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Glauber or CGC perfect or viscous free-streaming or hadronic cascade

NEW: FLUCTUATIONS IN THE INITIAL STATE � EVENT-BY-EVENT HYDRO � FINAL-STATE FLUCTUATIONS

EQUATION OF STATE?

VISCOSITY?

Early-time physics/conditions – Y. Kovchegov, L. McLerran
Thermalization – F. Gelis, P. Braun-Munzinger
Hydrodynamics - P. Bozek, M. Strickland
Phase transition - M. Gażdzicki, Ch. Hoelbling
Freeze-out (as seen by correlations) - A. Kisiel
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1. INTRODUCTION

1. INTRODUCTION
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1. INTRODUCTION 1.1 High-energy nuclear collisions

1.1 High-energy nuclear collisions
Physics of the ultra-relativistic heavy-ion collisions is an interdisciplinary field which connects
the high-energy physics of elementary particles with the nuclear physics. There exist also
connections to astrophysics and cosmology.

The name “heavy-ions” is used for heavy atomic nuclei, whereas the term “ultra-relativistic
energy” denotes the energy regime where the kinetic energy exceeds significantly the rest
energy (I use natural units where c = ~ = kB = 1).

Elab � A

projectile target

Elab/A� mN ∼ 1 GeV. (1)

Elab – energy in the lab, A – atomic number, mN – nucleon mass.

In the case of colliders, we speak more often about the energy in the center-of-mass frame per
nucleon pair.

sNN

center-of-mass frame

√
sNN � mN ∼ 1 GeV. (2)
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1. INTRODUCTION 1.1 High-energy nuclear collisions

1.1 High-energy nuclear collisions

The first experiments with the ultra-relativistic heavy ions (with energies exceeding 10 GeV per
nucleon in the projectile beam) took place at the Brookhaven National Laboratory (BNL) and
at the European Organization for Nuclear Research (CERN) in 1986.

The Alternating Gradient Synchrotron (AGS) at BNL accelerated beams up to 28Si at 14 GeV
per nucleon.

At CERN, the Super Proton Synchrotron (SPS) accelerated 16O at 60 and 200 GeV per
nucleon in 1986, and 32S at 200 GeV per nucleon in 1987.

In 1990 a long-term project on heavy-ion physics was realized at CERN with several weeks of
32S beams. In the spring of 1992 the experiments with 197Au beams at 11 GeV per nucleon were
initiated at BNL.

In 1995 the completely new experiments took place at CERN with 208Pb beams at 158 GeV
per nucleon. These were for the first time really ultra-relativistic “heavy” ions providing
large volumes and lifetimes of the reaction zone.
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1. INTRODUCTION 1.1 High-energy nuclear collisions

1.1 High-energy nuclear collisions
In 2000 the first data from the Relativistic Heavy Ion Collider (RHIC) at BNL were collected.
During the first run, the maximum energy of 130 GeV per nucleon pair was achieved. In the next
years new runs took place with the maximum energy of 200 GeV per nucleon pair. One of those
runs was devoted to the study of the deuteron-gold collisions which were analyzed in order to get
the proper reference point for the more complicated gold on gold collisions.

Satellite view of RHIC and BNL (Long Island, New York, USA).
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1. INTRODUCTION 1.1 High-energy nuclear collisions

1.1 High-energy nuclear collisions

The main activity in the field is connected now with Large Hadron Collider (LHC) at CERN (Pb
on Pb reactions at

√
sNN = 2.76 TeV, start Nov.-Dec., 2010).

Aerial view of CERN and Geneva (Switzerland).

Nevertheless, the performance of new experiments at lower energies is also very important,
since this allows us to study the energy dependence of many characteristics of the particle
production, and direct searches for new phenomena, NA61 at CERN, STAR at BNL.
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1. INTRODUCTION 1.2 Theoretical methods

1.2 Theoretical methods

In the ultra-relativistic heavy-ion collisions very large numbers of particles are produced (we deal
with so called large particle multiplicities).

For example, in the central Au+Au collisions at RHIC, at the highest beam energy√
sNN = 200 GeV, the total charged particle multiplicity is about 5000. Hence, the number of

produced particles exceeds the number of initial nucleons by a factor of 10.

In this situation, different theoretical methods are used, which are suitable for description of large
macroscopic systems, e.g., thermodynamics, hydrodynamics, kinetic (transport) theory,
field theory at finite temperature and density, non-equilibrium field theory, Monte-Carlo
simulations.

... we also know the underlying fundamental theory!
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1. INTRODUCTION 1.3 Quantum Chromodynamics

1.3 Quantum Chromodynamics

In high-energy nuclear collisions a many-body system of strongly interacting particles is
produced. The fundamental theory of the strong interactions is Quantum Chromodynamics
(QCD), the theory of quarks and gluons which are confined in hadrons, i.e., baryons and
mesons.

A few historical steps:

1963 – proposal of Gell-Mann and Zweig suggesting that the structure of hadrons could be
explained by the existence of smaller particles inside hadrons.

In 1964 Greenberg and in 1965 Han with Nambu proposed that quarks possessed an additional
degree of freedom, that was later called the color charge. Han and Nambu noted that quarks
might interact via exchanges of an octet of vector gauge bosons (later gluons).
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1. INTRODUCTION 1.3 Quantum Chromodynamics

1.3 Quantum Chromodynamics: asymptotic freedom

Feynman and Bjorken argued that high-energy experiments should reveal the existence of
partons, i.e., particles that are parts of hadrons, suggestions spectacularly verified in the deep
inelastic scattering of electrons on protons, the experiments carried out at the Stanford Linear
Accelerator Center (SLAC) in 1969. The partons were identified with quarks.

1973 – the discovery of asymptotic freedom in the strong interactions by Gross, Politzer, and
Wilczek allowed for making precise predictions of the results of many high-energy experiments in
the framework of the perturbative quantum field theory — the asymptotic freedom is the property
that the interaction between particles becomes weaker at shorter distances.

1975 – Collins and Perry argued that “superdense matter (found in neutron-star cores, exploding
black holes, and the early big-bang universe) consists of quarks rather than of hadrons”.
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1. INTRODUCTION 1.3 Quantum Chromodynamics

1.3 Quantum Chromodynamics

1975 – Cabibbo and Parisi identified the limiting Hagedorn temperature with the temperature of
the phase transition from hadronic to quark matter, they also sketched the first phase diagram of
strongly interacting matter.
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baryons

Hadron mass spectrum grows like em/TH where
TH is the Hagedorn temperature, in this case
there is a limiting temperature for hadrons,
integrals over m of the expressions such as
em/TH−

√
m2+p2/T diverge if T ≥ TH !

W. Broniowski and WF, different TH for baryons
and mesons (see figure)

T →∞, density grows like T 3, inter-particle distance ∼ 1/T → 0, weakly interacting system!

Gauge theories at finite temperature:
Kislinger and Morley (1975), Freedman and McLerran (1976),
Shuryak, who in 1978 introduced the name quark-gluon plasma (QGP),
Kapusta (1979), ...
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1. INTRODUCTION 1.3 Quantum Chromodynamics

1.3 Quantum Chromodynamics: confinement

Probably the most striking feature of QCD is the color confinement, which is the other side of
the asymptotic freedom. This is the phenomenon that color charged particles (such as quarks
and gluons) cannot be isolated as separate objects. In other words, quarks and gluons cannot be
directly observed. The physical concept of confinement may be illustrated by a string which is
spanned between the quarks when we try to separate them. If the quarks are pulled apart too far,
large energy is deposited in the string which breaks into smaller pieces.

q

q q

q q q qq
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma

The main challenge of the ultra-relativistic heavy-ion collisions is the observation of the two
phase transitions predicted by QCD, i.e., the deconfinement and chiral phase transitions.

As we have mentioned above, at Earth conditions (i.e., at low energy densities) quarks and
gluons are confined in hadrons. However, with increasing temperature (heating) and/or
increasing baryon density (compression), a phase transition may occur to the state where
the ordinary hadrons do not exist anymore; quarks and gluons become the proper
degrees of freedom, and their motion is not confined to hadrons.

direct searches for the phase transition by studying the energy dependence of physical
observables discussed in Marek Gaździcki’s lectures

W. Florkowski (UJK / IFJ PAN) URHIC June 13, 2014 16 / 63



1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma

Two concepts:

1) Notion based on the asymptotic freedom — QGP as an asymptotic state available at
extremely high energies

2) Phenomenological approach — QGP as a new state of strongly interacting matter, whose
properties can be inferred from experimental and theoretical investigations carried out at the
presently available energies (a new phase consisting of quarks and gluons, locally equilibrated,
with small viscosity,...)
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma: equation of state

massless gluons (Stefan-Boltzmann’s law)

εg = 16
π2

30
T 4, Pg =

1
3
εg

massless quarks

εq + ε q = 6Nf

(
7π2

120
T 4 +

1
4
µ2T 2 +

1
8π2

µ4

)
,

Pq + P q =
1
3

(
εq + εq

)
µ is one third of the baryon chemical potential µB , µ = 1

3µB
WEAKLY INTERACTING GAS of quarks and gluons, B – bag constant

εqgp = εg(T ) + εq(T , µ) + ε q(T , µ)+B

or
Pqgp = Pg(T ) + Pq(T , µ) + P q(T , µ)−B
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma: naive phase transition
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first order phase transition between a weakly interacting plasma and a pion gas
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma: lattice QCD simulations

Calculations done at zero baryon chemical potential, µB = 0 !
sound velocity c2

s (T ) = ∂P
∂ε

drops to zero at the first order phase transition
stays large at the crossover phase transition

1� 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

T @GeVD

c
s2

lattice simulations of QCD done by the Budapest-Wuppertal group (Z. Fodor et al.),
figure – connecting hadron-resonance gas with LQCD by M. Chojnacki and WF (2007)
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1. INTRODUCTION 1.4 Quark-gluon plasma

1.4 Quark-gluon plasma: phase diagram
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1. INTRODUCTION 1.5 Chiral symmetry

1.5 Chiral symmetry

In the limit of vanishing masses the left- and
right-handed quarks become decoupled from
each other and QCD becomes invariant under
their interchange — left- and right-handed quark
currents are separately conserved, each state of
the theory should have a degenerate partner of
the opposite parity. On the other hand, we know
that hadrons have well defined parity, and no
such parity partners are observed!

The paradox is resolved by the phenomenon of
the spontaneous breakdown of chiral
symmetry: the chiral symmetry of the
interaction is broken by the true ground state of
the theory, Nambu (1961) in the context of
Nambu–Jona-Lasinio model.

T < TCT > TC

T = TC

Ueff

ΣΣ=+Σ0Σ=-Σ0

Quark condensate, 〈ψ̄ψ〉, is the order parameter of the chiral phase transition,

drops to zero above Tc .
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1. INTRODUCTION 1.6 Hot and dense nuclear matter

1.6 Hot and dense nuclear matter

Heavy-ion collisions are the only way to compress and heat up nuclear matter in laboratory
conditions.

The particles inside such a system do not propagate completely freely: their Compton
wavelength may be comparable with their mean free path. In this situation, we expect that some
of the particle properties (e.g., hadron masses, widths or coupling constants) can be changed.
These in-medium modifications can lead to the experimentally observed phenomena.

For example, the change of the ρ meson mass and/or width in dense matter can influence the
measured dilepton spectrum. Nowadays, one attempts to connect in-medium modifications of
hadron properties with the partial restoration of chiral symmetry.

Gell-Mann–Oakes-Renner relation,
f 2
πm2

π = mq〈ψ̄ψ〉 .
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2. BASIC DICTIONARY

2. BASIC DICTIONARY
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2. BASIC DICTIONARY 2.1 Participants, spectators, and impact parameter

2.1 Participants, spectators, and impact parameter
At very high energies, simple geometric concepts are often used, for example, one separates so
called participants from spectators — if we assume that all nucleons propagate along parallel,
straight line trajectories, then the nucleons which do not meet any other nucleons on their way
are called spectators. Other nucleons which interact with each other are called participants.

The participants which suffered at least one inelastic collision are called the wounded nucleons.

A two-dimensional vector connecting centers of the colliding nuclei in the plane transverse to the
nucleon trajectories is called the impact vector, and its length is the impact parameter.

In particle as well as in nuclear physics it is practical to introduce a coordinate system, where the
spatial z-axis is parallel to the beam of the accelerator, and where the impact vector b points in
x-direction. The two axes, x and z, span the reaction plane of a given collision.

b

®

spectators

participants

spectators

participants
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2. BASIC DICTIONARY 2.1 Participants, spectators, and impact parameter

2.1 Participants, spectators, and impact parameter

The very important class of central collisions corresponds to the zero impact parameter (in
practice one considers a group of events which are characterized by the smallest values of the
impact parameter).

The measurements averaged over different impact parameters are called the minimum-bias
data. The value of the impact parameter determines the number of the participants, Npart, as
well as the number of the spectators, Nspec. An estimate of Npart allows us to compare
proton-nucleus (pA) and nucleus-nucleus (AA) results to pp data by means of a simple rescaling
(there are obviously two participating nucleons in a pp collision).

Experimentally, the value of Nspec may be inferred from the measurement of the energy
deposited in the zero-degree calorimeter or in the veto calorimeter.
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.1 Kinematical variables: transverse mass

The component of a three-vector A parallel to z-axis is usually denoted by A‖, and the
transverse component is A⊥ = A− A‖. The transverse mass of a particle is defined as

m⊥ =
√

m2 + p2
⊥, (3)

where m and p are the particle’s mass and three-momentum 1.

The measured m⊥-distribution of the produced particles is typically of the exponential form (for
not too large transverse momenta, p⊥ < 1–2 GeV)

dN
2πm⊥ dm⊥

= A exp (−m⊥/λ) . (4)

The two parameters A and λ are obtained from the fits to the experimental data.

1The “transverse” quantities are sometimes denoted by the subscript T , e.g., mT or pT .
The “longitudinal” quantities are then denoted by the subscript L, e.g., pL.
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.1 Kinematical variables: transverse mass

The measurements done by the NA49
Collaboration at CERN. The transverse-mass
spectra of π−, K +, and K− at midrapidity
(|y| < 0.1 for kaons and 0 < y < 0.2 for pions)
in the central Pb+Pb collisions at the energy
Elab = 40 A GeV (triangles), 80 A GeV
(squares), and 158 A GeV (circles). The lines
are the exponential fits to the spectra in the
interval 0.2 GeV < mT −m < 0.7 GeV. The
values for 80 A GeV and 158 A GeV are
rescaled by the factors of 10 and 100,
respectively.
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: rapidity

Since we deal with relativistic energies, it is useful to use the rapidity instead of the standard
velocity

y = 1
2 ln

(E+p‖)

(E−p‖)
= arctanh

( p‖
E

)
= arctanh

(
v‖
)
. (5)

Here E is the energy of a particle, E =
√

m2 + p2, and v‖ = p‖/E is the longitudinal component
of the velocity. Rapidity is additive under Lorentz boosts along the z-axis.

Using the rapidity and the transverse mass, we can calculate the energy and the longitudinal
momentum of a particle from the equations

E = p0 = m⊥ cosh y (6)

and
p‖ = m⊥ sinh y. (7)
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: rapidity

The measurements done by the NA49
Collaboration at CERN. The rapidity
distributions of π−, K +, and K− in the central
Pb+Pb collisions at the energy Elab = 40 A
GeV, 80 A GeV, and 158 A GeV. The closed
symbols indicate the measured points, whereas
the open points are reflection of the measured
points with respect to the axis y = 0.
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: rapidity

The measurement of the BRAHMS
Collaboration at BNL (Au+Au collisions at√

sNN = 200 GeV, the most central events).
Rapidity distributions (a) and average
transverse momenta (b) of charged pions,
charged kaons, protons and antiprotons.
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: pseudorapidity

In the similar way one defines the pseudorapidity variable η, namely

η = 1
2 ln

(|p|+p‖)

(|p|−p‖)
= ln

(
cot θ2

)
= − ln

(
tan θ

2

)
, (8)

where θ is the scattering angle. In analogy to Eqs. (6) and (7) we have

|p| = p⊥ cosh η (9)

and
p‖ = p⊥ sinh η. (10)
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: pseudorapidity

Pseudorapidity distributions of the charged
particles measured by the PHOBOS
Collaboration in Au+Au collisions at

√
sNN =

130 GeV. The measurements were done for six
different centrality classes (the latter will be
defined precisely below).
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: rapidity vs. pseudorapidity

In the limit m −→ 0, the rapidity and the pseudorapidity become equal. For finite masses the
relations between the rapidity and the pseudorapidity are more complicated

y =
1
2

ln


√

p2
⊥cosh2 η + m2 + p⊥sinh η√

p2
⊥cosh2 η + m2 − p⊥sinh η

 , (11)

η =
1
2

ln


√

m2
⊥cosh2

y−m2 + m⊥sinh y√
m2
⊥cosh2

y−m2 −m⊥sinh y

 . (12)

Equations (11) or (12) can be used to find a connection between the rapidity distribution of
particles and the pseudorapidity distribution

dN
dη d2p⊥

=

√
1−

m2

m2
⊥cosh2

y

dN
dy d2p⊥

=
|p|
E

dN
dy d2p⊥

. (13)
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2. BASIC DICTIONARY 2.2 Kinematical variables

2.2.2 Kinematical variables: central rapidity region

In the center-of-mass frame, the region of the phase-space where y ≈ η ≈ 0 is called the central
rapidity region or the midrapidity region. On the other hand, the regions corresponding to the
initial rapidities of the projectile and target (y ≈ yP , y ≈ yT ) are called the projectile and target
fragmentation regions, respectively.

y=0y=yT y=yP

central region

target fragmentation
region

projectile fragmentation
region

baryon density

T P
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2. BASIC DICTIONARY 2.3 Centrality

2.3 Centrality

W. Broniowski, WF, PRC 65, 024905 (2002)

Archers shoot randomly at the target. The black dots describe their results. Knowing the rewards
given to the archers we are able to conclude about the size of the bull’s-eye of the target.
Similarly, in the heavy-ion experiment we can make an estimate of the size of the overlapping
region of two nuclei, if the number of the produced particles (a reward in this case) is a
monotonic function of this size.
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2. BASIC DICTIONARY 2.3 Centrality

2.3 Centrality

Let P(n) denote the probability of obtaining value n for multiplicity of produced particles,
number of participants, number of binary collisions, ... The centrality c is defined as the
cumulant of P(n),

c(N) =
∞∑

n=N

P(n). (14)

A particular value of n may be collected from collisions with various impact parameters b′,

c(N) =
∞∑

n=N

∫ ∞
0

2πb′db′

σAB
in

ρ(b′)P(n|b′), (15)

where ρ(b′) is the probability of an event (inelastic collision) at impact parameter b′, and
P(n|b′) is the conditional probability of producing n provided the impact parameter is b′.
We have

∞∑
n=1

P(n|b′) = 1, (16)

and ∫ ∞
0

2πb′db′ρ(b′) = σAB
in . (17)
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2.3 Centrality
For large values of n we expect that P(n|b′) = δ(n − n̄(b′)). In this case

c(N) =

∫ ∞
0

dn θ(n − N)

∫ ∞
0

2πb′db′

σAB
in

ρ(b′)δ(n − n̄(b′))

=

∫ ∞
0

2πb′db′

σAB
in

ρ(b′)θ(n̄(b′)− N). (18)

Since n̄(b′) is a monotonically decreasing function of b′, we have
θ(n̄(b′)− N) = θ(n̄(b′)− N(b)) = θ(b(N)− b′), where n̄(b) = N, and

c(N) =

∫ ∞
0

2πb′db′

σAB
in

ρ(b′)θ(b(N)− b′) =

∫ b(N)

0

2πb′db′

σAB
in

ρ(b′). (19)

For impact parameters smaller than the nucleus radius, ρ(b′) is constant, and we get

c(N) ' πb2(N)

σAB
in

. (20)

More realistic approach is based on the Monte-Carlo simulations
W. Broniowski et al. GLISSANDO 1 & 2
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2.4 Reaction plane

In particle as well as in nuclear physics it is practical to introduce a coordinate system, where the
spatial z-axis is parallel to the beam of the accelerator, and where the impact vector b points in
x-direction. The two axes, x and z, span the reaction plane of a given collision.

z

y

x

b

projectile

target
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2.5 Collective flows

At present the extraction of the reaction (participant) plane is one aspect of the very advanced
flow analysis of the collisions. In this type of the investigations one represents the momentum
distribution of the produced particles in the form

dN
dyd2p⊥

= dN
2πp⊥dp⊥dy

[
1 +

∞∑
k=1

2vk cos (k(φp −Ψk ))

]
, (21)

where Ψk is the reference angle defined by the condition 〈sin(kΨk )〉 = 0, where the averaging is
done over all particles in one event.

Until very recently it has been common to assume Ψk = ΨRP.

Averaging of (21) over the azimuthal angle gives the transverse-momentum distribution (4). The
coefficients vk characterize the momentum anisotropy. The coefficient v1 is called the directed
flow, whereas the coefficient v2 is called the elliptic flow. In general, the coefficients vk are
functions of rapidity and transverse momentum, vk = vk (y, p⊥), and in this form often called the
k th harmonic differential flow.
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2.5.1 Collective flows: directed flow

Schematic view of the directed flow observed at relativistic energies. For positive and large
rapidities (y ∼ yP ) the spectators are deflected towards positive values of x . For positive and
small rapidities (y ≥ 0) the produced particles have negative v1, hence they are deflected
towards negative values of x .

x

z

spectators

pions

spectators

pions
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2.5.1 Collective flows: directed flow

The directed flow v1 of charged particles as
measured by STAR for three centralities in
Au+Au collisions at

√
sNN = 200 GeV. The

arrows indicate v1 for spectator neutrons, and
their positions on the pseudorapidity axis

correspond to the beam rapidity. The smaller
window shows the midrapidity region in more
detail. The figure includes also the PHOBOS

results.
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2.5.2 Collective flows: elliptic flow

In non-central collisions the region of the particle production has an almond shape in the
transverse plane. Due to the interaction of the produced particles the spatial asymmetry leads to
the azimuthal asymmetry of the momentum distributions. At ultra relativistic energies, the
expansion is stronger in the reaction plane — the produced matter is not blocked by spectators.

x

y

b

P T
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2.5.2 Collective flows: elliptic flow

Transverse-momentum dependence of the
elliptic flow coefficient v2(y = 0) as measured
by PHENIX at

√
sNN = 200 GeV for combined

π− and K− (top) or π+ and K +(bottom), and
compared with p̄ (top) and p (bottom). The

results for inclusive negative (top) and positive
(bottom) charged particle distributions are

plotted as open squares. From left to right, the
three different centrality selections are shown.
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2.5.2 Collective flows: harmonic flows from the LHC

NEWS from the LHC: higher-order harmonic flows have been measured!

D. Derendarz, ATLAS, talk at SQM2011, Cracow
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2.6 Stopping and transparency

The relativistic heavy-ion collisions can proceed in two different ways. In the collisions with large
stopping power the baryons from the colliding nuclei are stopped in the middle of the reaction
zone, and a dense baryon-rich matter is produced at midrapidity. On the other hand, in the
transparent collisions (negligible stopping) the initial baryons are not slowed down, and the two
baryon-rich regions are separated from each other.

y=0y=yT y=yP

central region

target fragmentation
region

projectile fragmentation
region

baryon density

T P
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2.6 Stopping and transparency

The net-proton distributions measured in
different experiments.
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2.7 Boost invariance

Generally speaking, boost-invariance is the symmetry of the physical systems with respect to
Lorentz boosts along the beam axis. It imposes special constraints on the form of the physical
quantities.

For example, the thermodynamic functions used in the relativistic hydrodynamics, such as
temperature, pressure, or the energy density, are Lorentz scalars. The boost-invariance in this
cases means that they may depend only on the transverse coordinates and the longitudinal
proper time τ =

√
t2 − z2.

Similarly, the rapidity distribution dN/dy is boost-invariant if it is independent of rapidity.
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2.7 Boost invariance:scalar field

From the formal point of view, a scalar field ψ(x) has the following transformation rule

ψ(x)→ ψ′(x ′), ψ′(x ′) = ψ(x), (22)

where x , x ′ are spacetime coordinates connected by the Lorentz transformation L, namely
x ′ = Lx . The scalar field is invariant under Lorentz boosts along the z axis if the transformed
field in the new spacetime point x ′ coincides with the original field at that point,

ψ′(x ′) = ψ(x ′). (23)

Combining Eqs. (22) and (23), one obtains the constraint

ψ(x ′) = ψ(x), (24)

which means that ψ may depend only on the transverse variables x , y and the longitudinal proper
time τ =

√
t2 − z2, as we have stated before.
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2.7 Boost invariance: vector field

Schematic illustration of the rotational
invariance of the vector field. If the

vector field is rotationally invariant, as in
panel (a), the rotation of a vector yields

the “new” vector placed in the “new”
place that coincides with the “old” vector
in the same “new” place. For example,

the dashed arrow in (b), after the
rotation by π/3, coincides with the

dashed vector in (c). This property does
not hold for the non-symmetric field in

(d). The rotation of the dashed vector in
(e) by π/3 yields the the dashed vector
in (f), that does not agree with the old

vector at that place.

HaL HbL HcL

HdL HeL HfL
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2.7 Boost invariance: vector field

It is also interesting to analyze the boost-invariant four-vector field. The general transformation
rule in this case is

uµ(x)→ u′µ(x ′), u′µ(x ′) = Lµνuν(x). (25)

The boost-invariance demands again that the transformed “new” field u′µ in the “new” spacetime
point x ′ coincides with the original “old” field at this point

u′µ(x ′) = uµ(x ′). (26)

Equations (25) and (26) lead to the condition

uµ(x ′) = Lµνuν(x), (27)

which states that the transformed boost-invariant field may be obtained by the simple substitution
of the argument, x → x ′.
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2.7 Boost invariance: four-velocity field

As an example we may consider the four-vector field which describes the hydrodynamic flow of
matter produced in heavy-ion collisions. With the condition that the flow is zero for z = 0 one
may check that the boost-invariant form of such a flow is

uµ = γ(1, vx , vy , vz ) = γ̄(τ, x , y)
t
τ

(
1,
τ

t
v̄x (τ, x , y),

τ

t
v̄y (τ, x , y),

z
t

)
, (28)

where, to fulfill the normalization condition for the four-velocity, uµuµ = 1, one assumes

γ̄ =
1√

1− v̄2
x − v̄2

y

. (29)

As may be inferred from (28), the functions v̄x , v̄y , and γ̄ are the transverse components of the
fluid velocity and the corresponding Lorentz gamma factor, all determined in the plane z = 0
(where also τ = t). The longitudinal flow has the scaling form

vz = z
t . (30)
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Exercise

1. Natural system of units.
Given the Planck constant ~ = 6.58 · 10−22 MeV s, the speed of light in vacuum
c = 2.998 · 108 m/s, and the Boltzmann constant kB = 1.38 ·10−16 erg/K (1 eV = 1.6 ·10−12

erg). i) What length is equivalent to 1 GeV in the natural system of units where ~ = c = kB = 1.
Express your result in fm. ii) What temperature (in K) is equivalent to 100 MeV? iii) Change the
standard unit used for the cross sections, 1 milibarn = 1 mb = 10−31 m2, to fm2.

Answers:

1 GeV = 5.07 fm−1 , (31)

100 MeV = 116 · 1010 K , (32)

10 mb = 1 fm2 . (33)
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Exercise

2. Energy density of normal nuclear matter.
Calculate the energy density of normal nuclear matter.

Answer: The easiest way is to use the value of the nuclear saturation density ρ0 = 0.17 fm−3

and to multiply it by the nucleon mass mN = 940 MeV. This gives

ε0 ≈ 0.16 GeV/fm3 . (34)

Find other ways of making this estimate.

Exercise

3. Kinetic energy of a truck.
The weight of a truck is 10 tons and it is moving at a speed of 100 km/h. Calculate its kinetic
energy in eV.
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Exercise

4. Participants and spectators.
i) Calculate the number of the participant nucleons in a central collision of the two nuclei
characterized by the atomic numbers A and B (the impact parameter is exactly zero, b = 0).
Assume that the nuclei have sharp surfaces and their density distribution is uniform and equal to
the saturation density ρ0 = 0.17/fm3. ii) Find the numerical value of Npart for the central S+Au
reaction.

Answers:
We assume B ≤ A and use the following notation: R = 1.12A1/3, r = 1.12B1/3, H =

√
R2 − r2,

and h = R − H. Simple geometric considerations, see figure, lead to the formula

Npart = B +

[
2πr2H +

2
3
πh2(3R − h)

]
ρ0. (35)

For A = 197 and B = 32 one finds Npart = 113.

R r

A

B

H hHh

H = R
2
- r

2

h = R - H
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EXERCISES

Exercise

5. Transverse-momentum spectra.
i) For the exponential distribution function given by (4) show that the average transverse mass,
〈m⊥〉, and the average transverse momentum, 〈p⊥〉, are given by the expressions,

〈m⊥〉 =
2λ2 + 2λm + m2

λ+ m
, (36)

〈p⊥〉 =
m2K2(m/λ)

λ+ m
em/λ, (37)

where m is the particle’s mass. Hint: In the calculation of the average transverse momentum use
the definition of the modified Bessel function of the second kind (next page). ii) In the limit
m/λ� 1 show that

〈m⊥〉 ≈ 2λ+
m2

λ
, 〈p⊥〉 ≈ 2λ+

m2

2λ
,

which leads to 〈m⊥〉 − 〈p⊥〉 ≈ m2/(2λ). Hint: In (37) use the asymptotic expansion for K2 (next
page).
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The modified Bessel functions of the second kind (McDonald functions):

Kn(x) =
2nn!

(2n)!
x−n

∫ ∞
x

dτ
(
τ2 − x2

)n−1/2
e−τ . (38)

By the integration by parts one may show that (38) is equivalent to

Kn(x) =
2n−1 (n − 1)!

(2n − 2)!
x−n

∫ ∞
x

dτ
(
τ2 − x2

)n−3/2
τ e−τ . (39)

One may also check that

Kn+1(x) =
xn

(2n − 1)!!

∞∫
0

e−x coshy
sinh

2ny coshy dy , (40)

which in the special cases gives

K1(x) =
1
2

∞∫
−∞

e−x coshy
coshy dy K0(x) =

1
2

∞∫
−∞

e−x coshy dy . (41)
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The series expansions of the modified Bessel functions Kn(x) for x → 0 and for n = 1, 2, 3, 4 are
given by the formulas

K1(x) =
1
x

+ O(x1),

K2(x) =
2
x2
−

1
2

+ O(x2),

K3(x) =
8
x3
−

1
x

+
x
8

+ O(x3),

K4(x) =
48
x4
−

4
x2

+
1
4
−

x2

48
+ O(x4). (42)

The asymptotic expansion of the modified Bessel function Kn(x) for x →∞ has the generic form

Kn(x) = e−x
(√

π

2x
+ O

(
x−

3
2

))
. (43)
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Exercise

6. Properties of rapidity.
i) Calculate the rapidities of the projectile nuclei in the SPS fixed-target experiments with the
beam energy of 60 and 200 GeV per nucleon. ii) Prove that rapidities are additive under Lorentz
boosts along the beam axis. iii) Show that for a high-energy particle one can measure
independently its rapidity and longitudinal position.

Exercise

7. Properties of pseudorapidity.
Using elementary trigonometric identities derive

η =
1
2

ln
(|p|+ p‖)

(|p| − p‖)
= ln

(
cot

θ

2

)
= − ln

(
tan

θ

2

)
, (44)

sin θ =
1

cosh η
. (45)
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Exercise

8. Boost-invariance.
Show that the longitudinal velocity of the form

vz =
Az − Bt
At − Bz

, (46)

where A and B are constants, is boost-invariant. Hint: Calculate the corresponding four-vector
uµ = γ(1, vz ). Apply the longitudinal Lorentz boost and check that uµ is boost-invariant .
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Exercise

9. Thickness functions.
i) Show that the nucleon-nucleus thickness function for the sharp-cutoff baryon distribution and
t(b) = δ(2)(b) is given by the formula

TA (b) =
3
√

R2 − b2

2πR3
θ (R − b) . (47)

ii) Calculate the nucleon-nucleus thickness function for the Gaussian baryon distribution

ρA(sA, zA) =
1

(2π)3/2σ3
A

exp

(
−

s2
A + z2

A

2σ2
A

)
. (48)

iii) Use the result of point ii) to show that for the gaussian baryon distributions the
nucleus-nucleus thickness function is a Gaussian characterized by the width

σAB =
√
σ2

A + σ2
B . (49)
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Exercise

10. EOS of the weakly-interacting quark-gluon plasma.
Calculate the energy density ε = ε(T , µ) of the weakly-interacting quark-gluon plasma consisting
of massless partons. Hint: Treat gluons and quarks as an ideal Bose-Einstein and Fermi-Dirac
gas, respectively.
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