Rope Hadronisation
 54th Cracow School of Theoretical Physics, Zakopane, 2014-06-13

Christian Bierlich
bierlich@thep.lu.se

With Gösta Gustafson, Leif Lönnblad and Andrey Tarasov
Lund University, Dept. Astronomy and Theoretical Physics
Support by the MCnet, Marie Curie Initial Training Network is gratefully acknowledged

Introduction

- The string model is the primary hadronization workhorse for the Lund family of Monte Carlo EG.
- The string model is developed for the very clean LEP environment...
- ...while pp min. bias or Heavy Ion is more messy
- Corrections based on coherence effects or rope hadronisation.
- Part of the DIPSY/Ariadne 5 Monte Carlo EG.

The DIPSY event generator ${ }_{[F l e n s b u r g ~ e t ~ a l . ~ a r x i v: ~}^{1} 103$. 4321 [hepp-ph], 2011]

- A Monte Carlo implementation of the Mueller Dipole Cascade (with corrections) [see talks this morning or G. Gustafson, proceedings 2011].
- Builds up virtual Fock states of proton, colliding dipoles interact via gluon exchange.
- A dipole (\vec{x}, \vec{y}) can emit a gluon at position \vec{z} with probability (P) per unit rapidity (Y); dipoles i and j interacts with probability $2 f_{i j}$:

$$
\begin{gathered}
\frac{d P}{d Y}=\frac{\bar{\alpha}}{2 \pi} d^{2} \vec{z} \frac{(\vec{x}-\vec{y})^{2}}{(\vec{x}-\vec{z})^{2}(\vec{z}-\vec{y})^{2}} \\
f_{i j}=\frac{\alpha_{s}^{2}}{8}\left[\log \left(\frac{\left(\vec{x}_{i}-\vec{y}_{j}\right)^{2}\left(\vec{y}_{i}-\vec{x}_{j}\right)^{2}}{\left(\vec{x}_{i}-\vec{x}_{j}\right)^{2}\left(\vec{y}_{i}-\overrightarrow{y_{j}}\right)^{2}}\right)\right]^{2}
\end{gathered}
$$

Monte Carlo event generation

- Many corrections beyond Muellers model - se reference on previous page.
- Rough sketch of MC generation of an event:
(1) Generate projective and target cascades;
(2) Detemine which dipoles interact;
(3) Reabsorption of non-interacting chains (dipole loops);
(9) Final state radiation (ARIADNE 5);
(3) Hadronisation;
- The rest of this talk will concentrate on the last part!

Rest of this talk

(1) Ordinary string hadronisation
(2) Rope model
(3) Results for $p p$
(4) Prospects
(5) Outlook and conclusion

String Hadronisation [sjostrand et al. hep-ph/0603175, 2006]

- Linear confinement potential $V(r) \approx \kappa r, \kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
- Valid for large distances - for small distances perturbation theory should be valid.

- Realized in a $1+1$ dimensional string with tension κ.

String Hadronisation II [Andersson et al. z. Phys. C20 317, 1983]

- Repeated breaking with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.
- Left-right symmetry in the breaking gives
$f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)$.
- a and b related to total multiplicity.

- Flavours determined by relative probabilities:

$$
\begin{gathered}
\rho=\frac{\mathcal{P}_{\text {strange }}}{\mathcal{P}_{\text {u or d }}}, \xi=\frac{\mathcal{P}_{\text {diquark }}}{\mathcal{P}_{\text {quark }}} \\
x=\frac{\mathcal{P}_{\text {strange diquark }}}{\mathcal{P}_{\text {diquark }}}, y=\frac{\mathcal{P}_{\text {spin } 1 \text { diquark }}}{\mathcal{P}_{\text {spin } 0 \text { diquark }}}
\end{gathered}
$$

- Notice that probabilities are related to κ via tunneling equation.

Change of string tension

- All parameters related through string tension.
- Used to produce a set of effective parameters.
- Let $\kappa \mapsto \tilde{\kappa}=h \kappa$.

- All effective parameters calculable from the two governing equations.
- Parameters ρ and ξ are very sensitive to change in κ.
- Can this be connected to overlapping strings?

The Rope Model at a glance

- The Rope Model:
(1) Let charges act coherently to form a rope.
(2) The rope is an $\mathrm{SU}(3)$ multiplet, with $\kappa \propto C_{2}$.
(3) All ropes described by two quantum numbers $\{p, q\}$.
(Pope breaks in steps, one strand at a time.
- Must still map colour configuration to $\{p, q\}$ for individual strands.
- Hadronisation of strands by Pythia 8, using effective parameters.
- Input: Colour connected output from DIPSY/Ariadne 5 shower.
- Output: Individual strands with an associated set of effective parameters.

Rope model - example 1

- The simplest example: Two $q \bar{q}$ pairs act coherently, colour flow in same direction:

Case (a), $c_{1}=c_{2}$:

Case (b), $c_{1} \neq c_{2}$:

Rope model - example 2

- Next-to-simplest: Two $q \bar{q}$ pairs act coherently, having oppositely directed colour flow:

Case (a), $c_{1}=c_{2}$:

Case (b), $c_{1} \neq c_{2}$:

Generalization - The Ropewalk

- Generalizable to arbitrarily many triplets and anti triplets $\{m, n\}$.
- The procedure is iterative, adding one (anti)-triplet at a time.
- This is similar to a random walk in colour space Biro et al., Nucl. Phys. B 245, 449-468, 1984.
- Below: A forming machine at the end of a ropewalk (reeperbahn).

The Ropewalk II

- Random walk carried out to form multiplets, using recursion relations.

- Rope tension equivalent to 2 nd Casimir operator [Ambjärn, J et al. Nucl. Phys. B 240, 533, 1984] and [Bali, G. S, hep-lat/0006022, 2000].
- Averaged over $N=p+q$ partial breakups: $\tilde{\kappa} / \kappa=\frac{1}{4}\left(N+3-\frac{p q}{N}\right)$

Comparison to data (CMS)

- From MCplots, comparison to CMS data [CMs, arXiv:1102.4282 [hep-ex], 2012]:

Comparison to data (CMS)

- Vanilla DIPSY/ARIADNE 5 (string hadronisation) suffers from similar problem.
- Including rope effects improves the picture.

Two prospects

- Two future prospects:
- Higher energy (trivial)
- Heavy Ions

Increased energy

- Increased energy results in more strings.
- With more overlap comes a larger effect!

Heavy Ion (very preliminary!)

- Heavy ion events (AuAu at 130 GeV , RHIC) are way more stringy!

- It is absolutely neccesary to deal with coherence effects.

The Colour Swing

- We deal with the simple case $3 \otimes \overline{3} \rightarrow 1$ using a colour swing mechanism (also in pp).
- Let nearby dipoles »swing < if compatible.
- Far reaching consequences for kinematics!

Comparison to data (PHENIX) [PHENIX, 2002, arxi: :nudex/ex/0112006]

- Hard tail from the swing, rope effect not visible.
- Even more pronounced for higher p_{\perp} (eg. ALICE PbPb).

Outlook and conclusions

- The string model needs corrections in dense environments.
- Spatially overlapping strings enhance string tension.
- Implemented in context of DIPSY/Ariadne 5.
- Ropes formed by colour charges acting coherently gets strange/baryonic content right in pp.
- Effects should increase for higher LHC energies/SLHC.
- Promise for Heavy Ion events, colour reconnection by swing is a work in progress.

The End

Bonus slides

Effect of swing

- Swing transforms low p_{\perp} particles to high p_{\perp} particles.
- Seems to be right for pp, but overshooting the effect in HI collisions.

Calculation of $\{m, n\}$

- Finding the $\{m, n\}$ strings producing a rope is not an entirely trivial matter.
- Must deal with partial overlaps.
- Crude approximation: Draw cylinders around each string, calculate volume overlap of cylinders:

$$
\langle N\rangle_{\text {total }}=\langle N\rangle_{\text {self }}+\sum_{i \neq \text { self }} \frac{V_{o, i}}{V_{i}}\langle N\rangle_{i}
$$

Effect on total multiplicity [ATLAs, Phys. Lett. B688, 21-42, 2010]

- Must not destroy total multiplicity, which is so carefully tuned...

Effect on $\left\langle p_{\perp}\right\rangle$ [ATLAS, Phys. Lett. B688, 21-42, 2010]

- The mean p_{\perp} is also an interesting observable.
- We see that it is not destroyed by neither swing nor ropes.

Recursion relations etc.

- All multiplets are given by pairs of fundamental quantum numbers $\{p, q\}$.
- We can choose another set of fundamental quantum numbers, eg.:

$$
\begin{gathered}
N=\frac{1}{2}(p+1)(q+1)(p+q+2), \\
C_{2}(\{p, q\}) / C_{2}(\{1,0\})=\frac{1}{4}\left(p^{2}+q^{2}+p q+3(p+q)\right)
\end{gathered}
$$

- Related to Young tableaux as: $q=\lambda_{2}$ and $p+q=\lambda_{1}$ so eg:

$$
\{2,3\}=\square \square \square
$$

- Following the usual rules we have:

$$
\begin{aligned}
& \{1,0\} \otimes\{1,0\}=\square \otimes \square=\square \oplus \square=\{2,0\} \oplus\{0,1\} \\
& \{1,0\} \otimes\{0,1\}=\square \otimes \square=\square \oplus I=\{1,1\} \oplus\{0,0\}
\end{aligned}
$$

Recursion relations cont'd

- Directly generalizable:

$$
\begin{gathered}
\{p, q\} \otimes\{1,0\}=\underbrace{\square \ldots \underbrace{\square \square}_{p} \otimes \square=}_{q} \\
\{p, q-1\} \oplus\{p-1, q+1\} \oplus\{p+1, q\} .
\end{gathered}
$$

- and:

$$
\begin{aligned}
& \quad\{p, q\} \otimes\{0,1\}=\underbrace{\square \ldots}_{q} \underbrace{\square \square}_{p} \otimes \square= \\
& \{p-1, q\} \oplus\{p, q+1\} \oplus\{p+1, q-1\} .
\end{aligned}
$$

