Transverse-momentum spectra in heavy-ion collisions at sqrt(sNN) = 2.76 TeV within chemical non-equilibrium model

Viktor Begun

Jan Kochanowski University, Kielce, Poland

June 19, 2014

V.B., W. Florkowski, M. Rybczynski, 1312.1487, 1405.7252

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Statistical models of hadron production became a cornerstone of our understanding of heavy-ion collisions
- The measured proton abundances at sqrt(S) 2.76 TeV at LHC did not agree with the predictions of the statistical models

- Statistical models of hadron production became a cornerstone of our understanding of heavy-ion collisions
- The measured proton abundances at sqrt(S) 2.76 TeV at LHC did not agree with the predictions of the statistical models

B. Abelev et al., [ALICE Collaboration] PRC 88 (2013)

(日) (部) (王) (王)

- Statistical models of hadron production became a cornerstone of our understanding of heavy-ion collisions
- The measured proton abundances at sqrt(S) 2.76 TeV at LHC did not agree with the predictions of the statistical models
- The low p_T pion spectra show enhancement by about 25-50% with respect to the predictions of various models

- Statistical models of hadron production became a cornerstone of our understanding of heavy-ion collisions
- The measured proton abundances at sqrt(S) 2.76 TeV at LHC did not agree with the predictions of the statistical models
- The low p_T pion spectra show enhancement by about 25-50% with respect to the predictions of various models

- Statistical models of hadron production became a cornerstone of our understanding of heavy-ion collisions
- The measured proton abundances at sqrt(S) 2.76 TeV at LHC did not agree with the predictions of the statistical models
- The low p_T pion spectra show enhancement by about 25-50% with respect to the predictions of various models

Transverse-momentum distributions are calculated from the Cooper-Frye formula:

$$\frac{dN}{dyd^2p_T} = \int d\Sigma_{\mu} p^{\mu} f(p \cdot u),$$

where $d\Sigma_\mu$ is an element of the freeze-out hypersurface and u^μ is the hydrodynamic flow at freeze-out

The primordial distribution of the *i*-th hadron in the local rest frame has the form:

$$f_i = g_i \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\Upsilon_i^{-1} \exp(\sqrt{p^2 + m_i^2}/T) \mp 1}$$

where $\Upsilon_i = \gamma_q^{N_q^i + N_q^i} \gamma_s^{N_s^i + N_s^i}$. The N_j^i are the numbers of light (u, d) and strange (s) quarks and anti-quarks in the *i*-th hadron. We compare the non-equilibrium, $\gamma_j \neq 1$, and equilibrium, $\gamma_j = 1$ cases

Transverse-momentum distributions are calculated from the Cooper-Frye formula:

$$\frac{dN}{dyd^2p_T} = \int d\Sigma_{\mu} p^{\mu} f(p \cdot u),$$

where $d\Sigma_{\mu}$ is an element of the freeze-out hypersurface and u^{μ} is the hydrodynamic flow at freeze-out

The primordial distribution of the *i*-th hadron in the local rest frame has the form:

$$f_i = g_i \int \frac{d^3p}{(2\pi)^3} \frac{1}{\Upsilon_i^{-1} \exp(\sqrt{p^2 + m_i^2}/T) \mp 1}$$

where $\Upsilon_i = \gamma_q^{N'_q + N'_q} \gamma_s^{N'_s + N'_s}$. The N^i_j are the numbers of light (u, d) and strange (s) quarks and anti-quarks in the *i*-th hadron. We compare the non-equilibrium, $\gamma_j \neq 1$, and equilibrium, $\gamma_j = 1$ cases

- u^μ is the hydrodynamic Hubble-like flow at freeze-out: u^μ = x^μ/τ_f = (t, x, y, z)/τ_f
- Resonance decays are handled by the THERMINATOR Monte-Carlo event generator, see M. Chojnacki, A. Kisiel, W. Florkowski and W. Broniowski, Comp. Phys. Com. 183 (2012)

<ロ> (四) (四) (三) (三) (三)

æ

- *u^µ* is the hydrodynamic Hubble-like flow at freeze-out: *u^µ* = *x^µ*/*τ_f* = (*t*, *x*, *y*, *z*)/*τ_f*
- Resonance decays are handled by the THERMINATOR Monte-Carlo event generator, see M. Chojnacki, A. Kisiel, W. Florkowski and W. Broniowski, Comp. Phys. Com. 183 (2012)

・ロト ・四ト ・ヨト ・ヨト

크

The thermodynamic parameters *T*, *γ_q*, *γ_s* and hyper-volume *dV/dy* that control the average multiplicities of particles we take from
 M. Petran J. Letessier, V. Petracek, J. Rafelski, PRC 88 (2013)

- u^μ is the hydrodynamic Hubble-like flow at freeze-out: u^μ = x^μ/τ_f = (t, x, y, z)/τ_f
- Resonance decays are handled by the THERMINATOR Monte-Carlo event generator, see M. Chojnacki, A. Kisiel, W. Florkowski and W. Broniowski, Comp. Phys. Com. 183 (2012)

- The thermodynamic parameters *T*, *γ_q*, *γ_s* and hyper-volume *dV/dy* that control the average multiplicities of particles we take from
 M. Petran J. Letessier, V. Petracek, J. Rafelski, PRC 88 (2013)
- ▶ We have only one additional parameter to describe the spectra maximal transverse radius over the invariant freeze-out time, r_{max}/τ_f

- u^μ is the hydrodynamic Hubble-like flow at freeze-out: u^μ = x^μ/τ_f = (t, x, y, z)/τ_f
- Resonance decays are handled by the THERMINATOR Monte-Carlo event generator, see M. Chojnacki, A. Kisiel, W. Florkowski and W. Broniowski, Comp. Phys. Com. 183 (2012)

- The thermodynamic parameters *T*, *γ_q*, *γ_s* and hyper-volume *dV/dy* that control the average multiplicities of particles we take from
 M. Petran J. Letessier, V. Petracek, J. Rafelski, PRC 88 (2013)
- ► We have only one additional parameter to describe the spectra maximal transverse radius over the invariant freeze-out time, r_{max}/τ_f

Pions, Kaons and Protons – Non-Equilibrium

- We fit the pion and kaon spectra with only one parameter r_{max}/τ_f and find a remarkable agreement with data
- Protons are not included in the fit, however our model explains well their spectrum

V.B., W. Florkowski, M. Rybczynski, 1405.7252

Pions, Kaons and Protons – Non-Equilibrium

- ► We fit the pion and kaon spectra with only one parameter r_{max}/τ_f and find a remarkable agreement with data
- Protons are not included in the fit, however our model explains well their spectrum

V.B., W. Florkowski, M. Rybczynski, 1405.7252

Pions, Kaons and Protons - Equilibrium

- The non-equilibrium model is much better than the equilibrium
- The simultaneous description of the low p_T spectrum of pions and kaons (protons) is possible only in non-equilibrium.

V.B., W. Florkowski, M. Rybczynski, 1405.7252

Pions, Kaons and Protons - Equilibrium

- The non-equilibrium model is much better than the equilibrium
- The simultaneous description of the low p_T spectrum of pions and kaons (protons) is possible only in non-equilibrium.

V.B., W. Florkowski, M. Rybczynski, 1405.7252

Light Strange particles

Using exactly the same parameters, we have obtained an excellent description of K⁰_S, K^{*0}, and φ

These particles have different lifetimes, masses and quark contents. Therefore their simultaneous description confirms the validity of the single freeze-out concept of the Cracow model.

Light Strange particles

Using exactly the same parameters, we have obtained an excellent description of K⁰_S, K^{*0}, and φ

These particles have different lifetimes, masses and quark contents. Therefore their simultaneous description confirms the validity of the single freeze-out concept of the Cracow model.

The experimental results at low p_T are reproduced, but for higher values of p_T (p_T > 2 GeV) the model overshoots the data.

It can be an artefact of the Cracow model that assumes a simple Hubble form of flow at freeze-out for all particles.

The experimental results at low p_T are reproduced, but for higher values of p_T (p_T > 2 GeV) the model overshoots the data.

It can be an artefact of the Cracow model that assumes a simple Hubble form of flow at freeze-out for all particles.

The assumption of a smaller emission volume for Λ's and Ξ's (by 20%) and also for Ω's (by 30%) gives us a remarkable agreement.

• With the reduced r_{max} and other parameters unchanged, we agree with the experiment even for Ω 's at the highest centrality.

The assumption of a smaller emission volume for Λ's and Ξ's (by 20%) and also for Ω's (by 30%) gives us a remarkable agreement.

• With the reduced r_{max} and other parameters unchanged, we agree with the experiment even for Ω 's at the highest centrality.

- In the center-of-mass frame at z = 0, the freeze-out starts in the center of the fireball at the time τ_f.
- Subsequently, it spreads out along the hyperbola $\tau(r) = \sqrt{\tau_f^2 + r^2} \le \sqrt{\tau_f^2 + r_{\max}^2}$

- In the center-of-mass frame at z = 0, the freeze-out starts in the center of the fireball at the time τ_f.
- ► Subsequently, it spreads out along the hyperbola $\tau(r) = \sqrt{\tau_f^2 + r^2} \le \sqrt{\tau_f^2 + r_{\max}^2}$
- The radius $r = \sqrt{0.7} r_{\text{max}}$ ($r = \sqrt{0.8} r_{\text{max}}$) determines the production range for Ω 's and Ξ 's (Λ 's).

- In the center-of-mass frame at z = 0, the freeze-out starts in the center of the fireball at the time τ_f.
- ► Subsequently, it spreads out along the hyperbola $\tau(r) = \sqrt{\tau_f^2 + r^2} \le \sqrt{\tau_f^2 + r_{\max}^2}$
- The radius $r = \sqrt{0.7} r_{\text{max}}$ ($r = \sqrt{0.8} r_{\text{max}}$) determines the production range for Ω 's and Ξ 's (Λ 's).

▶ All other particles are produced in the range given by $r = r_{max}$.

- In the center-of-mass frame at z = 0, the freeze-out starts in the center of the fireball at the time τ_f.
- ► Subsequently, it spreads out along the hyperbola $\tau(r) = \sqrt{\tau_f^2 + r^2} \le \sqrt{\tau_f^2 + r_{\max}^2}$
- The radius $r = \sqrt{0.7} r_{\text{max}}$ ($r = \sqrt{0.8} r_{\text{max}}$) determines the production range for Ω 's and Ξ 's (Λ 's).

• All other particles are produced in the range given by $r = r_{max}$.

Pion condensation?

- The low p_T enhancement of pions can be explained only in non-equilibrium
- The value of γ_q that we use is equivalent to the pion chemical potential $\mu_{\pi} = 2T \ln \gamma_q \simeq 134$ MeV, which is very close to the π^0 mass, $m_{\pi^0} \simeq 134.98$

Pion condensation?

- The low p_T enhancement of pions can be explained only in non-equilibrium
- The value of γ_q that we use is equivalent to the pion chemical potential $\mu_{\pi} = 2T \ln \gamma_q \simeq 134$ MeV, which is very close to the π^0 mass, $m_{\pi^0} \simeq 134.98$
- It may suggest that a substantial part of π⁰ mesons form the condensate

V.B., W. Florkowski, M. Rybczynski, 1312.1487

Pion condensation?

- The low p_T enhancement of pions can be explained only in non-equilibrium
- The value of γ_q that we use is equivalent to the pion chemical potential $\mu_{\pi} = 2T \ln \gamma_q \simeq 134$ MeV, which is very close to the π^0 mass, $m_{\pi^0} \simeq 134.98$
- It may suggest that a substantial part of π⁰ mesons form the condensate

V.B., W. Florkowski, M. Rybczynski, 1312.1487

Conclusions:

- We connect the proton anomaly with the pion enhancement effect and show that the two problems may be solved naturally within the non-equilibrium Cracow single freeze-out model
- ► The obtained values of the non-equilibrium parameter γ_q are close to the pion condensation limit $(\gamma_q^{cond})^2 = e^{m_{\pi}/T}$
- It may be interpreted as a signature of the onset of pion condensation in ultra-relativistic heavy-ion collisions at LHC.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Extra Slides

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Geometric parameters

< □ > < □ > < □ > < □ > < □ > < □ > æ

