) — o [N(@. k)]
Number of parton pairs ~ N > . Balitsky " 96 (effective Lagrangian)

Yu. K. "99 (large N- QCD)



Nonlinear Equation: Saturation

YT Pp
' A
3
c~ln s
Cross
section BFKL Black Disk
power of L imit
energy saturation
growth
A
O~ S
=
energy s

Gluon recombination tries to reduce the number of gluons in the wave
function. At very high energy recombination begins to compensate gluon
splitting. Gluon density reaches a limit and does not grow anymore. So do
total DIS cross sections. Unitarity is restored!



B. In-Depth Discussion



Quantum Evolution

As energy increases [ ( ( { ({ Li
the higher Fock states

including gluons on top 4 =4
of the quark-antiquark

pair become important. W
They generate a \g

cascade of gluons. § § § §
L FA_F - A F

These extra gluons bring in powers of ag In s, such that
when ag<<1and Ins >>1 this parameteris agIns~ 1
(leading logarithmic approximation, LLA).




Resumming Gluonic Cascade

In the large-N limit of e . dipole

QCD the gluon corrections
become color dipoles.
Gluon cascade becomes

dipole
a dipole cascade. %m & .
= dipole

A. H. Mueller, ' 93-" 94 dipole

=3

dipole

-

o

=yal ooz

=

We need to resum . ~
dipole cascade,
with each final
state dipole - N~
iInteracting with
the target.

Yu. K. ‘99 N

X
039

039
039

N—"
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——""T—
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Notation (Large-N)

'flL '/Z]L

4(\ Ty | L
T \I Real emissions in the

amplitude squared

L

Ty

Ty

V
+

Y b

L
1

oL F (dashed line — all
Glauber-Mueller exchanges
at light-cone time =0)

RN P

J Ty

LD
Virtual correction;in the amplitude
(wave function)

PEEE
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Nonlinear Evolution

To sum up the gluon cascade at large-N. we write the following equation
for the dipole S-matrix:

1

T{ <> } = { % } dashed line =

all interactions
1\ with the target

q | N q |

4+ ; S — 4+ = S é —
\_ ‘ J \_ J
0 ! 0
ag N, x2
8YSX0,X1 (Y) =< d2CE2 - [SXO X2 (Y) SX2,X1 (Y) SXO,Xl (Y)]
272 T3, T3

Remembering that S= 1-N we can rewrite this equation in terms of
the dipole scattering amplitude N.



Nonlinear evolution at large N

As N=1-S we write

1 | |
~ : ™ . i R
N — <N> — @ —
. ! D x | D
0 ! ‘

e | ) e > )
2
4+ — — 4+ = — N —
\_ @ J \_ 1 J

~ dashed line =
— all interactions
with the target

@@
-

ozs N, x?
O Ny (V) = 5 [ i 0 N (V) N (V) = N, (1) = N (V) Ny (V)

Xo X2
02 9521

Balitsky ‘96, Yu.K. ‘99



Nonlinear Evolution Equation
Sl N Xo: 2 f — @

We can resum the dipole cascade

ok

N(xy,Y) agN

x2 X
Y = ”2Cfd2x2[ . — 276 (X — xoz)ln( lgl)]N(xozaY)

Xo2 X12

aS

x
fd2x2 —5 N(xp, Y) N(x,,,Y)

02 x12

|. Balitsky, ~ 96, HE effective lagrangian
22 Q2 1 ] Yu. K., " 99, large N; QCD

=1
4 na:LA

N(z,,Y)=1—exp [
“—— initial condition

= Linear part is BFKL, quadratic term brings in damping




Resummation parameter

* BK equation resums powers of

as N. Y

* The Galuber-Mueller/McLerran-Venugopalan initial
conditions for it resum powers of

ozg Al/3



Going Beyond Large N.: JIMWLK

To do calculations beyond the large-N limit on has to use a functional
integro-differential equation written by lancu, Jalilian-Marian, Kovner,
Leonidov, McLerran and Weigert (JIMWLK):

YA 1 52 0
oy = O {5 OO Z x(u,v)] — 5p (1) Z O'(U)]}

where the functional Z|p] can then be used for obtaining
wave function-averaged observables (like Wilson loops for DIS):

(0) = / Dp Z[p) Ol



Going Beyond Large N.: JIMWLK

« The JIMWLK equation has been solved on the lattice by
Rummukainen and H. Weigert '04

 For the dipole amplitude N(x,,X;, Y), the relative
corrections to the large-N. limit BK equation are < 0.001 !
Not the naive 1/N2 ~ 0.1 ! (For realistic rapidities/
energies.)

« The reason for that is dynamical, and is largely due to
saturation effects suppressing the bulk of the potential

1/N:Z corrections (Yu.K., J. Kuokkanen, K. Rummukainen,
H. Weigert, ‘08).



Last time

 We discussed the McLerran-Venugopalan (MV) model:

classical gluon field of a nucleus. ok _ most partons
.-~ arehere
* Found the classical gluon distribution. K n Qufk ~
_ LN~k
* Argued that the saturation scale )X

grows as

2 1/3
QSNA/ ‘ > ky

7 |
oci :‘)1 " Agep Qs know how to do physics here

* Considered DIS in the quasi-classical picture:

N
1o ___.
A I
/ l
saturation |
|
I
2 Og <<1 :
X\ I
\ |
. h 1
“nucleons in the nucleus |

1/A



Last time

* Derived the nonlinear (BK) evolution equation:

AR L

o,

. 0 &
@
I pim miy

 Resummation parameter is (leading log approximation):

1
asY —asIn— ~ a, Ins
x



Last time

* The equation reads:

* It combines BFKL evolution (the linear part) and the quadratic
damping correction.

* All-N_ evolution is IMWLK.

* Gelis+Golec-Biernat: BK is the “Heisenberg representation”,
while JIMWLK is the “Schrodinger representation”.

* Now let’s discuss its solution.



C. Solution of BK Equation



Solution of BK equation

N(x,,Y)

08F agY =0,12,24,36/48 numerical solution

by J. Albacete ‘03

(earlier solutions were

found numerically by
Golec-Biernat, Motyka, Stasto,
by Braun and by Lublinsky et al
in ‘01)

0.6 r
04r

02r

0.00001 0.0001 0.001 0.01 0.1 1 10

X, (GeVh
1/Qs

BK solution preserves the black disk limit, N<1 always
(unlike the linear BFKL equation)

qu_A = 2 /deN(fEJ_,bJ_,Y)



10000 F

Saturation scale

1000 F
100 E

10 E

Q4(Y) (GeV)

numerical solution by J. Albacete



BK Solution

* Preserves the black disk limit, N<1 always.

AIO T 117 T T T T 1T UL L T T BV
I i i i i i 4 i P
i t

log,,(1/x

O_chA = 2 /deN(ZEJ_,bJ_,Y)

* Avoids the IR problem of .
BFKL evolution due tothe *

= —

saturation scale ; *
screening the IR: et S

Golec-Biernat, Motyka, Stasto ‘02

3 4 5

log, ,(k/1GeV)



BFKL Equation

\

In the conventional Feynman
diagram picture the BFKL equation

can be represented by a ladder

graph shown here. Each rung of S
the ladder brings in a power of ——1—
alns.

The resulting dipole amplitude
grows as a power of energy

A
N ~s

violating Froissart unitarity bound

2
o, <constIn” s



GLR-MQ Equation

Gribov, Levin and Ryskin ( ‘81) ~AA
proposed summing up “fan” diagrams:

Mueller and Qiu (" 85) summed
“fan” diagrams for large Q2.

The GLR-MQ equation reads:

0 2
r, k7)) = as K R oz, k3) — « z, k2)]?
JInl/z ¢(z,kr) = as Kprrr ® ¢(z,kr) — as [¢(z, k7))
GLR-MQ equation has the same principle of recombination as BK and
JIMWLK. GLR-MQ equation was thought about as the first nonlinear
correction to the linear BFKL evolution. An AGL (Ayala, Gay Ducati, Levin
‘96) equation was suggested to resum higher-order nonlinear corrections.

BK/JIMWLK derivation showed that for the dipole amplitude N (!) there are no
more terms in the large-N limit and obtained the correct kernel for the non-
linear term (compared to GLR suggestion).



Energy Dependence of the Saturation Scale

Single BFKL ladder gives scattering

amplitude of the order A A
N~ —s
kT

Nonlinear saturation effects become
important when N ~ N2 = N ~ 1. This Y

happens at
kr = Qs ~ A SA

\ \ Q

Saturation scale grows with energy! ) — A

Typical partons in the wave function have k; ~ Qg, so that their
characteristic size is of the order r ~ 1/k; ~ 1/Qs.

= Typical parton size decreases with energy!



Saturation scale

- Q(Y) (GeV)
10000 §_

1000 [
100 E

10 F

numerical solution by J. Albacete



Nonlinear Evolution at Work

Proton

v" First partons are produced
overlapping each other, all of them

about the same size.

v" When some critical density is
reached no more partons of given
size can fit in the wave function.

The proton starts producing smaller
partons to fit them in.

Color Glass Condensate



Map of High Energy QCD

k
-
§
f
=
1
1
k.
=2
—_
-
[uli]
[ ]
—
—
—
=
—
—
—

nl/jr

energy.

resolution, In ()< number of partons

< size of gluons



Map of High Energy QCD

Saturation physics allows us
to study regions of high
parton density in the small
coupling regime, where
calculations are still

under control! :
non-perturbative

region
(not much is known
coupling is large)
o, ~ 1

Y=In1/x A

saturation region
Color Glass Condensate

( can be understood
by small coupling methods )

//BK/JIMWLK

Transition to saturation region is
characterized by the saturation scale




i Geometric Scaling

= One of the predictions of the JIMWLK/BK evolution
equations is geometric scaling:

DIS cross section should be a function of one
parameter:

Ops (X, Qz) =Ops (Q2 /Qé(x))

(Levin, Tuchin " 99; Iancu, Itakura, McLerran ’ 02)



Geometric Scaling

0.8 r
0.6 1
04 r

02r

N(t =x,Qy(Y))
a Y=0, 1.2,2.4,3.6,4.8

-
-
-
e e e ———

-~

1 10

numerical solution by J. Albacete



Geometric Scaling in DIS

Geometric scaling has

been observed in DIS Ei
data by ¢ »
Stasto, Golec-Biernat, ey
Kwiecinski in ” 00. :

Here they plot the total

DIS cross section, which

IS a function of 2 variables EUS BT 07
. [ ZEUS BPC 9

- Q2 and x, as a function i low Q95

1 - ZEUS+H1 high Q* 94-95

of just one variable: C wes

xA0.01
all Q°

4 OD> %+ O

T

Q2



Map of High Energy QCD

Saturation region
Color Glass Condensate
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D. Connection to Conventional
Approaches



Dipole Amplitude and Other Operators

Dipole scattering amplitude is a universal degree of freedom in saturation
physics.

It describes the total DIS cross section and structure functions:

* It also describes single inclusive quark and gluon production cross section
in DIS and in p+A collisions.

* Works for diffraction in DIS and p+A.

* For correlations need also quadrupoles (J.Jalilian-Marian, Yu.K. '04;
Dominguez et al ‘11) and other Wilson line operators.



Dipole vs. BFKL Evolution

* |n the linear regime, dipole evolution is BFKL:




BKP Evolution vs Quadrupoles, etc

 What is the analogue of the Bartels-Kwiecinski-Praszalowicz
(BKP) equation?
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* |t seems that color quadrupoles and higher multipoles are the
answer. (Altinoluk et al, 2013)
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Conclusions

We have constructed nuclear/hadronic wave
function in the quasi-classical approximation (MV

model), and studied DIS in the same
approximation

We included small-x evolution corrections into
the DIS process, obtaining nonlinear BK/JIMW

LK

evolution equations

We found the saturation scale |Q; ~ 4"~ (
justifying the whole procedure.

1

X

|

A

Saturation/CGC physics predicts geometric
scaling observed experimentally at HERA.



More Recent Progress



A. Running Coupling



Non-linear evolution: fixed coupling

» Theoretically nothing is wrong with it: preserves unitarity
(black disk limit), prevents the IR catastrophe.

« Phenomenologically there is a problem though: LO BFKL
intercept is way too large (compared to 0.2-0.3 needed to

describe experiment)
ags N,

ap —1=2.77 ~ 0.79

T

« Full NLO calculation (order-oz2 kernel): tough, but done
(see Balitsky and Chirilli * 07).

« First let’s try to determine the scale of the coupling.



What Sets the Scale for the Running
Coupling?

aN(xOD'xlaY) aS de xOl
0Y xO2 x12

x[N(xO,xz,Y)+N(x2,xl,Y)—N(xO,xl,Y)—N(xo,xz,Y)N(xz,xl,Y)]

1

Xo1
0 transverse
plane

Xo2




What Sets the Scale for the Running
Coupling?

aN(xOD'xlaY) aS fd2 xOl
0Y xO2 x12

x[N(xO,xz,Y)+N(x2,xl,Y)—N(xO,x1,Y)—N(xo,xz,Y)N(xz,xl,Y)]

999 In order to perform consistent calculations
U ( - ) it is important to know the scale of the running
coupling constant in the evolution equation.

There are three possible scales — the sizes of the “parent”
dipole and “daughter” dipoles x,,,x,,, X,, . Which one is it?




Preview

The answer is that the running coupling corrections
come in as a " triumvirate” of couplings (H. Weigert,
Yu. K. " 06; I. Balitsky, ‘06):

ag(...)as(...)
as(...)

cf. Braun ' 94, Levin ‘94

The scales of three couplings are somewhat involved.



Main Principle

To set the scale of the coupling constant we will first
calculate the a3 N, corrections to BK/JIMWLK evolution
kernel to all orders.

We then would complete N, to the QCD beta-function
11N, -2N,
127

by replacing N, — -6, to obtain the scale of
&y

the running coupling:
2
O g —
@) =15 ay B2 In(Q?/p?)

BLM prescription (Brodsky, Lepage, Mackenzie '83)

2




Running Coupling Corrections to All Orders

One has to insert fermion bubbles to all orders:

O, o OO

o i
I'-L':I';'I I'\-.[-.-'I
RV T Gret o
2t U 1]

{..-"mfﬂ &8 fﬂ {"I‘ {"f{r" fﬂ{}."m 521 fl{){"f
° ) ¥ Xt g 06 10



Results: Transverse Momentum Space

The resulting JIMWLK kernel with running coupling corrections
IS

2 2 ' 12
0{ K(X09xlaz) 4fd(2jj) —lq(z Xo)+iq(z-X,) q q aS(q )aS(q )

q q Ug (Q )
where . 0" q'In(@/x)-q°In@”/x’) q’q” In(@’/q”)
ﬂz q2_q|2 qql q2_q|2
The BK kernel is obtained from the above g
by summing over all possible emissions "OnC (e,

of the gluon off the quark and anti-quark
lines.

q’



Running Coupling BK

Here’ s the BK equation with the running coupling corrections
(H. Weigert, Yu. K. 06; |. Balitsky, ‘06):

dN(xy,x,Y) N

< (d’x

Y i L
< as(1/ xy,) 4 as(1/x3) _9 as(1/ xg,) as(1/x7) Xy * Xy,
X0 o as(1/R*) SEip s

X[N(x09x29Y)+N('xz:xlaY)_N(xO:xlaY)_N(x09x29Y)N(x29x19Y)]

where 2 2 2 2 2 2 2 2 2 ;2
In R> 2 _ Xy In (x5, p7) = x5, In(x5, w )+ X5 X5 In(x35,/x3,)

2 2 2 2
Xoo — X7 Xy Xy Xp9 =Xy




ﬁ What does the running coupling do?

A

= Slows down the evolution with energy / rapidity.

2 03 -
L dIn Qs (Y) Al
dY -
025 =
........ Qy=0.5 GeV
S e Q=0.75 GeV L
0.15 | Qp=1GeV B
down from about [/ Sorem e
AR 07208 b

at fixed coupling Albacete ‘07



Solution of the Full Equation

KW

12 - R““Bal MVic. [ scaling function i.c.
N(r); ---- Run Y=0,3,10 Y=0,3,10
1I—— F=Run-Sub PEES -ix ‘_ el _
........ init. cond. R
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e
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.
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r (Gev r (Gev?

Different curves — different ways of separating running
coupling from NLO corrections. Solid curve includes all

corrections.
J. Albacete, Yu.K. ‘07



Geometric Scaling

1.2

N(x) © ]
i  — F=Run-Sub Y=10
- - Bal
0.8_— - KW
- i.c.=NY" (Y=35)
0.6_—
0.4/
0.2
0: ! - ) ! L | o T=rQS(Y)
10° 10” 1 r 10

At high enough rapidity we recover geometric scaling, all
solutions fall on the same curve. This has been known for fixed
coupling: however, the shape of the scaling function is different

In the running coupling case! J. Albacete, Yu.K. ‘07



B. NLO BFKL/BK/JIMWLK



NLO BK

 NLO BK evolution was calculated by Balitsky and Chirilli in 2007.
* |t resums powers of og? Y (NLO) in addition to powers of Qg Y (LO).
* Here’s a sampler of relevant diagrams (need kernel to order-a?):

Diagrams with 2 gluons interaction

(xviy -~ (Xvil

0} '0 o 0.
oo 3 (xx1) I3 XXl 3 ooav) xv)

X

Od o ,° B
XXV o (XX o (xvi (XXIX) < (XXX)




d

dn

NLO BK

* The large-N¢ limit:

(x—y?[. . @N,[11 UX-Y: X2 67w X y2

an V&) = 277'2 d’z Xy? { 47 [ 3 In(x - y)*p* 3 (x—y)? lnﬁ * 9 3 Zln(x —y)? ln(x - y)z]]

X [N(x,z) + N(z,y) = N(x,y) = N(x,z)N(z,y)]

2N2 2 XZyIZ ot Xr2y2 — 4(x — )’)2(2 — z1)2 (x — )’)4
f d2d7 { @—2) [ (z — 2 (X2Y™ — X2Y?) X2Y2(X2Y2 — X2Y?)
(x y)? X*y"? ! ! ! !
X2Y’2(z — Z')2:| X/ZyQ}[N(Z 7') = N(x,z)N(z,z") — N(z, z/)N(Z',y) = N(x, z)N(Z", y) + N(x, z2)N(z, y)
+ N(x,z)N(z, Z)N(Z, y)]. (136)

(yet to be solved numerically)



NLO JIMWLK

Very recently NLO evolution has been calculated for other Wilson line
operators (not just dipoles), most notably the 3-Wilson line operator
(Grabovsky ‘13, Balitsky & Chirilli 13, Kovner, Lublinsky, Mulian "13,
Balitsky and Grabovsky ‘14).

The NLO JIMWLK Hamiltonian was constructed as well (Kovner, Lublinsky,
Mulian ’13, '14).

However, the equations do not close, that is, the operators on the right
hand side can not be expressed in terms of the operator on the left. Hence
can’t solve.

To find the expectation values of the corresponding operators, one has to
perform a lattice calculation with the NLO JIMWLK Hamiltonian,
generating field configurations to be used for averaging the operators.



+

NLO Dipole Evolution at any N

NLO BK equation is the large-N_ limit of (Balitsky and Chrilli " 07)

'n{mz‘;;} (5)
(z — y)2 Qs 22 X*-Y* X* 67 = . 10
2~r2 X2Y2 t i [bh‘(m Y by g e gy
X? y? T It Tt imidl
—_ 9N. UYL 0Ty — N.Te LT
2Nl (gl y)z] } ({0, U YT {0.0]} — NI {00} }]

2 4 X2y + X?Y? — 4z — y)2(z — 2')?

s 2,732,/ _ ;
1674 /d zd°z [( (z — zl)4 T {2 (z _ z’)4[X2Y’2 _ X’2Y2]

(z —y)* 1 1 (z-y3?r 1 1 X2y’

xave - x| xaye * yaxe| * (z— )2 Sove ~ xeva) o ava)

+1{

x [Te{U. U} {U.U]}yTe{U.. U} } — Te{U.UI0. U U.UL} - (¢ — 2)]

(z—y)31 1 1 (z — y)* D G S
(z—2')? [X2Y'2 - Y2X’2] T X2y x%y? pio x2yz UV Y IH{U:U; I {U- Uy }
4 X?Y2+Y"?X? - (z—y)* (2 —2)*, X°YV" afy ot afy 4byyt /
+ any{ =20 2 (r-2)(XPY? _X7yi) X7y J Tt O O D100} = (2 — 2)]



Summary

* Running coupling and NLO corrections have been
calculated for BK and JIMWLK equations.

* rcBK and rcJIMWLK have been solved numerically
and used in phenomenology (DIS, pA, AA) with
reasonable success.

e NLO BK and NLO JIMWLK have not yet been solved.



C. DIS Phenomenology



Three-step prescription

Calculate the observable in the classical approximation.

Include nonlinear small-x evolution corrections (BK/JIMWLK),
introducing energy-dependence.

To compare with experiment, need to fix the scale of the
running coupling.

NLO corrections to BK/JIMWLK need to be included as well.
This has not been done yet.



Geometric Scaling in DIS

Geometric scaling has

been observed in DIS Ei
data by

Stasto, Golec-Biernat, o ey

Kwiecinski in * 00.

Here they plot the total i

DIS cross section, which

IS a function of 2 variables EUS BT 07 )
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Comparison of rcBK with HERA F2 Data

:: Q?=0.11 GeV? :
DIS structure functions: ons L"’\ E
Q2 01 Q’-osc;ev2 :
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Comparison with the combined
H1 and ZEUS data

Albacete, Armesto, Milhano,
Qiuroga Arias, and Salgado ‘11

reduced cross section:
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Diffractive cross section

7*
X xpBp" My
rapidity
4P rpp’ rapidity
hadron or
),
nucleus D
(a) (b)

Also agrees with the saturation/CGC expectations.
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D. Heavy lon Phenomenology



Heavy Ion Collisions

nucleus nucleus

= Quarks and gluons are confined inside hadrons. In heavy 1on

collisions people are trying to create a new state of matter called

Quark-Gluon Plasma: a soup of de-confined quarks and gluons.




Heavy lon Collisions :

 SAay
i :
& A
oo
iR
'n i
T '
.
L
Lahaee
¥ v
WEiET
L

taken from S.A.Bass

Time evolution of the collision:

 |nitial collision and particle production

« Thermalization and formation of quark-gluon plasma (QGP)
« Hadronization: QGP becomes a hadron gas

* Decoupling followed by free-streaming



Timeline of a Heavy lon Collision | ¢

7 Freeze-out
(System falls apart)

- Hadronic Gas

”__ Thermalization Region
(Quark-Gluon Plasma)

------- Initial Conditions

(part}icle production)

nucleus #1

Zz

nucleus #2



Three-step prescription

e Calculate the observable in the classical
approximation.

e |Include nonlinear small-x evolution
corrections, introducing energy-dependence.

e To compare with experiment, need to find the
scale of the running coupling.



CGC Multiplicity Prediction

Number of hadrons
per nucleon-nucleon collision
at mid-rapidity.

e
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8 [ CGC prediction by
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Multiplicity with centrality at RHIC and LHC

Number of hadrons 9

per nucleon-nucleon | A Au+Au, 200 GeV }F
collision 8 - [0 Cu+Cu, 200 GeV * “““ .
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Multiplicity vs. collision energy

Number of hadrons
per unit rapidity
at mid-rapidity

14
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CMS, pp NSD
ALICE, pp NSD
UAI, pp NSD
ALICE, AA(0-5%)
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PHENIX 1, AA(0-5%)
PHENIX 2, AA(0-5%)
STAR, AA(0-5%)
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Multiplicity vs. rapidity

Number of hadrons
per unit rapidity
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Geometric Scaling

 Geometric scaling appears to be present in particle spectra
both et RHIC and at LHC (McLerran&Praszalowicz (2011),
Praszalowicz (2011)):

CMS
: gg‘;v PHOBOS 0 -6 %
0 . c
10 ® 00TeV B Au 200 GeV
O Au62.4 GeV
10" 1=0.27 A (Cu200 GeV
A Cu 62.4 GeV
'y A =0.30
107 ‘\
"
; o
10 g‘.‘
l' é
10" ‘e, +
L | . méﬁ
. 4
A
10_5 T T T T T T T 1 ]()4 T T T —
0 5 10 15 20 25 30 35 0 5 10
T T



E. A case for EIC



Electron-lon Collider (EIC) White Paper

EIC WP was finished in late
2012

A several-year effort by a
19-member committee +
58 co-authors

arXiv:1212.1701 [nucl-ex]

Electron lon Collider:
The Next QCD Frontier

EIC can be realized as . .
eRHIC (BNL) or as ELIC A " that binds us all
(JLab)




Can Saturation Discovery be
Completed at EIC?

EIC has an unprecedented small-x reach for DIS on large nuclear targets, allowing
to seal the discovery of saturation physics and study of its properties:

RN T T T TorTTTT
108} Measurements with A = 56 (Fe):
E o eA/pADIS (E-139, E-665, EMC, NMC) Q2(X)
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Diffraction on a black disk

For low Q? (large dipole sizes) the black disk limit is reached
with N=1

Diffraction (elastic scattering) becomes a half of the total
cross section

o994 B fdeN2 1

el .
4

a4 2 [d2h N 2

O tot

Large fraction of diffractive events in DIS is a signature of
reaching the black disk limit!



Diffractive over total cross sections

* Here’s an EIC stage-l measurement which may distinguish saturation from
non-saturation approaches:
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Conclusions

The field has evolved tremendously over recent two decades,
with the community making real conceptual progress in
understanding QCD in high energy hadronic and nuclear
collisions.

High energy collisions probe a dense system of gluons (Color
Glass Condensate), described by nonlinear BK/JIMWLK
evolution equations with highly non-trivial behavior.

Calculation of higher-order corrections to the evolution
equations is a rapidly developing field with many new results.

Progress in understanding higher order corrections led to an
amazingly good agreement of saturation physics fits and

predictions (!) with many DIS, p+A, and A+A experiments at
HERA, RHIC, and LHC.



Backup Slides



Conclusions

* In these lectures | introduced a 3-step
approach to CGC: classical physics, small-x
evolution, and running coupling corrections.

e This prescription appears to describe a wide
range of small-x data on DIS, p(d)A, and AA
collisions.



Last time

* The equation reads:

ags N, x?
a}/]\[XO;:XI <Y> - 2 2 d2aj2 2 012 [Nx07x2 (Y> —I_ NX?,XI (Y) NXOaxl (Y) NXO;XQ <Y> Nx27x1 <Y>]
@ Lo2 T21

* It combines BFKL evolution (the linear part) and the quadratic
damping correction.

e We discussed its solution:
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Dipole universality

* So far a wide range of observables, from total DIS
cross section and structure functions, to the
hadronic p; spectra in pA are described in terms
of a single quantity — dipole scattering amplitude.

* This is a new universal degree of freedom. (Gelis,
Jalilian-Marian ‘02; Goncalves, Kugeratsky,
Machado, Navarro '06; AGBS ‘12, etc.)

* However, there are observables, like two-particle
correlations, which are described in terms of the
higher-order correlators, like quadrupoles, etc.



NLO Corrections

Note also that two iterations of NLO evolution kernel is parametrically of
the same order as a combination of one LO and one NNLO kernels:

(a3Y)? ~ (asY) (a]Y)

Does this mean that NLO kernel can only be inserted once into the LO
evolution?

Things simplify if you know the solution of the equation. For instance, in
DGLAP case, perturbative expansion in the kernel naturally translates into
the perturbative expansion in the anomalous dimensions.

Nonlinear equations are hard. Let’s consider the linear BFKL evolution.



The Problem

We want to find the BFKL Green function. It satisfies the BFKL
equation

G K.Y) = [ @K (kg Gl k. Y)

with the initial condition

1
kK'Y =0)= —0(k—K

K(k,q) represents a BFKL kernel at an unspecified order in a..

We need to find the eigenfunctions and eigenvalues for the
kernel.



BFKL Equation in N=4 SYM Theory

The form of the BFKL equation’s solution is straightforward to
determine in N=4 SYM theory: there the eigenfunctions are fixed by
conformal symmetry and are simply E™V (eigenfunctions of the
Casimir operators of the Mobius group).

In the angle-independent case at hand E™V ‘s reduce to simple
powers of momentum k and we write the BFKL Green function in
N=4 SYM theory as
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Perturbative expansion takes place in the exponent (the
eigenvalue).



Solving BFKL Equation in QCD

 QCD is not a conformal theory: we can not fix the all-order
BFKL eigenfunctions by a symmetry argument.

* While simple powers are eigenfunctions for the LO kernel,
they are not eigenfunctions for the NLO kernel due to the
running coupling effects:
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The Strategy

* Since the BFKL kernel is known perturbatively up to NLO
K(k,q) = a, K" (k,q) + a;, K™ (k, q) + O(a))
it appears logical to construct the eigenfunctions order-by-
order in the coupling as well. (Solving NLO BFKL equation

exactly would exceed the precision of the approximation as
NLO? = LO x NNLO.)

G. Chirilli, Yu.K. ‘13
* To find the eigenfunctions we thus write

Ho (k) = K72 (L Gy fo (k) + ..
and (perturbatively) impose the eigenfunction condition
[ KOOk g) H, (@) = A H (b

where the eigenvalue A(y) is also an unknown.



NLO BFKL Solution
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* Note that}@urbaﬁve expansionispresent both in the

exponent and in the eigenfunctions (G. Chirilli, Yu.K. ‘13).

* The procedure can be repeated at higher orders in o, and was
implemented at NNLO already (G. Chirilli, Yu.K. ‘14).




