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Motivation

I Statistical models of hadron
production became a
cornerstone of our
understanding of heavy-ion
collisions

I The measured proton
abundances at sqrt(S) 2.76 TeV
at LHC did not agree with the
predictions of the statistical
models

I The low pT pion spectra show
enhancement by about 25-50%
with respect to the predictions
of various models
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The Cracow Model

I Transverse-momentum distributions are calculated from the Cooper-Frye
formula:

dN

dyd2pT
=

∫
dΣµp

µf (p · u),

where dΣµ is an element of the freeze-out hypersurface and uµ is the
hydrodynamic flow at freeze-out

I The primordial distribution of the i-th hadron in the local rest frame has the
form:

fi = gi

∫
d3p

(2π)3

1

Υ−1
i exp(

√
p2 + m2

i /T )∓ 1

where Υi = γ
N i

q+N i
q̄

q γ
N i

s+N i
s̄

s . The N i
j are the numbers of light (u, d) and

strange (s) quarks and anti-quarks in the i-th hadron. We compare the
non-equilibrium, γj 6= 1, and equilibrium, γj = 1 cases
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The Cracow Model

I uµ is the hydrodynamic Hubble-like
flow at freeze-out:
uµ = xµ/τf = (t, x , y , z)/τf

I Resonance decays are handled by the
THERMINATOR Monte-Carlo event
generator, see M. Chojnacki, A. Kisiel,

W. Florkowski and W. Broniowski, Comp. Phys.

Com. 183 (2012)
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I The thermodynamic parameters T , γq, γs and hyper-volume dV /dy
that control the average multiplicities of particles we take from
M. Petran J. Letessier, V. Petracek,J. Rafelski, PRC 88 (2013)

I We have only one additional parameter to describe the spectra –

maximal transverse radius over the invariant freeze-out time, rmax/τf
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Pions, Kaons and Protons – Non-Equilibrium

I We fit the pion and
kaon spectra with
only one parameter
rmax/τf and find a
remarkable agreement
with data

I Protons are not
included in the fit,
however our model
explains well their
spectrum
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Pions, Kaons and Protons – Equilibrium

I The non-equilibrium
model is much better
than the equilibrium

I The simultaneous
description of the low
pT spectrum of pions
and kaons (protons)
is possible only in
non-equilibrium.
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Light Strange particles

I Using exactly the same parameters, we have obtained an excellent description
of K 0

S , K∗0, and φ
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I These particles have different lifetimes, masses and quark contents. Therefore
their simultaneous description confirms the validity of the single freeze-out
concept of the Cracow model.
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Heavy Strange particles

I The experimental results at low pT are reproduced, but for higher values of pT
(pT > 2 GeV) the model overshoots the data.
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I It can be an artefact of the Cracow model that assumes a simple Hubble form
of flow at freeze-out for all particles.

V.B., W. Florkowski, M. Rybczynski, 1405.7252



Heavy Strange particles

I The experimental results at low pT are reproduced, but for higher values of pT
(pT > 2 GeV) the model overshoots the data.

0 1 2 3

10-2

10-1

1

101

1 2 3 1 2 3

chemical    non-equilibrium

  0-10% 

10-20% 

20-40% 

40-60% 

60-80%

 

pT [GeV/c]
 

 

d2 N
 / 

(  dp
T d

y)
   

[(G
eV

/c
)-1

]

  0-10% 

10-20% 

20-40% 

40-60% 

60-80%

  0-10% 

10-20% 

20-40% 

40-60% 

60-80%

 

 

 

 

I It can be an artefact of the Cracow model that assumes a simple Hubble form
of flow at freeze-out for all particles.

V.B., W. Florkowski, M. Rybczynski, 1405.7252



Heavy Strange particles

I The assumption of a smaller emission volume for Λ’s and Ξ’s (by 20%) and also
for Ω’s (by 30%) gives us a remarkable agreement.
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I With the reduced rmax and other parameters unchanged, we agree with the
experiment even for Ω’s at the highest centrality.
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Freeze-out in Cracow Model at LHC

I In the center-of-mass frame
at z = 0, the freeze-out
starts in the center of the
fireball at the time τf .

I Subsequently, it spreads out
along the hyperbola τ(r) =√
τ 2
f + r2 ≤

√
τ 2
f + r2

max

I The radius r =
√

0.7 rmax

(r =
√

0.8 rmax) determines
the production range for Ω’s
and Ξ’s (Λ’s).
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f
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I All other particles are produced in the range given by r = rmax.
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Pion condensation?

I The low pT enhancement of
pions can be explained only
in non-equilibrium

I The value of γq that we use
is equivalent to the pion
chemical potential
µπ= 2T ln γq ' 134 MeV,
which is very close to the π0

mass, mπ0 ' 134.98

I It may suggest that a
substantial part of π0

mesons form the condensate
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Conclusions:

I We connect the proton anomaly with the pion enhancement effect and show
that the two problems may be solved naturally within the non-equilibrium
Cracow single freeze-out model

I The obtained values of the non-equilibrium parameter γq are close to the

pion condensation limit (γcondq )2 = emπ/T

I It may be interpreted as a signature of the onset of pion condensation in
ultra-relativistic heavy-ion collisions at LHC.
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