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STANDARD MODEL HMODULESL of HEAVY-ION COLLISIONS

Glauber or CGC perfect or viscous free-streaming or hadronic cascade

NEW: FLUCTUATIONS IN THE INITIAL STATE � EVENT-BY-EVENT HYDRO � FINAL-STATE FLUCTUATIONS

EQUATION OF STATE?

VISCOSITY?
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3. GLAUBER MODEL

3. GLAUBER MODEL

Roy Glauber
receiving Nobel Prize

Stockholm, Dec. 2005.
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3. GLAUBER MODEL

In realistic situations the separation between spectators and participants is not so sharp as in the
simple geometric picture introduced earlier.

A more elaborate estimate of the number of participating nucleons can be done within the
Glauber model which treats a nucleus-nucleus collision as a multiple nucleon-nucleon
collision process.

In the Glauber model, the nucleon distributions in nuclei are random and given by the
nuclear density profiles

whereas the elementary nucleon-nucleon collision is characterized by the total inelastic
cross section σin.

Σin
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3. GLAUBER MODEL

Initially, the Glauber model was applied only to elastic collisions. In this case a nucleon
does not change its properties in the individual collisions, so all nucleon interactions can be well
described by the same cross section.

Applying the Glauber model to inelastic collisions, we assume that after a single inelastic
collision an excited nucleon-like object is created that interacts basically with the same
inelastic cross section with other nucleons.
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3. GLAUBER MODEL 3.1 Eikonal approximation

3.1 Eikonal approximation
The eikonal approximation is the classical approximation to the angular momentum. It may
be applied to the standard expansion of the elastic scattering amplitude into the
angular-momentum eigenstates defined by the orbital number l ,

f (s, t) =
1

2ip

∑
l

(2l + 1)
[
e2iδl − 1

]
Pl (cos θ). (1)

Here s and t are the Mandelstam variables, i.e., the center-of-mass energy squared and the
invariant momentum transfer squared,

s = (p1 + p2)2 = 4(m2 + p2), t = (p1 − p′1)2 =
1
2

(cos θ − 1)(s − 4m2). (2)

High-energy elastic scattering processes are far from being spherically symmetric, hence the
large values of l dominate in (1) and we may write

p b = l +
1
2
, (3)

where b is the impact parameter. For large l and small scattering angles θ the Legendre
polynomial Pl (cos θ) may be approximated by the formula

Pl (cos θ) =

2π∫
0

dφ
2π

ei(2l+1) sin(θ/2) cos(φ). (4)
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3. GLAUBER MODEL 3.1 Eikonal approximation

3.1 Eikonal approximation
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At high energy, the momentum transfer vector
q = p′ − p lies in the transverse plane, and we may
rewrite the argument of the exponential function in (4) as
a scalar product of q and b,

(2l + 1) sin
(
θ

2

)
cos(φ) (5)

= 2p sin
(
θ

2

)
l + 1/2

p
cos(φ) = q · b.

In this way we find the simple representation

Pl (cos θ) =

2π∫
0

dφ
2π

eiq·b. (6)
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3. GLAUBER MODEL 3.1 Eikonal approximation

3.1 Eikonal approximation

After replacing l by b we may treat b as the continuous variable (with db = dl/p and
d2b = b db dφ). In this approximation, the scattering amplitude has the form

f (s,b) =
ip
2π

∫
d2b eiq·b

[
1− eiχ(s,b)

]
, χ(s,b) = 2 δ(s,b). (7)

The total cross section may be obtained from the forward scattering amplitude
with the help of the optical theorem

σtot =
4π
p

Im f (s, t = 0) = 2
∫

d2b
[
1− Re eiχ(s,b)

]
. (8)
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3. GLAUBER MODEL 3.1 Eikonal approximation

3.1 Eikonal approximation

The elastic cross section is obtained by squaring the amplitude and integrating over the solid
angle. Since the scattering is concentrated in the forward direction, the integration over the solid
angle may be replaced by the integral over the space orthogonal to the momentum vector p,

dΩ =
d2q
p2

. (9)

Using this property we obtain

σel =

∫
d2q
4π2

∫
d2b

∫
d2b′eiq·b

[
1− eiχ(s,b)

]
e−iq·b′ [

1− eiχ(s,b′)
]∗

=

∫
d2b

∣∣∣1− eiχ(s,b)
∣∣∣2 . (10)

Finally, the inelastic cross section is

σin = σtot − σel =
∫

d2b
(

1−
∣∣eiχ(s,b)

∣∣2) ≡ ∫ d2b p(b). (11)
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3. GLAUBER MODEL 3.2 Nucleon-nucleon collisions

3.2 Nucleon-nucleon collisions

At high energies, the inelastic cross section
gives the main contribution to the total cross
section.

A certain subclass of the inelastic processes is
the diffractive dissociation process. In this
process a nucleon is only slightly excited and a
small number of particles is produced, which is
in contrast to the typical non-diffractive
inelastic events. The diffractive processes
represent about 10% of all inelastic collisions.

Schematic diagrams of proton-antiproton single
diffraction and double pomeron exchange.
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3. GLAUBER MODEL 3.2 Nucleon-nucleon collisions

3.2.1 Nucleon-nucleon collisions: energy dependence

In non-diffractive inelastic nucleon-nucleon collisions a certain number of charged particles is
produced. The average charged particle multiplicity may be described by the
phenomenological formula

NNN = 0.88 + 0.44 ln
s
s0

+ 0.118
(

ln
s
s0

)2
, (12)

where s0 = 1 GeV. Another phenomenological formula may be used to describe the average
charged particle multiplicity at midrapidity

dNNN

dη

∣∣∣∣∣
η=0

= 2.5− 0.25 ln
s
s0

+ 0.023
(

ln
s
s0

)2
. (13)

Equation (13) is a parametrization of the pp data obtained by the UA5 and the CDF group in the
range 50 GeV <

√
s < 2000 GeV.
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3. GLAUBER MODEL 3.2 Nucleon-nucleon collisions

3.2.1 Nucleon-nucleon collisions: energy dependence

NEWS from the LHC: power-law behavior!
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3. GLAUBER MODEL 3.2 Nucleon-nucleon collisions

3.2.2 Nucleon-nucleon collisions: thickness function

Let us consider a nucleon-nucleon collision at a given energy
√

s and at an impact parameter b.
According to our discussion presented before, we may introduce the probability of having a
nucleon-nucleon inelastic collision

p (b) =

(
1−

∣∣∣eiχ(b)
∣∣∣2) ≡ t (b)σin. (14)

The function t (b), defined by (14), is called the nucleon-nucleon thickness function. The
integral of p (b) over the whole range of the impact parameter should be normalized to σin.
Thus, the thickness function is normalized to unity∫

d2b t (b) = 1. (15)

For collisions with unpolarized beams t (b) depends only on the magnitude of b.
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3. GLAUBER MODEL 3.3 Nucleon-nucleus collisions

3.3.1 Nucleon-nucleus collisions: density profiles

The probability of finding a nucleon in the nucleus with the atomic mass number A is the usual
baryon density divided by the number of baryons in the nucleus (our definition of ρA(r) includes
A in the denominator, because we want to interpret ρA(r) as the probability distribution.). For
large nuclei, one commonly uses the Woods-Saxon function

ρA(r) =
ρ0

A (1 + exp
[

r−r0
a

]
)
, (16)

with the parameters:
r0 = (1.12A1/3 − 0.86A−1/3) fm, (17)

a = 0.54 fm, (18)

and
ρ0 = 0.17 fm−3. (19)

The parameter ρ0 is the nuclear saturation density.
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3. GLAUBER MODEL 3.3 Nucleon-nucleus collisions

3.3.1 Nucleon-nucleus collisions: density profiles

The nucleon-nucleus thickness function for
the nucleus A is obtained from a simple
geometric consideration (see right) and the
assumption that the nucleon positions in the
nucleus A are not changed during the collision
process,

TA (b) =

∫
dzA

∫
d 2sA ρA(sA, zA) t(sA − b).

(20)
Here the transverse coordinates are denoted by
the vector sA, and we use notation

ρA(sA, zA) = ρA

(√
s2

A + z2
A

)
. (21)

Equation (15) implies the normalization
condition ∫

d 2b TA (b) = 1. (22)
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3. GLAUBER MODEL 3.3 Nucleon-nucleus collisions

3.3.2 Nucleon-nucleus collisions: independent
collisions

The quantity TA (b)σin is the probability that a single nucleon-nucleon collision takes place in a
nucleon-nucleus collision at the impact parameter b. Treating all possible nucleon-nucleon
collisions in the nucleon-nucleus collision as completely independent and characterized by the
same cross section, we easily find the probability of having n such collisions. The latter is
expressed by the binomial distribution

P (n; A; b) =

(
A
n

)
[1− TA (b)σin]A−n [TA (b)σin]n . (23)

The average number of binary nucleon-nucleon collisions may be calculated from (23) which
gives

n (A; b) =
A∑

n=1

nP (n; A; b) = A TA (b) σin. (24)
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3. GLAUBER MODEL 3.3 Nucleon-nucleus collisions

3.3.2 Nucleon-nucleus collisions: independent
collisions

Since the scale at which the nucleon-nucleon thickness function varies is typically smaller than
the scale at which the nuclear density changes, we may often replace t(sA − b) in (20) by the
delta function δ(2)(sA − b). In this approximation TA (b) is the nuclear density projected onto the
transverse plane

TA (b) =
∫

dzA ρA(b, zA), (25)

and the average number of the collisions is

n (A; b) = Aσin
∫

dzA ρA(b, zA). (26)
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3. GLAUBER MODEL 3.4 Nucleus-nucleus collisions

3.4 Nucleus-nucleus collisions

Finally, we define the thickness function for the nucleus-nucleus collision. A geometric
consideration leads to the formula

TAB (b) =
∫

dzA
∫

d 2sA ρA(sA, zA)
∫

dzB
∫

d 2sB ρB(sB , zB) t(b + sB − sA), (27)

with the corresponding normalization condition∫
d 2b TAB (b) = 1. (28)

The quantity TAB (b)σin is the averaged
probability that a nucleon-nucleon collision
takes place in a nucleus-nucleus collision
characterized by the impact parameter b.
In the limit t(b)→ δ(2)(b) we may write

TAB (b) =

∫
d 2sA TA(sA) TB(sA − b).

(29)
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3. GLAUBER MODEL 3.4 Nucleus-nucleus collisions

3.4 Nucleus-nucleus collisions

In a more symmetric form we have

TAB (b) =

∫
d 2s TA

(
s +

1
2

b
)

TB

(
s−

1
2

b
)
. (30)

The nucleus-nucleus thickness function TAB (b) can be used to calculate the probability of having
n inelastic binary nucleon-nucleon collisions in a nucleus-nucleus collision at the impact
parameter b.

P (n; AB; b) =

(
AB
n

)
[1− TAB (b)σin]AB−n [TAB (b)σin]n . (31)

The result for the average number of the collisions is

n (AB; b) = AB TAB (b) σin. (32)
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3. GLAUBER MODEL 3.4 Nucleus-nucleus collisions

3.4.1 ... total inelastic cross section

The total probability of an inelastic nuclear collision is the sum over n from n = 1 to n = AB

Pin (AB; b) =
AB∑

n=1

P (n; AB; b) = 1− [1− TAB (b)σin]AB . (33)

From (33), by integrating over the impact parameter space, one may obtain the total inelastic
cross section for the collision of the two nuclei A and B

σAB
in =

∫
d2b

(
1− [1− TAB (b)σin]AB

)
. (34)

Using the thickness function for the Au+Au collisions we find σAuAuin = 6.8 b for σin = 30 mb and
σAuAuin = 7.0 b for σin = 40 mb. We note that those cross sections are larger than the geometric
cross section σAuAugeo = 4πR2 ≈ 5πA2/3 = 5.3 b. This is due to the tails of the Woods-Saxon
distribution (16), which make possible that a nucleon-nucleon collision occurs in the nuclear
collision at the impact parameter b larger than 2R.
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3. GLAUBER MODEL 3.4 Nucleus-nucleus collisions

3.4.1 ... total inelastic cross section
We did something wrong! We used the averaged probability for nucleon-nucleon collisions! In
more realistic calculations, the positions of nucleons in the target and projectile nucleus are fixed,
and the averaging is done later. The probability of an inelastic collision for a fixed nucleon
configuration equals

1−
A∏

j=1

B∏
i=1

[
1− t

(
b + sB

i − sA
j

)
σin

]
. (35)

The probability of an inelastic nuclear collision at the impact parameter b is then

Pin (AB; b) =

∫
d2sA

1 TA(sA
1 ) · · · d2sA

ATA(sA
A)

∫
d2sB

1 TB(sB
1 ) · · · d2sB

B TB(sB
B)

×

1−
A∏

j=1

B∏
i=1

[
1− t

(
b + sB

i − sA
j

)
σin

] . (36)

The integration of (36) over b gives σAB
in . Equations (33) and (36) differ from each other! The

more accurate formula (36) is much more complicated to handle and cannot be simply reduced
to (33). Only for nucleon-nucleus collisions the two methods are equivalent. Since there is no
good analytic method to evaluate (36) for large values of A and B, one is most often satisfied with
Eqs. (33) and (34) only. These equations are called the optical limit of the Glauber model.
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3. GLAUBER MODEL 3.5 Wounded nucleons

3.5 Wounded nucleons

The Glauber model can be used also to calculate the number of the participants. To be more
precise we distinguish between the participants which may interact elastically and the
participants which interact only inelastically. The latter are called the wounded nucleons.

The number of nucleons in the nucleus A

A
∫

d2s TA(s). (37)

Probability, that the nucleus from A at the position s collides one or more times with the nucleons
in B (in an AB collision at the impact parameter b)

B∑
n=1

P (n; B; b− s) = 1− [1− σinTB (b− s)]B .

(38)

The number of wounded nucleons in A is

wA (A; B; b) = A
∫

d2s TA (s)
(

1− [1− σinTB (b− s)]B
)
. (39)
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3. GLAUBER MODEL 3.5 Wounded nucleons

3.5 Wounded nucleons

Similarly, the number of wounded nucleons in B is

wB (A; B; b) = B
∫

d2s TB (s)
(

1− [1− σinTA (b + s)]A
)
. (40)

Since the number of wounded nucleons in the collision of A and B is the sum of the wounded
nucleons in the nucleus A and B, we obtain (after making the appropriate shifts in the integration
over positions s)

w (A; B; b) = A
∫

d2s TA (b− s)
(

1− [1− σinTB (s)]B
)

+ B
∫

d2s TB (b− s)
(

1− [1− σinTA (s)]A
)
. (41)
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3. GLAUBER MODEL 3.5 Wounded nucleons

3.5.1 Wounded nucleons vs. binary collisions
The numbers of binary collisions, n(b), and the numbers of wounded nucleons, w(b), for Au+Au
collisions (A = 197) at different values of the impact parameter b. The results are presented for
two different values of the nucleon-nucleon inelastic cross section: σin = 30 mb (the second and
the third column), and σin = 40 mb (the fifth and the sixth column). The fourth and seventh
columns give geometric estimates of the centrality class of the collisions with the impact
parameters smaller than b (the fourth column is for σAuAuin = 6.8 b, whereas the sixth column is
for σAuAuin = 7.0 b).

b [fm] n(b) w(b) c n(b) w(b) c

0 881 370 0.00 1174 378 0.00
1 859 363 0.00 1146 371 0.00
2 801 344 0.02 1068 354 0.02
3 717 315 0.04 957 326 0.04
4 617 280 0.07 823 291 0.07
5 587 241 0.12 783 251 0.11
6 397 200 0.17 530 211 0.16
7 298 160 0.23 397 170 0.22
8 209 122 0.29 279 131 0.29
9 136 88 0.37 182 95 0.36
10 82 58 0.46 109 64 0.45

W. Florkowski (UJK / IFJ PAN) URHIC June 16, 2014 27 / 58



3. GLAUBER MODEL 3.6 Soft and hard processes

3.6 Soft and hard processes

It is an experimental fact that pions (the most abundant particles produced in a nucleon-nucleon
as well as in a nucleus-nucleus collision) have on average small transverse momenta, p⊥ ∼ 400
MeV. The processes leading to the production of such low-energetic pions are called soft
processes. On the other hand, the pions with large transverse momenta, p⊥ > 1–2 GeV, are
produced by hard processes.

The soft processes cannot be described directly by perturbative QCD. In this case the strong
coupling constant is large and the nonperturbative effects, which are very difficult to deal with,
are important. Contrary, the hard processes involve large momentum transfers connected with a
small value of the strong coupling constant. Hence, they can be described successfully by the
methods of perturbative QCD.
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3. GLAUBER MODEL 3.6 Soft and hard processes

3.6 Soft and hard processes

Can we use the knowledge of wAB and nAB to make an estimate of the multiplicity of the
particles produced in a nuclear collision, provided the information about the multiplicity of
the particles produced in a more elementary nucleon-nucleon collision (at the same
energy) is available?

SEARCH FOR SIMPLE SCALINGS (SUPERPOSITION RULES)

For hard processes it is natural to assume that the number of the produced particles scales with
the number of binary collisions. In this case the scattering processes are well localized and the
interference effects between different collisions may be neglected. For soft processes the
appropriate scaling is more difficult to find. In fact, it is a postulate of the wounded-nucleon model
that the multiplicity of soft particles scales with the number of the wounded nucleons.
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3. GLAUBER MODEL 3.7 Wounded-nucleon model

3.7 Wounded-nucleon model

Białas, Bleszyński and Czyż argued (in 1976) that the average multiplicity in a collision of two
nuclei with the mass numbers A and B is

NAB = 1
2 wAB NNN, (42)

where NNN is the average multiplicity in proton-proton (nucleon-nucleon) collisions, and wAB is
the average number of the wounded nucleons (calculated in the Glauber framework). The energy
dependence of NNN is described by (12). The motivation for the use of (42) came from the
interpretation of the nucleon-nucleus interactions. The formula (42) with an additional expression
for the dispersion of multiplicity distributions form the main ingredients of the wounded-nucleon
model of the nucleus-nucleus collisions.
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3. GLAUBER MODEL 3.7 Wounded-nucleon model

3.7 Wounded-nucleon model

Estimates of the charged particle multiplicities obtained from the wounded nucleon model,
1
2 wAA NNN, compared with the measured multiplicities, NAA, for different reactions studied by
the NA49 and PHOBOS Collaborations. The last column shows the ratio of the measured
multiplicity and the model prediction.

Expt. Elab/A [GeV]
√

sNN [GeV] NAA wAA
1
2 wAA NNN r

NA49 40 8.8 693 349 875 0.79
NA49 80 12.3 1029 349 1059 0.97
NA49 158 17.3 1413 362 1307 1.08

PHOBOS (9000) 130.0 4200 355 2902 1.45
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3. GLAUBER MODEL 3.7 Wounded-nucleon model

3.7 Wounded-nucleon model

The charged particle pseudorapidity density as
a function of the number of the participants. The
measurement of the PHENIX group at RHIC,√

sNN = 130 GeV, is compared to the
measurement done by the WA98 group at the
SPS,

√
sNN = 17.3 GeV.
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3. GLAUBER MODEL 3.8 Nuclear modification factor

3.8 Nuclear modification factor
A simple way to quantify the differences between the nucleus-nucleus collisions and the
nucleon-nucleon collisions is to calculate the nuclear modification factor,

RAB(p⊥) =
1

nAB

d2NAB

dp⊥dη
/

1
σ

pp
tot

dσpp
incl

dp⊥dη
. (43)

NAB – average number of particles produced in the collisions of the nuclei A and B, nAB – number
of the binary nucleon-nucleon collisions obtained in the framework of the Glauber model.

The denominator of (43) is the inclusive cross section for pp collisions divided by the total cross
section. This quantity is equal to the average number of particles produced in pp collisions in the
appropriate phase-space interval,

dNpp

dp⊥dη
=

1
σ

pp
tot

dσpp
incl

dp⊥dη
. (44)

If the collisions of the nuclei A and B are simple superpositions of the elementary pp collisions,
the scaling with the number of binary collisions should hold, and the nuclear modification factor is
expected to be equal to 1.
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3. GLAUBER MODEL 3.8 Nuclear modification factor

3.8 Nuclear modification factor

The nuclear modification factor RdAu as
measured by the PHOBOS Collaboration at
BNL.
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3. GLAUBER MODEL 3.8 Nuclear modification factor

3.8 Nuclear modification factor

The nuclear modification factors RAuAu for
central and peripheral collisions (the upper and
central two panels), and their ratio (the lower
two panels). The measurement of the BRAHMS
Collaboration at BNL.
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3. GLAUBER MODEL 3.8 Nuclear modification factor

3.8 Nuclear modification factor

The nuclear modification factors RdAu and
RAuAu measured by the PHENIX Collaboration

at BNL.
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The spacetime diagram of ultra-relativistic nuclear collisions. In the center-of-mass frame,
partons moving fast hadronize later than those moving slowly. Consequently, at very high
energies the evolution of the system at midrapidity is governed by the longitudinal proper time
τ =

√
t2 − z2, rather than by the ordinary time t . Note, that this picture breaks in the

fragmentation regions (i.e., at large values of |η|) where physical processes have different
character.

z

t

thermalization

QGP

hadron gas

freeze-outs

chemical and kinetic
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4.1 Particle production processes

The result of the multiple nucleon-nucleon collisions discussed before is that the two colliding
nuclei evolve rapidly into an extended, hot and dense system of quarks and gluons.

There exist several frameworks to describe this transition, for example:

1) QCD string breaking,

2) parton cascades models,

3) color glass condensate evolving into glasma and later into the quark-gluon plasma
→ presentations by Y. Kovchegov and F. Gelis.
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4.1.1 String decays
In the string picture, the nuclei pass through each other and the collisions of the nucleons lead
to the formation of color strings.

The strings formed in nucleon-nucleon collisions may be imagined as quark - diquark pairs
connected by the color field. Such systems may be naively treated as the excited nucleons.

In the next step, the strings decay/fragment
forming quarks and gluons or directly hadrons.
The hadrons (sometimes clusters of hadrons)
are modeled as smaller pieces of the original
string. Fragmentation of strings into hadrons is
described in the framework of the Monte-Carlo
simulations which originate from the Lund
Model.

quarkdiquark

h a d r o n s

space

time

space-time picture of hadron formation

in the Lund Model
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4.1.2 Parton cascade models

The parton cascade model is based solely on the perturbative QCD. The colliding nuclei are
treated as clouds of quarks and gluons which penetrate through each other. Multiple hard
scatterings between partons as well as the gluon radiation produce large energy and entropy
density.

The initial state is viewed as an ensemble of quarks and gluons determined by the quark and
gluon distribution functions qf

(
x ,Q2) and g(x ,Q2). The Bjorken variable x is defined as the

ratio of the longitudinal momentum of the constituent of a hadron to the hadron longitudinal
momentum in the reference frame where the hadron has very large energy.

The quantity Q2 is the parton virtuality. The fact that partons are confined in hadrons and
cannot exist as free particles implies that they propagate off-shell and Q2 is an additional
independent variable.
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4.1.2 Parton cascade models vs. string models

It is important to emphasize that both the string approach and the parton cascade model
encounter conceptual problems and limitations. The string picture becomes invalid at very high
energies, when the strings overlap and cannot be treated as independent objects. On the other
hand, the parton approach is invalid at lower energies, where parton scatterings involve
momentum transfers which are too small to be described by perturbation theory.

string models = soft processes

parton cascades = hard processes

W. Florkowski (UJK / IFJ PAN) URHIC June 16, 2014 42 / 58



4. SPACE-TIME PICTURE OF URHIC 4.1 Particle production processes

4.1.3 Color Glass Condensate

The color electric and magnetic fields
describing low x gluons of the color
glass condensate (CGC) before the
collision exist only in the sheets and are
mutually orthogonal.

collision axis

After the collision, in addition to the
transverse CGC fields on the sheets
there are longitudinal color electric and
magnetic fields forming glasma.

glasma

The glasma fields decay due to the classical rearrangement of the fields into radiation of
gluons.
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4.2 Thermalization

The experimental data obtained in the RHIC experiments favored a very short
thermalization/equilibration time, τtherm < 1 fm. The support for this idea came mainly
from applications of perfect-fluid relativistic hydrodynamics which successfully described
the data with early starting time of hydro τi < 1 fm (τtherm ≤ τi).

Nowadays we talk more often about early hydrodynamization – successful applicability of
hydrodynamics in the early stages of the collision, support from AdS/CFT calculations,
R. Janik et al.

Since the final multiplicities are are determined mainly by the number of wounded nucleons, it is
reasonable to assume that the initial entropy density of the thermalized system is proportional to
the density of wounded nucleons.

σi(x⊥) ∝ w (x⊥)

Problems with matching of the all components of the energy-momentum tensor
talks by F. Gelis, M. Strickland
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4.2 Thermalization: initial conditions for
hydrodynamics
The typical arrangement of the coordinate system in the transverse plane. The impact vector,
denoted by the dashed arrow, lies in the reaction plane along the x-axis, b = (b, 0).

The center of the nucleus B has the coordinates (b/2, 0),
while the center of the nucleus A is located at (−b/2, 0).

The position of the wounded nucleon is given by the two-dimensional vector x⊥ = (x , y).

A B

sB

b

x
¦

x

y
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4.2 Thermalization: initial conditions for
hydrodynamics
The average density of the wounded nucleons in the nucleus B at the transverse position x⊥ is

wB (x⊥) = B TB

(
−

b
2

+ x⊥

){
1−

[
1− σin TA

(
b
2

+ x⊥

)]A
}
. (45)

The average density of the wounded nucleons in the nucleus A is analogous

wA (x⊥) = A TA

(
b
2

+ x⊥

){
1−

[
1− σin TB

(
−

b
2

+ x⊥

)]B
}
. (46)

For the collision of two nuclei, A + B, one may use the final expression in the form

w (x⊥) = wA (x⊥) + wB (x⊥) . (47)

In the case of the binary collisions, similar geometrical considerations lead to the formula

n (x⊥) = σin A B TA

(
b
2

+ x⊥

)
TB

(
−

b
2

+ x⊥

)
. (48)

We recall that σin in Eqs. (45), (46), and (48) is the nucleon-nucleon inelastic cross section.
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4.2 Thermalization: initial conditions for
hydrodynamics

For boost-invariant systems with vanishing baryon chemical potential one usually assumes that
either the initial entropy density, σi(x⊥) = σ(τi, x⊥), or the initial energy density,
εi(x⊥) = ε(τi, x⊥), are directly related to the density of sources of particle production,
ρsr(x⊥).

The sources considered in this context are wounded nucleons or binary collisions. The
symmetry with respect to the Lorentz boosts along the collision axis means that it is sufficient to
consider all these quantities in the plane z = 0. In general, a mixed model is used, with a linear
combination of the wounded-nucleon density w (x⊥) and the density of binary collisions n (x⊥).
This leads to the two popular choices:

σi(x⊥) ∝ ρsr(x⊥) =
1− κ

2
w (x⊥) + κ n (x⊥) (49)

or
εi(x⊥) ∝ ρsr(x⊥) =

1− κ
2

w (x⊥) + κ n (x⊥) . (50)
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4.2 Thermalization: tilted source

Białas and Czyż: analysis of the
deuteron-gold collisions, wounded
nucleons produce particles mainly in the
direction of their motion

P. Bożek: this leads to a tilted source
and explains negative v1

x

y

z

+

-

b

but all of this requires a hydrodynamic model of expansion...
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4.3 Hydrodynamic expansion

The perfect fluid is defined formally by the form of its energy-momentum tensor, namely

Tµν = (ε+ P)uµuν − Pgµν , (51)

where gµν is the metric tensor with g00 = 1, ε is the energy density, P is the pressure, and uµ is
the four-velocity of the fluid element.
Such a form of the energy-momentum tensor follows from the assumption of local thermal
equilibrium. Equations of motion of the perfect fluid are obtained from the conservation laws

∂µTµν = 0. (52)

Equations of motion should be supplemented by the equation of state! Otherwise, the system of
equations cannot be not closed.
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4.3 Hydrodynamic expansion

For systems with non-zero baryon density n, w = (ε+ P)/n, s = σ/n.

Substituting (51) in (52) and using thermodynamic identities gives

d
dτ

(wuν) ≡ uµ∂µ(wuν) =
1
n
∂νP. (53)

The projection of (53) on the fluid four-velocity uν and the use of thermodynamic identities yields

ds
dτ
≡ uµ∂µs = 0. (54)
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4.4 Thermal freeze-out

The thermal or kinetic freeze-out is the stage in the evolution of matter when the hadrons
practically stop to interact. In other words, the thermal freeze-out is a transition from a strongly
coupled system (very likely evolving from one local equilibrium state to another) to a weakly
coupled one (consisting of essentially free streaming particles).

It is triggered by the expansion of matter, which causes a rapid growth of the mean free path,
λmfp, of particles. The thermal freeze-out happens when the timescale connected with the
collisions, τcoll ∼ λmfp, becomes larger than the expansion timescale, τexp. In this case the
particles depart from each other so fast that the collision processes become ineffective. We may
formulate this condition as the inequality

τcoll ≥ τexp. (55)
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4.4 Thermal freeze-out

The magnitude of the collision time is determined by the product of the average cross section
and the particle density,

τcoll ∼ 1
σ n , (56)

whereas the magnitude of the expansion time is characterized by the divergence of the
four-velocity field, uµ, describing the hydrodynamic flow of matter,

τexp ∼ 1
∂µuµ . (57)

Very often a simplified criterion is assumed which says that the thermal freeze-out happens at
the time when the mean free path of hadrons is of the same order as the size of the system.
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4.5 Chemical freeze-out
A schematic physical picture adopted in the thermal models of particle production. At a certain
stage of the evolution of the system, a gas of stable hadrons and resonances is formed. The final
(measured) multiplicities of hadrons consist of primary particles, present in the hot fireball, and of
secondary particles coming from the decays of resonances.

Essentially two parameters, T and µB explain the ratios of hadronic abundances! Great success
at RHIC!
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4.5 Chemical freeze-out

NEWS from the LHC: problems of thermal models with protons!
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4.6 Hanbury–Brown-Twiss interferometry
The fundamental object in the HBT interferometry is the two-particle correlation function
C(p1,p2), measured for pairs of identical particles such as π+π+, π−π−, or K +K +. In general,
it is defined by the expression

C(p1,p2) =
P2(p1,p2)

P1(p1)P1(p2)
, (58)

where P1(p) is the invariant inclusive one-particle distribution function in the space of rapidity
and transverse-momentum,

P1(p) = Ep
dN
d3p

=
dN

dyd2p⊥
, (59)

and P2(p1,p2) is the analogous two-particle distribution

P2(p1,p2) = Ep1 Ep2

dN
d3p1d3p2

=
dN

dy1d2p1⊥dy2d2p2⊥
. (60)

Equations (59) and (60) imply that the correlation function (58) transforms like a Lorentz scalar.
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4.6 Hanbury–Brown-Twiss interferometry

In (58) we may use the average momentum

k =
1
2

(p1 + p2) , (61)

and the difference of the two momenta

q = p1 − p2. (62)

The out-side-long coordinate system used in the
standard HBT analysis of the correlation
functions. The vector k lies in the x − z plane.
By making the Lorentz boost along the collision
axis we may also set k‖ = 0. In this way we
change to the special frame that is called the
longitudinally comoving system (LCMS).

y = side

x = out

z = long

p1

p2

k

q

qout

qside
qlong
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4.6 Hanbury–Brown-Twiss interferometry

C(k⊥,q) = 1 + λ exp
[
−R2

long(k⊥)q2
long − R2

out(k⊥)q2
out − R2

side(k⊥)q2
side

]
. (63)

Pion HBT radii vs. mT =
√

k2
T + m2

π

measured by the STAR Collaboration at
midrapidity in six different centrality
windows.

0.2

0.4

0.6 0-5%

5-10%

10-20%

20-30%

30-50%

50-80%

2

4

6

2

4

6

0.2 0.3 0.4 0.5 0.6
2

4

6

0.2 0.3 0.4 0.5 0.6

1

1.2

 (GeV/c)Tm (GeV/c)Tm

λ
 (

fm
)

o
R

 (fm
)

s
R

 (
fm

) 
l

 R

s
 / R

o
R

W. Florkowski (UJK / IFJ PAN) URHIC June 16, 2014 57 / 58



4. SPACE-TIME PICTURE OF URHIC 4.6 Hanbury–Brown-Twiss interferometry

4.6 Hanbury–Brown-Twiss interferometry

NEWS from the LHC: pp different from AA!
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