Determination of $K \pi$ scattering lengths at physical kinematics

Tadeusz Janowski
Supervisor: Prof. C. T. Sachrajda
RBC-UKQCD collaboration SHEP
University of Southampton
tj1g11@soton.ac.uk
January 30, 2014

Scattering phase shifts

For a system with two (pseudo)scalar particles, the S-matrix in centre-of-mass frame can be written in partial wave basis as:

$$
\left\langle E^{\prime}, p^{\prime}, I^{\prime}, m^{\prime}\right| S|E, 0, I, m\rangle=\delta\left(E^{\prime}-E\right) \delta(p) \delta_{l / \prime} \delta_{m m^{\prime}} S_{l}(E)
$$

which is required by Lorentz invariance of the S-matrix, specifically $[H, S]=0,[P, S]=0,\left[J^{2}, S\right]=0,\left[J_{3}, S\right]=0$ and $\left[J_{ \pm}, S\right]=0$. Furthermore, unitarity of the S-matrix implies $S^{\dagger} S=S S^{\dagger}=1$ gives

$$
S_{l}(E)=e^{2 i \delta_{l}(E)}
$$

This means that the two (pseudo)scalar particle scattering can be expressed in terms of a single real parameter $\delta_{l}(E)$ called the phase shift.

Scattering length

At low energies (or equivalently momenta, k), phase shifts have the following threshold behaviour:

$$
\delta_{l}(k) \sim k^{\prime+1}
$$

- The dominant contribution will come from the s-wave $(I=0)$.
- We can define a constant called the scattering length:

$$
\left(\delta_{0}(k) / k\right)^{-1}=\frac{1}{a_{0}}+\frac{r_{e f f}}{2} k^{2}+\mathcal{O}\left(k^{4}\right)
$$

$K \pi$ scattering

With $m_{u}=m_{d} \equiv m_{u d}$ and QCD interactions only, isospin becomes a good quantum number.
Pions have $I=1$, kaons have $I=1 / 2$, so $K \pi$ can be in $I=3 / 2$ or $I=1 / 2$ state. Specifically:

$$
\begin{aligned}
& \left|I=3 / 2 ; I_{z}=3 / 2\right\rangle=\left|K^{+} \pi^{+}\right\rangle \\
& \left|I=3 / 2 ; I_{z}=1 / 2\right\rangle=\frac{1}{\sqrt{3}}\left|K^{0} \pi^{+}\right\rangle+\sqrt{\frac{2}{3}}\left|K^{+} \pi^{0}\right\rangle \\
& \left|I=3 / 2 ; I_{z}=-1 / 2\right\rangle=\frac{1}{\sqrt{3}}\left|K^{+} \pi^{-}\right\rangle+\sqrt{\frac{2}{3}}\left|K^{0} \pi^{0}\right\rangle \\
& \left|I=3 / 2 ; I_{z}=-3 / 2\right\rangle=\left|K^{0} \pi^{-}\right\rangle \\
& \left|I=1 / 2 ; I_{z}=1 / 2\right\rangle=\frac{1}{\sqrt{3}}\left|K^{+} \pi^{0}\right\rangle-\sqrt{\frac{2}{3}}\left|K^{0} \pi^{+}\right\rangle \\
& \left|I=1 / 2 ; I_{z}=-1 / 2\right\rangle=-\frac{1}{\sqrt{3}}\left|K^{0} \pi^{0}\right\rangle+\sqrt{\frac{2}{3}}\left|K^{+} \pi^{-}\right\rangle
\end{aligned}
$$

Results so far

Plot courtesy of G. Colangelo.

Lattice results

	$a_{0}^{3 / 2} m_{\pi}$	$a_{0}^{1 / 2} m_{\pi}$
NPLQCD 1	$-0.0574(16)\binom{+24}{-58}$	$0.1725(13)\binom{+23}{-156}$
Fu 2	$-0.0512(18)$	$0.1819(35)$
PACS-CS 3	$-0.0602(31)(26)$	$0.183(18)(35)$

Calculation also done by Lang et. al. ${ }^{4}$, but without extrapolation to physical point.
This work: evaluation of scattering length directly at physical point.

[^0]
S-wave phase shifts from a lattice - Lüscher's formula

In infinite volume, the two meson energies can be visualised on the complex energy plane as a branch cut starting at $m_{1}+m_{2}$. In finite volume this is replaced by series of poles.

$$
m_{1}+m_{2}
$$

Position of these poles can are related to the s-wave phase shifts by Lüscher's condition ${ }^{5}$:

$$
\begin{aligned}
\delta(k)+\phi(q) & =n \pi \\
\tan \phi(q) & =\frac{q \pi^{3 / 2}}{Z_{00}(1 ; q)} \\
Z_{00}(1 ; q) & =\frac{1}{\sqrt{4 \pi}} \sum_{k \in \mathbb{Z}^{3}} \frac{1}{q^{2}-k^{2}}
\end{aligned}
$$

[^1]\[

$$
\begin{align*}
C_{K \pi}^{\prime i j}(t) & \equiv\langle 0| O_{K_{\pi}}^{i \dagger}(t) O_{K \pi}^{j}(0)|0\rangle \tag{1}\\
& =\sum_{n}\langle 0| O_{K \pi}^{i \dagger}|n\rangle\langle n| O_{K \pi}^{j}|0\rangle e^{-E_{n} t} \tag{2}\\
& \xrightarrow{t \rightarrow \infty}\langle 0| O_{K \pi}^{i \dagger}|K \pi\rangle\langle K \pi| O_{K \pi}^{j}|0\rangle e^{-E_{K \pi} t} \tag{3}
\end{align*}
$$
\]

We use:

$$
O_{K \pi}^{ \pm}(t)=\bar{s}(t \pm 2) \gamma^{5} u(t \pm 2) \bar{d}(t) \gamma^{5} u(t)
$$

$K \pi I=3 / 2$ contractions

C

$$
\begin{aligned}
& D=\operatorname{Tr}\left(S^{\dagger}(t ; 2) L(t ; 2)\right) \operatorname{Tr}\left(L(t+2 ; 0)^{\dagger} L(t+2 ; 0)\right) \\
& C=\operatorname{Tr}\left(S^{\dagger}(t ; 2) L(2 ; 0) L^{\dagger}(t+2 ; 0) L(t+2 ; 2)\right)
\end{aligned}
$$

$$
C_{K \pi}^{1=3 / 2}(t)=D-C
$$

Rectangle graph for $\mathrm{I}=1 / 2$ correlator

$K \pi$ at $\mathrm{I}=1 / 2$ has a scalar resonance $K_{0}^{*}(800)$ (called κ). At physical kinematics, κ mass is larger than $E_{K \pi}^{\prime=1 / 2}$, so the ground state still corresponds to $E_{K \pi}^{I=1 / 2}$.
Previous studies have shown that the two-meson interpolators have a good overlap with $K \pi$ states for light pion masses. Another viable choice would be the scalar meson interpolator:

$$
\begin{equation*}
O(t)=\bar{s}(t) d(t) \tag{4}
\end{equation*}
$$

This operator however was shown to only have a good overlap with $K \pi$ state for heavy pion masses ($>700 \mathrm{MeV}$) and was not considered in our test run.

$\pi \pi \mathrm{I}=2$ scattering

For $\pi \pi$ scattering the energy difference can be accurately predicted from:
$\frac{C_{\pi \pi}}{C_{\pi}^{2}} \approx N e^{-\left(E_{\pi \pi}-2 m_{\pi}\right) t} \approx N\left(1-\left(E_{\pi \pi}-2 m_{\pi}\right) t\right)$

$K \pi I=3 / 2$ scattering

Around-the-world effects

In lattice simulations we often use (anti)periodic boundary conditions in the time direction. This means that, rather than e.g. $\langle 0| O_{1}\left(t_{1}\right) O\left(t_{2}\right)|0\rangle$ for some operators O_{1}, O_{2}, we're actually calculating:

$$
\sum_{n}\langle n, t=T \sim 0| e^{-H\left(T-t_{1}\right)} O_{1} e^{-H\left(t_{1}-t_{2}\right)} O_{2} e^{-H t_{2}}|n, t=0\rangle
$$

This sum will contain not only the desired term, but also other contributions, referred to as 'around-the-world effects'.

Around-the-world effects

$$
\begin{aligned}
C_{K \pi}(t) & =A e^{-E_{K \pi}(t-2)} \\
& +B e^{-E_{K \pi}(T-t-2)} \\
& +C e^{-m_{K}(t-2)} e^{-m_{\pi}(T-t-2)} \\
& +D e^{-m_{\pi}(t-2)} e^{-m_{K}(T-t-2)}
\end{aligned}
$$

with:

$$
\begin{aligned}
& A=\langle 0| O_{\text {snk }}|K \pi\rangle\langle K \pi| O_{\text {src }}|0\rangle \\
& B=\langle K \pi| O_{\text {snk }}|0\rangle\langle 0| O_{\text {src }}|K \pi\rangle \\
& C=\langle\pi| O_{\text {snk }}|K\rangle\langle K| O_{\text {src }}|\pi\rangle \\
& D=\langle K| O_{\text {snk }}|\pi\rangle\langle\pi| O_{\text {src }}|K\rangle
\end{aligned}
$$

5-parameter fit - test results

Lattice size	$48^{3} \times 96$
Gauge action	Iwasaki
Fermion acrion	Möbius DWF
L_{s}	24
M	1.8
β	2.13
$a m_{s}$	0.0362
$a m_{I}$	0.00078
a^{-1}	$1.73(3) \mathrm{GeV}$
$a m_{K}$	$0.08079(24)$
$a m_{\pi}$	$0.28886(35)$

- quark sources every second time slice (48 per configuration)
- antiperiodic boundary conditions in time direction only

Preliminary results

All results shown are PRELIMINARY, based on 20 gauge configurations.
$\mathrm{I}=3 / 2$

$$
\begin{aligned}
E_{K \pi} & =0.37007(35) \\
E_{K \pi}-m_{K}-m_{\pi} & =0.00041(29) \\
a_{0}^{3 / 2} m_{\pi} & =-0.036(24)
\end{aligned}
$$

$\mathrm{I}=1 / 2$

$$
\begin{aligned}
E_{K \pi} & =0.36779(38) \\
E_{K \pi}-m_{K}-m_{\pi} & =-0.00186(42) \\
a_{0}^{1 / 2} m_{\pi} & =0.190(50)
\end{aligned}
$$

Comparison

	$a_{0}^{3 / 2} m_{\pi}$	$a_{0}^{1 / 2} m_{\pi}$
NPLQCD	$-0.0574(16)\binom{+24}{-58}$	$0.1725(13)\binom{+23}{-156}$
Fu	$-0.0512(18)$	$0.1819(35)$
PACS-CS	$-0.0602(31)(26)$	$0.183(18)(35)$
RBC-UKQCD	$-0.036(24)$	$0.190(50)$
(preliminary)		

Conclusions

- We are able to generate ensembles with physical pion and kaon masses.
- Calculation of $K \pi$ energies at low values of $m_{\pi} T$ and $m_{K} T$ suffers from significant around-the world effects.
- Around-the-world effects can be treated reliably using a 5-parameter fit.
- First calculation of scattering lengths that does not rely on chiral perturbation theory.
- Although low statistics prevent us from obtaining an accurate $I=3 / 2$ result, we can get a good estimate for $I=1 / 2$, which has been dominated by $\chi P T$ errors in previous calculations.

Thank you for your attention!

[^0]: ${ }^{1}$ S. R. Beane et al. [NPLQCD Collaboration], Phys. Rev. D 74 (2006) 114503
 ${ }^{2}$ Z. Fu, Phys. Rev. D 85 (2012) 074501
 ${ }^{3}$ Kiyoshi Sasaki (Tokyo Inst. Tech.) et al. [PACS-CS Collaboration], Phys.Rev. D89 (2014) 054502
 ${ }^{4}$ C. B. Lang, L. Leskovec, D. Mohler and S. Prelovsek, Phys. Rev. D 86 (2012) 054508

[^1]: ${ }^{5}$ M. Lüscher, Nucl. Phys. B354 (1991) 531-578

